首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对不同花期桂花的光合作用、蒸腾作用日变化及二者与环境因子的相互作用进行研究.结果表明:处于不同花期的桂花净光合速率日变化为典型的双峰曲线,有明显的"午休"现象;蒸腾速率日变化总体趋势是先升高后降低.盛花期桂花净光合速率(Pn)最大,蒸腾作用最强,而且蒸腾作用的日变化最大.水分利用率最高.气孔导度与光合速率呈显著的正相关.叶面温度、光照强度、水蒸气压浓度差与蒸腾速率有明显正相关性.  相似文献   

2.
3.
对开花期香紫苏功能叶片的蒸腾作用、光合作用日变化规律以及二者与环境因子之间的相互作用进行了研究.结果表明:处于花期的香紫苏蒸腾速率和气孔导度的日变化总体趋势是先升高后降低;不同花期净光合速率的日变化之间则存在明显的差别,初花期的净光合速率明显高于盛花期和终花期;湿度和光合有效辐射是影响香紫苏蒸腾作用的最主要因素,而光合有效辐射和CO2浓度变化则对香紫苏的净光合速率影响最大.  相似文献   

4.
5.
Systemic signaling of upper leaves promotes the induction of photosynthesis in lower leaves, allowing more efficient use of light flecks. However, the nature of the systemic signals has remained elusive. Here, we show that preillumination of the tomato (Solanum lycopersicum) shoot apex alone can accelerate photosynthetic induction in distal leaves and that this process is light quality dependent, where red light promotes and far-red light delays photosynthetic induction. Grafting the wild-type rootstock with a phytochome B (phyB) mutant scion compromised light-induced photosynthetic induction as well as auxin biosynthesis in the shoot apex, auxin signaling, and RESPIRATORY BURST OXIDASE HOMOLOG1 (RBOH1)-dependent hydrogen peroxide (H2O2) production in the systemic leaves. Light-induced systemic H2O2 production in the leaves of the rootstock also was absent in plants grafted with an auxin-resistant diageotropica (dgt) mutant scion. Cyclic electron flow around photosystem I and associated ATP production were increased in the systemic leaves by exposure of the apex to red light. This enhancement was compromised in the systemic leaves of the wild-type rootstock with phyB and dgt mutant scions and also in RBOH1-RNA interference leaves with the wild type as scion. Silencing of ORANGE RIPENING, which encodes NAD(P)H dehydrogenase, compromised the systemic induction of photosynthesis. Taken together, these results demonstrate that exposure to red light triggers phyB-mediated auxin synthesis in the apex, leading to H2O2 generation in systemic leaves. Enhanced H2O2 levels in turn activate cyclic electron flow and ATP production, leading to a faster induction of photosynthetic CO2 assimilation in the systemic leaves, allowing plants better adaptation to the changing light environment.As a consequence of their sessile lifestyle, plants have evolved a high capacity for the regulation of physiology, growth, and development that facilitates survival in a constantly changing environment. Environmental stimuli perceived within an organ not only influence morphogenetic and physiological changes within that organ but also generate systemic effects in other organs that are remote from the site of signal perception. This crucial phenomenon is called systemic signaling or systemic regulation. Systemic signaling prepares other tissues of a plant for future challenges that may initially only be sensed by a few local tissues or cells. Several types of systemic responses are known. These include systemic acquired resistance, which is typically activated by pathogens such as viruses, bacteria, and fungi (Fu and Dong, 2013), induced systemic resistance, which is triggered by beneficial soil microorganisms or others (Pieterse and Dicke, 2007), and systemic acquired acclimation, which is initiated by abiotic stresses such as high light, UV radiation, heat, cold, and salinity (Mittler and Blumwald, 2015).The light utilization efficiency of photosynthesis is important for the survival of understory plants and plants growing in canopies. In particular, the efficient use of the energy contained in light (sun) flecks is important because light flecks contribute up to 60% to 80% of photosynthetically active radiation received by understory plants (Pearcy and Seemann, 1990; Leakey et al., 2003, 2005). Earlier studies have shown the existence of systemic regulation of stomatal development and of photosynthesis in developing leaves in response to environmental signals perceived by mature leaves, such as changing irradiance and atmospheric CO2 conditions (Lake et al., 2002; Coupe et al., 2006; Araya et al., 2008). Phytochome B (phyB) is important in the transmission of the systemic signals that modulate stomatal development in young leaves of Arabidopsis (Arabidopsis thaliana; Casson and Hetherington, 2014). In tomato (Solanum lycopersicum), there are two forms of phyB, phyB1 and phyB2, that