首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suckling mammals, including mice, differ from adults in the abundant expression of enzymes that synthesize arginine from citrulline in their enterocytes. To investigate the importance of the small-intestinal arginine synthesis for whole-body arginine production in suckling mice, we floxed exon 13 of the argininosuccinate synthetase (Ass) gene, which codes for a key enzyme in arginine biosynthesis, and specifically and completely ablated Ass in enterocytes by crossing Ass fl and Villin-Cre mice. Unexpectedly, Ass fl/fl /VilCre tg/- mice showed no developmental impairments. Amino-acid fluxes across the intestine, liver, and kidneys were calculated after determining the blood flow in the portal vein, and hepatic and renal arteries (86%, 14%, and 33%, respectively, of the transhepatic blood flow in 14-day-old mice). Relative to control mice, citrulline production in the splanchnic region of Ass fl/fl /VilCre tg/- mice doubled, while arginine production was abolished. Furthermore, the net production of arginine and most other amino acids in the liver of suckling control mice declined to naught or even changed to consumption in Ass fl/fl /VilCre tg/- mice, and had, thus, become remarkably similar to that of post-weaning wild-type mice, which no longer express arginine-biosynthesizing enzymes in their small intestine. The adaptive changes in liver function were accompanied by an increased expression of genes involved in arginine metabolism (Asl, Got1, Gpt2, Glud1, Arg1, and Arg2) and transport (Slc25a13, Slc25a15, and Slc3a2), whereas no such changes were found in the intestine. Our findings suggest that the genetic premature deletion of arginine synthesis in enterocytes causes a premature induction of the post-weaning pattern of amino-acid metabolism in the liver.  相似文献   

2.
Inducible nitric oxide synthase (iNOS) is a key enzyme in the macrophage inflammatory response, which is the source of nitric oxide (NO) that is potently induced in response to proinflammatory stimuli. However, the specific role of NO production, as distinct from iNOS induction, in macrophage inflammatory responses remains unproven. We have generated a novel mouse model with conditional deletion of Gch1, encoding GTP cyclohydrolase 1 (GTPCH), an essential enzyme in the biosynthesis of tetrahydrobiopterin (BH4) that is a required cofactor for iNOS NO production. Mice with a floxed Gch1 allele (Gch1fl/fl) were crossed with Tie2cre transgenic mice, causing Gch1 deletion in leukocytes (Gch1fl/flTie2cre). Macrophages from Gch1fl/flTie2cre mice lacked GTPCH protein and de novo biopterin biosynthesis. When activated with LPS and IFNγ, macrophages from Gch1fl/flTie2cre mice induced iNOS protein in a manner indistinguishable from wild-type controls, but produced no detectable NO, as judged by L-citrulline production, EPR spin trapping of NO, and by nitrite accumulation. Incubation of Gch1fl/flTie2cre macrophages with dihydroethidium revealed significantly increased production of superoxide in the presence of iNOS expression, and an iNOS-independent, BH4-dependent increase in other ROS species. Normal BH4 levels, nitric oxide production, and cellular redox state were restored by sepiapterin, a precursor of BH4 production by the salvage pathway, demonstrating that the effects of BH4 deficiency were reversible. Gch1fl/flTie2cre macrophages showed only minor alterations in cytokine production and normal cell migration, and minimal changes in basal gene expression. However, gene expression analysis after iNOS induction identified 78 genes that were altered between wild-type and Gch1fl/flTie2cre macrophages. Pathway analysis identified decreased NRF2 activation, with reduced induction of archetypal NRF2 genes (gclm, prdx1, gsta3, nqo1, and catalase) in BH4-deficient Gch1fl/flTie2cre macrophages. These findings identify BH4-dependent iNOS regulation and NO generation as specific requirements for NRF2-dependent responses in macrophage inflammatory activation.  相似文献   

3.

