首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current isolation methods access only a small subset of the total microbial diversity. Although an isolate traditionally has been required for genomic characterization, the advent of sequencing of entire natural microbial communities enables culture-independent genomic analysis. Information about the genetic potential of uncultivated organisms can be used to predict the form of metabolic interdependencies and nutritional requirements. We believe that this could provide the information necessary to bypass bottlenecks that have inhibited cultivation of many microorganisms. However, it might not be practical or possible to isolate all of the vast number of microbial species and strains for laboratory-based characterization. Ultimately, cultivation-independent genomic and genomically enabled approaches could provide a way to directly analyze microbial activity in its geochemical and ecological context.  相似文献   

2.
3.
Methane-cycling is becoming more important in high-latitude ecosystems as global warming makes permafrost organic carbon increasingly available. We explored 387 samples from three high-latitudes regions (Siberia, Alaska and Patagonia) focusing on mineral/organic soils (wetlands, peatlands, forest), lake/pond sediment and water. Physicochemical, climatic and geographic variables were integrated with 16S rDNA amplicon sequences to determine the structure of the overall microbial communities and of specific methanogenic and methanotrophic guilds. Physicochemistry (especially pH) explained the largest proportion of variation in guild composition, confirming species sorting (i.e., environmental filtering) as a key mechanism in microbial assembly. Geographic distance impacted more strongly beta diversity for (i) methanogens and methanotrophs than the overall prokaryotes and, (ii) the sediment habitat, suggesting that dispersal limitation contributed to shape the communities of methane-cycling microorganisms. Bioindicator taxa characterising different ecological niches (i.e., specific combinations of geographic, climatic and physicochemical variables) were identified, highlighting the importance of Methanoregula as generalist methanogens. Methylocystis and Methylocapsa were key methanotrophs in low pH niches while Methylobacter and Methylomonadaceae in neutral environments. This work gives insight into the present and projected distribution of methane-cycling microbes at high latitudes under climate change predictions, which is crucial for constraining their impact on greenhouse gas budgets.  相似文献   

4.
红树林土壤微生物的研究:过去、现在、未来   总被引:9,自引:0,他引:9  
红树林土壤生境的独特性决定了其中微生物的多样性及其资源的珍稀性,对于红树林土壤微生物的研究正在成为热点。然而由于传统研究方法等因素的限制,至今人们对红树林土壤微生物的系统了解仍较为有限。近年来,基于16S rRNA,18S rRNA基因的各种分子微生物学技术的迅速发展,红树林土壤微生物的研究亦面临着崭新的局面。文中主要从红树林土壤微生物物种的多样性、生理生化类型的多样性及其在治理污染环境、生物修复作用中的可能性、有效性等方面阐述了红树林土壤微生物的研究进展,并以更合理、有效地开发利用红树林土壤微生物资源为目标,展望了21世纪,以新理念、新技术、新方法进行红树林土壤微生物研究及资源开发的巨大前景。  相似文献   

5.
Mineralogy, microbial ecology, and mineral weathering in the subsurface are an intimately linked biogeochemical system. Although bacteria have been implicated indirectly in the accelerated weathering of minerals, it is not clear if this interaction is simply the coincidental result of microbial metabolism, or if it represents a specific strategy offering the colonizing bacteria a competitive ecological advantage. Our studies provide evidence that silicate weathering by bacteria is sometimes driven by the nutrient requirements of the microbial consortium, and therefore depends on the trace nutrient content of each aquifer mineral. This occurrence was observed in reducing groundwaters where carbon is abundant but phosphate is scarce; here, even resistant feldspars are weathered rapidly. This suggests that the progression of mineral weathering may be influenced by a mineral's nutritional potential, with microorganisms destroying only beneficial minerals. The rock record, therefore, may contain a remnant mineralogy that reflects early microbial destruction of biologically valuable minerals, leaving a residuum of "useless" minerals, where "value" depends on the organism, its metabolic needs, and the diagenetic environment. Conversely, the subsurface distribution of microorganisms may, in part, be controlled by the mineralogy and by the ability of an organism to take advantage of mineral-bound nutrients.  相似文献   