work together to mediate red (R) light-induced responses, such as hypocotyl elongation and greening in seedlings (Hauser et al., 1995; Weller et al., 2000).Photosynthesis is completely switched off in the dark, specifically to prevent futile cycling of metabolites through the reductive and oxidative pentose phosphate pathways. Hence, leaves need time to reactivate the enzymes of carbon assimilation after a period of darkness. The time taken to reach maximum net rates of photosynthesis upon illumination is called photosynthetic induction (Walker, 1973). Systemic signaling also has been observed for the regulation of photosynthesis in relation to leaf ontology in understory plants (Montgomery and Givnish, 2008). The uppermost leaves, which are generally the first to receive sunlight, display faster photosynthetic induction times than understory leaves (Bai et al., 2008). Photosynthetic induction in understory leaves is enhanced by the preillumination of upper leaves but not lower leaves, suggesting a directional signal transfer (Hou et al., 2015). While this process allows plants to use the light energy in sun flecks more efficiently, the nature of the systemic signals and their transmission pathways remain largely unresolved. Although systemic signaling between different leaf ranks has been suggested to occur through the xylem (Thorpe et al., 2007) and also via electrical signals (Zimmermann et al., 2009), it is likely that systemic signals also pass through the phloem (Turgeon and Wolf, 2009; Hou et al., 2015). In addition, the phytohormone auxin is produced in the shoot apex and redistributed throughout the shoot by rapid nonpolar phloem transport (Ljung et al., 2001). Changes in the light environment can dramatically alter auxin homeostasis, which is regulated in a light quality- and photoreceptor-dependent manner (Halliday et al., 2009).The photosynthetic electron transport chain exhibits enormous flexibility in the relative rates of NADPH and ATP production in order to accommodate the varying requirements of metabolism (Foyer et al., 2012). Noncyclic, pseudocyclic, and cyclic electron flow (CEF) pathways operate in the photosynthetic electron transport chain to drive the proton gradient across the thylakoid membrane (Allen, 2003). Photosynthetic induction is not only associated with the activation of the light- and thiol-dependent activation of carbon assimilation enzymes but also dependent on a high rate of CEF to drive ATP synthesis (Foyer et al., 1992). Considerable overreduction of the electron transport acceptors occurs during the photosynthetic induction period, and this continues until carbon assimilation can be activated. CEF around PSI, an essential component of photosynthesis, drives the proton gradient in a situation when NADP reduction has reached its highest capacity and this essential electron acceptor is no longer available (Yamori et al., 2015; Yamori and Shikanai, 2016). CEF is particularly sensitive to the reduction-oxidation (redox) status of the chloroplast, which in turn is responsive to cellular redox homeostasis. Oxidants such as hydrogen peroxide (H2O2), which are produced by pseudocyclic electron flow in the chloroplasts, play a crucial role in the activation of CEF through modulation of the activity of the NADPH-plastoquinone reductase complex (Strand et al., 2015). Hormone-mediated generation of H2O2 also can stimulate CO2 assimilation (Jiang et al., 2012).Auxins such as indole-3-acetic acid (IAA) generate H2O2 (Ivanchenko et al., 2013; Peer et al., 2013) and can regulate CO2 assimilation (Bidwell and Turner, 1966; Hayat et al., 2009; Peng et al., 2013). Therefore, we used tomato plants to test the hypothesis that the systemic signaling that regulates photosynthetic induction in understory leaves arises from light-induced changes in auxin and H2O2 homeostasis involving the modulation of CEF in systemic leaves. We present evidence showing that R light perceived in the shoot apex by a phyB-dependent pathway alters IAA signaling in a systemic manner. IAA signals from the apex, perceived in distal leaves, trigger systemic H2O2 production that accelerates photosynthetic induction by increasing CEF-dependent ATP production in the systemic leaves. These findings provide new insights into the elaborate plant regulatory network that allows light adaptation in different organs.  相似文献   