Background

Serotonergic system participates in a wide range of physiological processes and behaviors, but its role is generally considered as modulatory and noncrucial, especially concerning life-sustaining functions. We recently created a transgenic mouse line in which a functional deficit in serotonin homeostasis due to excessive serotonin autoinhibition was produced by inducing serotonin 1A receptor (Htr1a) overexpression selectively in serotonergic neurons (Htr1a raphe-overexpressing or Htr1aRO mice). Htr1aRO mice exhibit episodes of autonomic dysregulation, cardiovascular crises and death, resembling those of sudden infant death syndrome (SIDS) and revealing a life-supporting role of serotonergic system in autonomic control. Since midbrain serotonergic neurons are chemosensitive and are implicated in arousal we hypothesized that their chemosensitivity might be impaired in Htr1aRO mice.

Principal findings

Loose-seal cell-attached recordings in brainstem slices revealed that serotonergic neurons in dorsal raphe nucleus of Htr1aRO mice have dramatically reduced responses to hypercapnic challenge as compared with control littermates. In control mice, application of 9% CO2 produced an increase in firing rate of serotonergic neurons (0.260±0.041 Hz, n = 20, p = 0.0001) and application of 3% CO2 decreased their firing rate (−0.142±0.025 Hz, n = 17, p = 0.0008). In contrast, in Htr1aRO mice, firing rate of serotonergic neurons was not significantly changed by 9% CO2 (0.021±0.034 Hz, n = 16, p = 0.49) and by 3% CO2 (0.012±0.046 Hz, n = 12, p = 0.97).

Conclusions

Our findings support the hypothesis that chemosensitivity of midbrain serotonergic neurons provides a physiological mechanism for arousal responses to life-threatening episodes of hypercapnia and that functional impairment, such as excessive autoinhibition, of midbrain serotonergic neuron responses to hypercapnia may contribute to sudden death.  相似文献   

4.
Severe reduction in the β‐cell number (collectively known as the β‐cell mass) contributes to the development of both type 1 and type 2 diabetes. Recent pharmacological studies have suggested that increased pancreatic β‐cell proliferation could be due to specific inhibition of adenosine kinase (ADK). However, genetic evidence for the function of pancreatic β‐cell ADK under physiological conditions or in a pathological context is still lacking. In this study, we crossed mice carrying LoxP‐flanked Adk gene with Ins2‐Cre mice to acquire pancreatic β ‐cell ADK deficiency (Ins2‐Cre±Adkfl/fl) mice. Our results revealed that Ins2‐Cre+/‐Adkfl/fl mice showed improved glucose metabolism and β‐cell mass in younger mice, but showed normal activity in adult mice. Moreover, Ins2‐Cre±Adkfl/fl mice were more resistant to streptozotocin (STZ) induced hyperglycaemia and pancreatic β‐cell damage in adult mice. In conclusion, we found that ADK negatively regulates β‐cell replication in young mice as well as under pathological conditions, such as STZ induced pancreatic β‐cell damage. Our study provided genetic evidence that specific inhibition of pancreatic β‐cell ADK has potential for anti‐diabetic therapy.  相似文献   

5.
6.

Purpose

This study aims at using 18F-FDG microPET to monitor the brown adipose tissue (BAT) glucose metabolism in obese and diabetic mouse models under different interventions, and study the therapeutic potential of BAT activation for weight loss and lowering of blood glucose in these models.

Methods

Obese mice were established by a high-fat diet for eight weeks, and diabetes mellitus(DM) models were induced with Streptozocin in obese mice. 18F-FDG microPET was used to monitor BAT function during obese and DM modeling, and also after BRL37344 (a β3-adrenergic receptor agonist) or levothyroxine treatment. The BAT function was correlated with the body weight and blood glucose levels.

Results

Compared with the controls, the obese mice and DM mice showed successively lower 18F-FDG uptake in the interscapular BAT (P = 0.036 and <0.001, respectively). After two-week BRL37344 treatment, the BAT uptake was significantly elevated in both obese mice (P = 0.010) and DM mice (P = 0.004), accompanied with significantly decreased blood glucose levels (P = 0.023 and 0.036, respectively). The BAT uptake was negatively correlated with the blood glucose levels in both obese mice (r = −0.71, P = 0.003) and DM mice (r = −0.74, P = 0.010). BRL37344 treatment also caused significant weight loss in the obese mice (P = 0.001). Levothyroxine treatment increased the BAT uptake in the control mice (P = 0.025) and obese mice (P = 0.013), but not in the DM mice (P = 0.45).