6.
未培养微生物研究:方法、机遇与挑战   总被引:3,自引:1,他引:3  
自然界中绝大部分的微生物仍是未培养的,称之为未培养微生物或微生物"暗物质"。对其进行研究不仅有助于认识微生物多样性及其代谢特征,加深对环境中微生物参与的生态学过程的理解,还有利于重构生命之树,揭示微生物的进化历程,具有重要的科学意义。同时未培养微生物是发现新基因资源和新活性物质的巨大宝库。随着现代分子生物学研究方法和培养技术的成熟和完善,从环境中直接破译未培养微生物的遗传信息,并实现培养逐渐成为可能。本文主要介绍了基于宏基因组技术和单细胞基因组技术或两者结合运用,研究环境中未培养微生物的主要方法和挑战,总结分析了目前已经解析的未培养微生物的主要类群,并对未来研究的机遇进行了展望。  相似文献   

7.
Motile microorganisms rapidly respond to changes in various physico-chemical gradients by directing their motility to more favorable surroundings. Energy generation is one of the most important parameters for the survival of microorganisms in their environment. Therefore it is not surprising that microorganisms are able to monitor changes in the cellular energy generating processes. The signal for this behavioral response, which is called energy taxis, originates within the electron transport system. By coupling energy metabolism and behavior, energy taxis is fine-tuned to the environment a cell finds itself in and allows efficient adaptation to changing conditions that affect cellular energy levels. Thus, energy taxis provides cells with a versatile sensory system that enables them to navigate to niches where energy generation is optimized. This behavior is likely to govern vertical species stratification and the active migration of motile cells in response to shifting gradients of electron donors and/or acceptors which are observed within microbial mats, sediments and soil pores. Energy taxis has been characterized in several species and might be widespread in the microbial world. Genome sequencing revealed that many microorganisms from aquatic and soil environments possess large numbers of chemoreceptors and are likely to be capable of energy taxis. In contrast, species that have a fewer number of chemoreceptors are often found in specific, confined environments, where relatively constant environmental conditions are expected. Future studies focusing on characterizing behavioral responses in species that are adapted to diverse environmental conditions should unravel the molecular mechanisms underlying sensory behavior in general and energy taxis in particular. Such knowledge is critical to a better understanding of the ecological role of energy taxis.  相似文献   

8.
Competition theory predicts that species of similar ecological niches are less likely to coexist than species with different niches, a process called species assortment. In contrast, the concept of habitat filtering implies that species with similar ecological requirements should co-occur more often than expected by chance. Here we use environmental and ecological data to assess patterns of co-occurrence of regional communities of spiders distributed across two assemblies of lake islands in northern Poland. We found aggregated and random co-occurrences of species of the same genus and a significant tendency of species segregation across genera. We also found that species of the same genus react similarly to important environmental variables. A comparison of ecological traits of species of the local communities with those expected from a random sample from the regional Polish species pool corroborated partly the habitat filtering hypothesis. On the other hand, we did not find evidence for species assortment. Our results also imply that at least some observed species co-occurrences result from niche differentiation.  相似文献   

9.
Cultivable bacterial diversity from the human colon   总被引:1,自引:0,他引:1  
Knowledge of the composition of the colonic microbiota is important for our understanding of how the balance of these microbes is influenced by diet and the environment, and which bacterial groups are important in maintaining gut health or promoting disease. Molecular methodologies have advanced our understanding of the composition and diversity of the colonic microbiota. Importantly, however, it is the continued isolation of bacterial representatives of key groups that offers the best opportunity to conduct detailed metabolic and functional studies. This also permits bacterial genome sequencing which will accelerate the linkage to functionality. Obtaining new human colonic bacterial isolates can be challenging, because most of these are strict anaerobes and many have rather exact nutritional and physical requirements. Despite this many new species are being isolated and described that occupy distinct niches in the colonic microbial community. This review focuses on these under-studied yet important gut anaerobes.  相似文献   