Conclusion

The inhibited BAT function in obese and DM mice can be re-activated by β3-adrenergic receptor agonist or thyroid hormone, and effective BAT activation may lead to weight loss and blood glucose lowering. Activating BAT can provide a new treatment strategy for obesity and DM.  相似文献   

7.
Receptor activator of NF‐κB ligand (RANKL) is essential for osteoclast formation and bone remodeling. Nevertheless, the cellular source of RANKL for osteoclastogenesis has not been fully uncovered. Different from peripheral adipose tissue, bone marrow (BM) adipose lineage cells originate from bone marrow mesenchymal stromal cells (BMSCs). Here, we demonstrate that adiponectin promoter‐driven Cre expression (AdipoqCre ) can target bone marrow adipose lineage cells. We cross the AdipoqCre mice with ranklfl/fl mice to conditionally delete RANKL from BM adipose lineage cells. Conditional deletion of RANKL increases cancellous bone mass of long bones in mice by reducing the formation of trabecular osteoclasts and inhibiting bone resorption but does not affect cortical bone thickness or resorption of calcified cartilage. AdipoqCre; ranklfl/fl mice exhibit resistance to estrogen deficiency and rosiglitazone (ROS)‐induced trabecular bone loss but show bone loss induced by unloading. BM adipose lineage cells therefore represent an essential source of RANKL for the formation of trabecula osteoclasts and resorption of cancellous bone during remodeling under physiological and pathological conditions. Targeting bone marrow adiposity is a promising way of preventing pathological bone loss.  相似文献   

8.

Introduction

Mitochondrial dysfunction, lipid accumulation, insulin resistance and metabolic inflexibility have been implicated in the etiology of type 2 diabetes (T2D), yet their interrelationship remains speculative. We investigated these interrelationships in a group of T2D and obese normoglycemic control subjects.

Methods

49 non-insulin dependent male T2D patients and 54 male control subjects were enrolled, and a hyperinsulinemic-euglycemic clamp and indirect calorimetry were performed. A muscle biopsy was taken and intramyocellular lipid (IMCL) was measured. In vivo mitochondrial function was measured by PCr recovery in 30 T2D patients and 31 control subjects.

Results

Fasting NEFA levels were significantly elevated in T2D patients compared with controls, but IMCL was not different. Mitochondrial function in T2D patients was compromised by 12.5% (p<0.01). Whole body glucose disposal (WGD) was higher at baseline and lower after insulin stimulation. Metabolic flexibility (ΔRER) was lower in the type 2 diabetic patients (0.050±0.033 vs. 0.093±0.050, p<0.01). Mitochondrial function was the sole predictor of basal respiratory exchange ratio (RER) (R2 = 0.18, p<0.05); whereas WGD predicted both insulin-stimulated RER (R2 = 0.29, p<0.001) and metabolic flexibility (R2 = 0.40, p<0.001).

Conclusions

These results indicate that defects in skeletal muscle in vivo mitochondrial function in type 2 diabetic patients are only reflected in basal substrate oxidation and highlight the importance of glucose disposal rate as a determinant of substrate utilization in response to insulin.  相似文献   

9.

Objective

To analyse if platelet responsiveness to aspirin (ASA) may be associated with a different ability of platelets to generate nitric oxide (NO).

Patients/Methods

Platelets were obtained from 50 patients with stable coronary ischemia and were divided into ASA-sensitive (n = 26) and ASA-resistant (n = 24) using a platelet functionality test (PFA-100).

Results

ASA-sensitive platelets tended to release more NO (determined as nitrite + nitrate) than ASA-resistant platelets but it did not reach statistical significance. Protein expression of nitric oxide synthase 3 (NOS3) was higher in ASA-sensitive than in ASA-resistant platelets but there were no differences in the platelet expression of nitric oxide synthase 2 (NOS2) isoform. The highest NOS3 expression in ASA-sensitive platelets was independent of the presence of T-to-C mutation at nucleotide position −786 (T−786→C) in the NOS3-coding gene. However, platelet content of phosphorylated NOS3 at Serine (Ser)1177, an active form of NOS3, was higher in ASA-sensitive than in ASA-resistant platelets. The level of platelet NOS3 Ser1177 phosphorylation was positively associated with the closure time in the PFA-100 test. In vitro, collagen failed to stimulate the aggregation of ASA-sensitive platelets, determined by lumiaggregometry, and it was associated with a significant increase (p = 0.018) of NOS3 phosphorylation at Ser1177. On the contrary, collagen stimulated the aggregation of ASA-resistant platelets but did not significantly modify the platelet content of phosphorylated NOS3 Ser1177. During collagen stimulation the release of NO from ASA-sensitive platelets was significantly enhanced but it was not modified in ASA-resistant platelets.

Conclusions

Functional platelet responsiveness to ASA was associated with the platelet content of phosphorylated NOS3 at Ser1177.  相似文献   

10.
Cardiovascular benefits from estradiol activation of nitric oxide endothelial production may depend on vascular wall and on estrogen receptor alpha (ESR1) and nitric oxide synthase (NOS3) polymorphisms. We have evaluated the microcirculation in vivo through nailfold videocapillaroscopy, before and after acute nasal estradiol administration at baseline and after increased sheer stress (postocclusive reactive hyperemia response) in 100 postmenopausal women, being 70 controls (healthy) and 30 simultaneously hypertensive and diabetic (HD), correlating their responses to PvuII and XbaI ESR1 polymorphisms and to VNTR, T-786C and G894T NOS3 variants. In HD women, C variant allele of ESR1 Pvull was associated to higher vasodilatation after estradiol (1.72 vs 1.64 mm/s, p = 0.01 compared to TT homozygotes) while G894T and T-786C NOS3 polymorphisms were connected to lower increment after shear stress (15% among wild type and 10% among variant alleles, p = 0.02 and 0.04). The G variant allele of ESR1 XbaI polymorphism was associated to higher HOMA-IR (3.54 vs. 1.64, p = 0.01) in HD and higher glucose levels in healthy women (91.8 vs. 87.1 mg/dl, p = 0.01), in which increased waist and HOMA-IR were also related to the G allele in NOS3 G894T (waist 93.5 vs 88.2 cm, p = 0.02; HOMA-IR 2.89 vs 1.48, p = 0.05). ESR1 Pvull, NOS3 G894T and T-786C polymorphism analysis may be considered in HD postmenopausal women for endothelial response prediction following estrogen therapy but were not discriminatory for endothelial response in healthy women. ESR1 XbaI and G894T NOS3 polymorphisms may be useful in accessing insulin resistance and type 2 diabetes risks in all women, even before menopause and occurrence of metabolic disease.  相似文献   

11.

Background

There is an ongoing debate as to whether early diabetic nephropathy in Type 2 diabetes mellitus may be attributed to the glomerulus or to the proximal tubule. Urinary excretion of nephrin and vascular endothelial growth factor may increase even in the normoalbuminuria stage. In the course of diabetic nephropathy, the proximal tubule may be involved in the uptake of urinary nephrin and vascular endothelial growth factor.

Materials and Methods

Two groups of consecutive Type 2 diabetes mellitus outpatients (38 normo-, 32 microalbuminuric) and 21 healthy subjects were enrolled in a cross-sectional study and evaluated concerning the relation of proximal tubule dysfunction with the podocyte biomarkers excretion, assessed by ELISA methods. The impact of advanced glycation end-products on this relation was also queried.