10.
Extensive sampling and metagenomics analyses of plankton communities across all aquatic environments are beginning to provide insights into the ecology of microbial communities. In particular, the importance of metabolic exchanges that provide a foundation for ecological interactions between microorganisms has emerged as a key factor in forging such communities. Here we show how both studies of environmental samples and physiological experimentation in the laboratory with defined microbial co‐cultures are being used to decipher the metabolic and molecular underpinnings of such exchanges. In addition, we explain how metabolic modelling may be used to conduct investigations in reverse, deducing novel molecular exchanges from analysis of large‐scale data sets, which can identify persistently co‐occurring species. Finally, we consider how knowledge of microbial community ecology can be built into evolutionary theories tailored to these species’ unique lifestyles. We propose a novel model for the evolution of metabolic auxotrophy in microorganisms that arises as a result of symbiosis, termed the Foraging‐to‐Farming hypothesis. The model has testable predictions, fits several known examples of mutualism in the aquatic world, and sheds light on how interactions, which cement dependencies within communities of microorganisms, might be initiated.  相似文献   

11.
Mechanisms that govern the coexistence of multiple biological species have been studied intensively by ecologists since the turn of the nineteenth century. Microbial ecologists in the meantime have faced many fundamental challenges, such as the lack of an ecologically coherent species definition, lack of adequate methods for evaluating population sizes and community composition in nature, and enormous taxonomic and functional diversity. The accessibility of powerful, culture-independent molecular microbiology methods offers an opportunity to close the gap between microbial science and the main stream of ecological theory, with the promise of new insights and tools needed to meet the grand challenges humans face as planetary engineers and galactic explorers. We focus specifically on resources related to energy metabolism because of their direct links to elemental cycling in the Earth''s history, engineering applications and astrobiology. To what extent does the availability of energy resources structure microbial communities in nature? Our recent work on sulfur- and iron-oxidizing autotrophs suggests that apparently subtle variations in the concentration ratios of external electron donors and acceptors select for different microbial populations. We show that quantitative knowledge of microbial energy niches (population-specific patterns of energy resource use) can be used to predict variations in the abundance of specific taxa in microbial communities. Furthermore, we propose that resource ratio theory applied to micro-organisms will provide a useful framework for identifying how environmental communities are organized in space and time.  相似文献   

12.
代谢异速生长理论及其在微生物生态学领域的应用   总被引:1,自引:0,他引:1  
贺纪正  曹鹏  郑袁明 《生态学报》2013,33(9):2645-2655
新陈代谢是生物的基本生理过程,影响生物在不同环境中参与物质循环和能量转化的过程.代谢速率作为生物体重要的生命过程指标,几乎影响所有的生物活性速率,且在很多研究中均表现出异速生长现象.所谓代谢异速是指生物体代谢速率与其个体大小(或质量)之间存在的幂函数关系.代谢异速生长理论的提出,从机制模型角度解释了代谢异速关系这一普遍存在的生命现象.该理论利用分形几何学及流体动力学等原理,从生物能量学角度阐释了异速生长规律的机理,证实了3/4权度指数的存在;但同时有研究表明,权度指数因环境因素等影响处于2/3-1范围之间而非定值.随着研究工作的深入,代谢异速生长理论研究从起初的宏观动植物领域拓展到了微生物领域,在研究微生物的代谢异速生长理论时,可将微生物的可操作分类单元(Operational taxonomic unit,OTU)或具有特定功能的功能群视为一个微生物个体,基于其遗传多样性和功能多样性特征进行表征,以便于将微生物群落多样性与其生态功能性联系起来,使该理论在微生物生态学领域得到有效的补充和完善.尽管细菌具有独特的生物学特性,但与宏观生物系统中观测到的现象表现出明显的一致性.有研究表明,3个农田土壤细菌基于遗传多样性的OTU数的平均周转率分别为0.71、0.80和0.84,介于2/3与1之间,可能与生物代谢异速指数有一定关联,为微生物代谢异速指数的研究提出了一个参考解决方案.鉴于微生物个体特征和生物学特性,在分析代谢速率与个体大小关系中,从微生物单位个体的定义、个体大小表征到计量单位的统一,仍需更多的理论支持.分析了代谢异速生长理论在微生物与生态系统功能关系研究中的可能应用,延伸了该理论的应用范围,并对尚待加强的研究问题进行了评述和展望.  相似文献   

13.
Since obligate avian brood parasites depend completely on the effort of other host species for rearing their progeny, the availability of hosts will be a critical resource for their life history. Circumstantial evidence suggests that intense competition for host species may exist not only within but also between species. So far, however, few studies have demonstrated whether the interspecific competition really occurs in the system of avian brood parasitism and how the nature of brood parasitism is related to their niche evolution. Using the occurrence data of five avian brood parasites from two sources of nationwide bird surveys in South Korea and publically available environmental/climatic data, we identified their distribution patterns and ecological niches, and applied species distribution modeling to infer the effect of interspecific competition on their spatial distribution. We found that the distribution patterns of five avian brood parasites could be characterized by altitude and climatic conditions, but overall their spatial ranges and ecological niches extensively overlapped with each other. We also found that the predicted distribution areas of each species were generally comparable to the realized distribution areas, and the numbers of individuals in areas where multiple species were predicted to coexist showed positive relationships among species. In conclusion, despite following different coevolutionary trajectories to adapt to their respect host species, five species of avian brood parasites breeding in South Korea occupied broadly similar ecological niches, implying that they tend to conserve ancestral preferences for ecological conditions. Furthermore, our results indicated that contrary to expectation interspecific competition for host availability between avian brood parasites seemed to be trivial, and thus, play little role in shaping their spatial distributions and ecological niches. Future studies, including the complete ranges of avian brood parasites and ecological niches of host species, will be worthwhile to further elucidate these issues.  相似文献   

14.
Hutchinson defined the ecological niche as a hypervolume shaped by the environmental conditions under which a species can ‘exist indefinitely’. Although several authors further discussed the need to adopt a demographic perspective of the ecological niche theory, very few have investigated the environmental requirements of different components of species’ life cycles (i.e. vital rates) in order to examine their internal niche structures. It therefore remains unclear how species’ demography, niches and distributions are interrelated. Using comprehensive demographic data for two well‐studied, short‐lived plants (Plantago coronopus, Clarkia xantiana), we show that the arrangement of species’ demographic niches reveals key features of their environmental niches and geographic distributions. In Plantago coronopus, opposing geographic trends in some individual vital rates, through different responses to environmental gradients (demographic compensation), stabilize population growth across the range. In Clarkia xantiana, a lack of demographic compensation underlies a gradient in population growth, which could translate in a directional geographic range shift. Overall, our results highlight that occurrence and performance niches cannot be assumed to be the same, and that studying their relationship is essential for a better understanding of species’ ecological niches. Finally, we argue for the value of considering the assemblage of species’ demographic niches when studying ecological systems, and predicting the dynamics of species geographical ranges.  相似文献   

15.
Within species, larger offspring typically outperform smaller offspring. While the relationship between offspring size and performance is ubiquitous, the cause of this relationship remains elusive. By linking metabolic and life-history theory, we provide a general explanation for why larger offspring perform better than smaller offspring. Using high-throughput respirometry arrays, we link metabolic rate to offspring size in two species of marine bryozoan. We found that metabolism scales allometrically with offspring size in both species: while larger offspring use absolutely more energy than smaller offspring, larger offspring use proportionally less of their maternally derived energy throughout the dependent, non-feeding phase. The increased metabolic efficiency of larger offspring while dependent on maternal investment may explain offspring size effects—larger offspring reach nutritional independence (feed for themselves) with a higher proportion of energy relative to structure than smaller offspring. These findings offer a potentially universal explanation for why larger offspring tend to perform better than smaller offspring but studies on other taxa are needed.  相似文献   

16.
A microbial species concept is crucial for interpreting the variation detected by genomics and environmental genomics among cultivated microorganisms and within natural microbial populations. Comparative genomic analyses of prokaryotic species as they are presently described and named have led to the provocative idea that prokaryotes may not form species as we think about them for plants and animals. There are good reasons to doubt whether presently recognized prokaryotic species are truly species. To achieve a better understanding of microbial species, we believe it is necessary to (i) re-evaluate traditional approaches in light of evolutionary and ecological theory, (ii) consider that different microbial species may have evolved in different ways and (iii) integrate genomic, metagenomic and genome-wide expression approaches with ecological and evolutionary theory. Here, we outline how we are using genomic methods to (i) identify ecologically distinct populations (ecotypes) predicted by theory to be species-like fundamental units of microbial communities, and (ii) test their species-like character through in situ distribution and gene expression studies. By comparing metagenomic sequences obtained from well-studied hot spring cyanobacterial mats with genomic sequences of two cultivated cyanobacterial ecotypes, closely related to predominant native populations, we can conduct in situ population genetics studies that identify putative ecotypes and functional genes that determine the ecotypes' ecological distinctness. If individuals within microbial communities are found to be grouped into ecologically distinct, species-like populations, knowing about such populations should guide us to a better understanding of how genomic variation is linked to community function.  相似文献   