Results

Urinary alpha1-microglobulin and kidney injury molecule-1 correlated with urinary albumin:creatinine ratio (R2 = 0.269; p<0.001; R2 = 0.125; p<0.001), nephrinuria (R2 = 0.529; p<0.001; R2 = 0.203; p<0.001), urinary vascular endothelial growth factor (R2 = 0.709; p<0.001; R2 = 0.360; p<0.001), urinary advanced glycation end-products (R2 = 0.578; p<0.001; R2 = 0.405; p<0.001), serum cystatin C (R2 = 0.130; p<0.001; R2 = 0.128; p<0.001), and glomerular filtration rate (R2 = 0.167; p<0.001; R2 = 0.166; p<0.001); nephrinuria and urinary vascular endothelial growth factor correlated with urinary albumin:creatinine ratio (R2 = 0.498; p<0.001; R2 = 0.227; p<0.001), urinary advanced glycation end-products (R2 = 0.251; p<0.001; R2 = 0.308; p<0.001), serum cystatin C (R2 = 0.157; p<0.001; R2 = 0.226; p<0.001), and glomerular filtration rate (R2 = 0.087; p = 0.007; R2 = 0.218; p<0.001).

Conclusions

In Type 2 diabetes mellitus there is an association of proximal tubule dysfunction with podocyte damage biomarkers, even in the normoalbuminuria stage. This observation suggests a potential role of the proximal tubule in urinary nephrin and urinary vascular endothelial growth factor processing in early diabetic nephropathy, a fact which could be related to advanced glycation end-products intervention. Podocyte damage and proximal tubule dysfunction biomarkers could be validated as a practical approach to the diagnosis of early diabetic nephropathy by further studies on larger cohorts.  相似文献   

12.

Background

In recent years, oxidative stress has been studied extensively as a main contributing factor to male infertility. Nitric Oxide, a highly reactive free radical gas, is potentially detrimental to sperm function and sperm DNA integrity at high levels. Thus, the aim of this study was to investigate the associations between five polymorphisms in nitric oxide synthase genes (NOSs) and the risk of male infertility and sperm DNA damage as well.

Methods

Genotypes were determined by the OpenArray platform. Sperm DNA fragmentation was detected using the Tdt-mediated dUTP nick-end labeling assay, and the level of 8-hydroxydeoxyguanosine (8-OHdG) in sperm DNA was measured using immunofluorescence. The adjusted odds ratio (OR) and 95% confidence interval (CI) were estimated using unconditional logistic regression.

Results

Our results revealed a statistically significant difference between the cases and controls in both genotypic distribution (P<0.001) and allelic frequency (P = 0.021) only for the NOS3 rs1799983 SNP. Multivariate logistic regression analyses revealed that rs1799983 was associated with a borderline significantly increased risk of male infertility (GT vs. GG: adjusted OR = 1.30, 95% CI: 1.00–1.70; GT+TT vs. GG: adjusted OR = 1.34, 95% CI: 1.03–1.74; P trend = 0.020). Moreover, NOS3 rs1799983 was positively associated with higher levels of sperm DNA fragmentation (β = 0.223, P = 0.044). However, the other 4 polymorphisms (NOS1 rs2682826, NOS1 rs1047735, NOS2 rs2297518, and NOS2 rs10459953) were not found to have any apparent relationships with male infertility risk.

Conclusions

Of five NOS gene polymorphisms investigated in the present study, we found NOS3 rs1799983 might cause oxidative sperm DNA damage, thereby contributing to male infertility.  相似文献   