17.
At the genome level, microorganisms are highly adaptable both in terms of allele and gene composition. Such heritable traits emerge in response to different environmental niches and can have a profound influence on microbial community dynamics. As a consequence, any individual genome or population will contain merely a fraction of the total genetic diversity of any operationally defined “species”, whose ecological potential can thus be only fully understood by studying all of their genomes and the genes therein. This concept, known as the pangenome, is valuable for studying microbial ecology and evolution, as it partitions genomes into core (present in all the genomes from a species, and responsible for housekeeping and species-level niche adaptation among others) and accessory regions (present only in some, and responsible for intra-species differentiation). Here we present SuperPang, an algorithm producing pangenome assemblies from a set of input genomes of varying quality, including metagenome-assembled genomes (MAGs). SuperPang runs in linear time and its results are complete, non-redundant, preserve gene ordering and contain both coding and non-coding regions. Our approach provides a modular view of the pangenome, identifying operons and genomic islands, and allowing to track their prevalence in different populations. We illustrate this by analysing intra-species diversity in Polynucleobacter, a bacterial genus ubiquitous in freshwater ecosystems, characterized by their streamlined genomes and their ecological versatility. We show how SuperPang facilitates the simultaneous analysis of allelic and gene content variation under different environmental pressures, allowing us to study the drivers of microbial diversification at unprecedented resolution.  相似文献   

18.
微生物生态学理论框架   总被引:12,自引:7,他引:5  
曹鹏  贺纪正 《生态学报》2015,35(22):7263-7273
微生物是生态系统的重要组成部分,直接或间接地参与所有的生态过程。微生物生态学是基于微生物群体的科学,利用微生物群体DNA/RNA等标志物,重点研究微生物群落构建、组成演变、多样性及其与环境的关系,在生态学理论的指导和反复模型拟合下由统计分析得出具有普遍意义的结论。其研究范围从基因尺度到全球尺度。分子生物学技术的发展,使人们可以直接从基因水平上考查其多样性,从而使得对微生物空间分布格局及其成因的深入研究成为可能。进而可以从方法学探讨微生物生物多样性、分布格局、影响机制及其对全球变化的响应等。在微生物生态学研究中,群落构建与演化、分布特征(含植物-微生物相互关系)、执行群体功能的机理(生物地球化学循环等)、对环境变化的响应与反馈机理是今后需要关注的重点领域。概述了微生物生态学的概念,并初步提出其理论框架,在对比宏观生态学基础理论和模型的基础上,分析微生物多样性的研究内容、研究方法和群落构建的理论机制,展望了今后研究的重点领域。  相似文献   

19.
自然微生物是影响葡萄生理生长和葡萄酒质量的重要因素,广泛存在于葡萄和葡萄酒的生态系统中。其中,微生物的种类、数量和生长分布取决于气候、土壤、生长时期和发酵过程控制等多种因素。自然状态下,葡萄微生态系统的物种组成和代谢作用直接影响葡萄藤的健康和葡萄酒的发酵质量,并产生特定的葡萄酒风土特征。因此,本文对现有研究的葡萄园土壤、果实和葡萄酒自然发酵过程中的真菌和细菌的群落多样性和动态变化,及其代谢酶类对葡萄酒质量特性的影响进行了综述,以期通过对微生物群落的生理代谢和生态作用的全面认识,探究葡萄微生态的互作机理和代谢功能,促使微生物群落向葡萄和葡萄酒有益的方向发展,从而达到葡萄生态系统可持续、高质量发展的目的。  相似文献   

20.

Background  

Analysis of complete microbial genomes showed that intracellular parasites and other microorganisms that inhabit stable ecological niches encode relatively primitive signaling systems, whereas environmental microorganisms typically have sophisticated systems of environmental sensing and signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号