13.
Angiogenesis, increased glomerular permeability, and albuminuria are thought to contribute to the progression of diabetic nephropathy (DN). Apelin receptor (APLNR) and the endogenous ligand of APLNR, apelin, induce the sprouting of endothelial cells in an autocrine or paracrine manner, which may be one of the mechanisms of DN. The aim of this study was to investigate the role of apelin in the pathogenesis of DN. Therefore, we observed apelin/APLNR expression in kidneys from patients with type 2 diabetes as well as the correlation between albuminuria and serum apelin in patients with type 2 diabetes. We also measured the proliferating, migrating, and chemotactic effects of apelin on glomerular endothelial cells. To measure the permeability of apelin in glomerular endothelial cells, we used transwells to detect FITC-BSA penetration through monolayered glomerular endothelial cells. The results showed that serum apelin was significantly higher in the patients with type 2 diabetes compared to healthy people (p<0.05, Fig. 1B) and that urinary albumin was positively correlated with serum apelin (R = 0.78, p<0.05). Apelin enhanced the migration, proliferation, and chemotaxis of glomerular endothelial cells in a dose-dependent manner (p<0.05). Apelin also promoted the permeability of glomerular endothelial cells (p<0.05) and upregulated the expression of VEGFR2 and Tie2 in glomerular endothelial cells (p<0.05). These results indicated that upregulated apelin in type 2 diabetes, which may be attributed to increased fat mass, promotes angiogenesis in glomeruli to form abnormal vessels and that enhanced apelin increases permeability via upregulating the expression of VEGFR2 and Tie2 in glomerular endothelial cells.Open in a separate windowFigure 1Correlation between apelin and albuminuria.A: The apelin concentration in serum was positively correlated with albuminuria (R = 0.78, *p<0.05). B: The apelin concentration in serum was significantly increased in patients with type 2 diabetes (2DM, n = 60) compared to healthy people (control, n = 32). The data are expressed as the means±SD (*p<0.05 vs. control grou ). C: The graphs show the promoting effect of apelin on FITC-BSA passing through the glomerular endothelial cell monolayers at the indicated time point. The data are expressed as the means±SD (n = 6, *p<0.01 vs. control group).  相似文献   

14.

Background

Schistosomes are chronic intravascular helminth parasites of humans causing a heavy burden of disease worldwide. Diagnosis of schistosomiasis currently requires the detection of schistosome eggs in the feces and urine of infected individuals. This method unreliably measures disease burden due to poor sensitivity and wide variances in egg shedding. In vivo imaging of schistosome parasites could potentially better assess disease burden, improve management of schistosomiasis, facilitate vaccine development, and enhance study of the parasite''s biology. Schistosoma mansoni (S. mansoni) have a high metabolic demand for glucose. In this work we investigated whether the parasite burden in mice could be assessed by positron emission tomography (PET) imaging with 2-deoxy-2[18F]fluoro-D-glucose (FDG).

Methodology/Principal Findings

Live adult S. mansoni worms FDG uptake in vitro increased with the number of worms. Athymic nude mice infected with S. mansoni 5–6 weeks earlier were used in the imaging studies. Fluorescence molecular tomography (FMT) imaging with Prosense 680 was first performed. Accumulation of the imaging probe in the lower abdomen correlated with the number of worms in mice with low infection burden. The total FDG uptake in the common portal vein and/or regions of elevated FDG uptake in the liver linearly correlated to the number of worms recovered from infected animals (R2 = 0.58, P<0.001, n = 40). FDG uptake showed a stronger correlation with the worm burden in mice with more than 50 worms (R2 = 0.85, P<0.001, n = 17). Cryomicrotome imaging confirmed that most of the worms in a mouse with a high infection burden were in the portal vein, but not in a mouse with a low infection burden. FDG uptake in recovered worms measured by well counting closely correlated with worm number (R2 = 0.85, P<0.001, n = 21). Infected mice showed a 32% average decrease in total FDG uptake after three days of praziquantel treatment (P = 0.12). The total FDG uptake in untreated mice increased on average by 36% over the same period (P = 0.052).

Conclusion

FDG PET may be useful to non-invasively quantify the worm burden in schistosomiasis-infected animals. Future investigations aiming at minimizing non-specific FDG uptake and to improve the recovery of signal from worms located in the lower abdomen will include the development of more specific radiotracers.  相似文献   

15.

Purpose

The aim of this study was to investigate variants in UCP2 genes in type 2 diabetes mellitus (DM) and diabetic retinopathy (DR) in Chinese population.

Materials and Methods

We conducted a single nucleotide polymorphism-based and haplotype-based case-control study between the variants of UCP2 and DM and between the variants of UCP2 and DR in 479 Chinese patients with type 2 DM and 479 control subjects without DM. Two SNPs (rs660339 and rs659366) were selected as genetic markers.

Results

The risk allele C at UCP2 rs660339 was closely associated with DM in Chinese population. There was significant difference in rs660339 between DM and controls (P = 0.0016; OR [95%CI]  = 1.37 (1.14–1.65)). Subjects who were homozygous of the C allele were more likely to develop DM. The frequency of C allele was higher in DM (58%) than in control (51%). But this locus didn''t have a definite effect on the onset of non-proliferative diabetic retinopathy (NPDR) (P = 0.44; OR [95%CI]  = 0.80 (0.56–1.14)) and proliferative diabetic retinopathy (PDR) (P = 1.00; OR [95%CI]  = 0.99 (0.74–1.34)) comparing to subjects with DM without retinopathy (DWR), respectively. Moreover, the UCP2 rs659366 polymorphism showed no significant difference between DM and control (P = 0.66; OR [95%CI]  = 1.10 (0.91–1.32)). However, there was a significant difference between PDR and DWR (P = 0.016; OR [95%CI]  = 0.66 (0.49–0.90)), but there was no difference between NPDR and DWR (P = 1.00; OR [95%CI]  = 0.96 (0.67–1.37)). Participants who carried the G allele at rs659366 were more likely to develop PDR. For the haplotype, C-A was present more frequently in DM than in control (16% vs 7%), indicating that it was risky, and T-A was present less in DM than in control (29% vs 35%). Haplotype frequencies in DR and DWR showed no significant difference (P = 0.068).

Conclusion

It was indicated that UCP2 may be implicated in the pathogenesis of type 2 DM and DR in Chinese population.  相似文献   

16.

Background

Tobacco-induced pulmonary vascular disease is partly driven by endothelial dysfunction. The bioavailability of the potent vasodilator nitric oxide (NO) depends on competition between NO synthase-3 (NOS3) and arginases for their common substrate (L-arginine). We tested the hypothesis whereby tobacco smoking impairs pulmonary endothelial function via upregulation of the arginase pathway.

Methods

Endothelium-dependent vasodilation in response to acetylcholine (Ach) was compared ex vivo for pulmonary vascular rings from 29 smokers and 10 never-smokers. The results were expressed as a percentage of the contraction with phenylephrine. We tested the effects of L-arginine supplementation, arginase inhibition (by N(omega)-hydroxy-nor-l-arginine, NorNOHA) and NOS3 induction (by genistein) on vasodilation. Protein levels of NOS3 and arginases I and II in the pulmonary arteries were quantified by Western blotting.

Results

Overall, vasodilation was impaired in smokers (relative to controls; p < 0.01). Eleven of the 29 smokers (the ED+ subgroup) displayed endothelial dysfunction (defined as the absence of a relaxant response to Ach), whereas 18 (the ED subgroup) had normal vasodilation. The mean responses to 10−4 M Ach were −23 ± 10% and 31 ± 4% in the ED+ and ED subgroups, respectively (p < 0.01). Supplementation with L- arginine improved endothelial function in the ED+ subgroup (−4 ± 10% vs. -32 ± 10% in the presence and absence of L- arginine, respectively; p = 0.006), as did arginase inhibition (18 ± 9% vs. -1 ± 9%, respectively; p = 0.0002). Arginase I protein was overexpressed in ED+ samples, whereas ED+ and ED samples did not differ significantly in terms of NOS3 expression. Treatment with genistein did not significantly improve endothelial function in ED+ samples.

Conclusion

Overexpression and elevated activity of arginase I are involved in tobacco-induced pulmonary endothelial dysfunction.  相似文献   

17.
Klebsiella pneumoniae is an important cause of sepsis. The common Toll-like receptor adapter myeloid differentiation primary response gene (MyD)88 is crucial for host defense against Klebsiella. Here we investigated the role of MyD88 in myeloid and endothelial cells during Klebsiella pneumosepsis. Mice deficient for MyD88 in myeloid (LysM-Myd88−/−) and myeloid plus endothelial (Tie2-Myd88−/−) cells showed enhanced lethality and bacterial growth. Tie2-Myd88−/− mice reconstituted with control bone marrow, representing mice with a selective MyD88 deficiency in endothelial cells, showed an unremarkable antibacterial defense. Myeloid or endothelial cell MyD88 deficiency did not impact on lung pathology or distant organ injury during late stage sepsis, while LysM-Myd88−/− mice demonstrated a strongly attenuated inflammatory response in the airways early after infection. These data suggest that myeloid but not endothelial MyD88 is important for host defense during gram-negative pneumonia derived sepsis.  相似文献   

18.
19.

Background

Serum and glucocorticoid regulated kinase (SGK) plays a critical role in the regulation of renal sodium transport. We examined the association between SGK genes and salt sensitivity of blood pressure (BP) using single-marker and gene-based association analysis.

Methods

A 7-day low-sodium (51.3 mmol sodium/day) followed by a 7-day high-sodium intervention (307.8 mmol sodium/day) was conducted among 1,906 Chinese participants. BP measurements were obtained at baseline and each intervention using a random-zero sphygmomanometer. Additive associations between each SNP and salt-sensitivity phenotypes were assessed using a mixed linear regression model to account for family dependencies. Gene-based analyses were conducted using the truncated p-value method. The Bonferroni-method was used to adjust for multiple testing in all analyses.

Results

In single-marker association analyses, SGK1 marker rs2758151 was significantly associated with diastolic BP (DBP) response to high-sodium intervention (P = 0.0010). DBP responses (95% confidence interval) to high-sodium intervention for genotypes C/C, C/T, and T/T were 2.04 (1.57 to 2.52), 1.79 (1.42 to 2.16), and 0.85 (0.30 to 1.41) mmHg, respectively. Similar trends were observed for SBP and MAP responses although not significant (P = 0.15 and 0.0026, respectively). In addition, gene-based analyses demonstrated significant associations between SGK1 and SBP, DBP and MAP responses to high sodium intervention (P = 0.0002, 0.0076, and 0.00001, respectively). Neither SGK2 nor SGK3 were associated with the salt-sensitivity phenotypes in single-maker or gene-based analyses.

Conclusions

The current study identified association of the SGK1 gene and BP salt-sensitivity in the Han Chinese population. Further studies are warranted to identify causal SGK1 gene variants.  相似文献   

20.
Here we investigate the role of hypoxia inducible factor (HIF)-2α in coordinating the development of retinal astrocytic and vascular networks. Three Cre mouse lines were used to disrupt floxed Hif-2α, including Rosa26CreERT2, Tie2Cre, and GFAPCre. Global Hif-2α disruption by Rosa26CreERT2 led to reduced astrocytic and vascular development in neonatal retinas, whereas endothelial disruption by Tie2Cre had no apparent effects. Hif-2α deletion in astrocyte progenitors by GFAPCre significantly interfered with the development of astrocytic networks, which failed to reach the retinal periphery and were incapable of supporting vascular development. Perplexingly, the abundance of strongly GFAP+ mature astrocytes transiently increased at P0 before they began to lag behind the normal controls by P3. Pax2+ and PDGFRα+ astrocytic progenitors and immature astrocytes were dramatically diminished at all stages examined. Despite decreased number of astrocyte progenitors, their proliferation index or apoptosis was not altered. The above data can be reconciled by proposing that HIF-2α is required for maintaining the supply of astrocyte progenitors by slowing down their differentiation into non-proliferative mature astrocytes. HIF-2α deficiency in astrocyte progenitors may accelerate their differentiation into astrocytes, a change which greatly interferes with the replenishment of astrocyte progenitors due to insufficient time for proliferation. Rapidly declining progenitor supply may lead to premature cessation of astrocyte development. Given that HIF-2α protein undergoes oxygen dependent degradation, an interesting possibility is that retinal blood vessels may regulate astrocyte differentiation through their oxygen delivery function. While our findings support the consensus that retinal astrocytic template guides vascular development, they also raise the possibility that astrocytic and vascular networks may mutually regulate each other''s development, mediated at least in part by HIF-2α.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号