6.
Stem elongation in Fuchsia × hybrida was influenced by cultivation at different day and night temperatures or in different light qualities. Internode elongation of plants grown at a day (25°C) to night (15°C) temperature difference (DIF+10) in white light was almost twofold that of plants grown at the opposite temperature regime (DIF−10). Orange light resulted in a threefold stimulation of internode elongation compared with white light DIF−10. Surprisingly, internode elongation in orange light was similar for plants grown at DIF−10 and DIF+10. Flower development was accelerated at DIF−10 compared with DIF+10 in both white and orange light. To examine whether the effects of DIF and light quality on shoot elongation were related to changes in gibberellin metabolism or plant sensitivity to gibberellins (GAs), the stem elongation responses of paclobutrazol-treated plants to applied gibberellins were determined. In the absence of applied gibberellins paclobutrazol (>0.32 μmol plant−1) strongly retarded shoot elongation. This inhibition was nullified by the application of about 10–32 nmol of GA1, GA4, GA9, GA15, GA19, GA20, GA24, or GA44. The results are discussed in relation to possible effects of DIF and light quality on endogenous gibberellin levels and gibberellin sensitivity of fuchsia and their effects on stem elongation. Received October 4, 1997; accepted December 17, 1997  相似文献   

7.
Replicated artificial selection for high levels of voluntary wheel running in an outbred strain of mice favored an autosomal recessive allele whose primary phenotypic effect is a 50% reduction in hind-limb muscle mass. Within the High Runner (HR) lines of mice, the numerous pleiotropic effects (e.g., larger hearts, reduced total body mass and fat mass, longer hind-limb bones) of this hypothesized adaptive allele include functional characteristics that facilitate high levels of voluntary wheel running (e.g., doubling of mass-specific muscle aerobic capacity, increased fatigue resistance of isolated muscles, longer hind-limb bones). Previously, we created a backcross population suitable for mapping the responsible locus. We phenotypically characterized the population and mapped the Minimsc locus to a 2.6-Mb interval on MMU11, a region containing ∼100 known or predicted genes. Here, we present a novel strategy to identify the genetic variant causing the mini-muscle phenotype. Using high-density genotyping and whole-genome sequencing of key backcross individuals and HR mice with and without the mini-muscle mutation, from both recent and historical generations of the HR lines, we show that a SNP representing a C-to-T transition located in a 709-bp intron between exons 11 and 12 of the Myosin heavy polypeptide 4 (Myh4) skeletal muscle gene (position 67,244,850 on MMU11; assembly, December 2011, GRCm38/mm10; ENSMUSG00000057003) is responsible for the mini-muscle phenotype, Myh4Minimsc. Using next-generation sequencing, our approach can be extended to identify causative mutations arising in mouse inbred lines and thus offers a great avenue to overcome one of the most challenging steps in quantitative genetics.  相似文献   

8.
In this paper, some important problems related to taxonomic resolution in water quality assessment by means of macroinvertebrates are discussed. Most quality indices based on macroinvertebrates only require identification up to genus or family level. Although this can be seen as a practical trade-off between taxonomic precision and time constraints and financial resources, it can result in biased assessment scores for certain stream types. An additional difficulty of identification levels other than species is caused by possible changes in taxonomy over time. A given genus may indeed have been split up into two or more genera or a species could be assigned to a different genus. These changes may alter biotic index values calculated over time, due to a change in number of taxa or replacement of one taxon by another one having a different tolerance class. An additional problem is caused by the invasion of exotic species. The genus Corbicula for instance is currently invading Belgian watercourses in increasing numbers. Since no Belgian Biotic Index (BBI) tolerance class is defined for Corbicula, this may cause inconsistencies in index calculations as well. In order to eliminate these, a semi-fixed taxa list, including a tolerance class for each taxon, for BBI calculation is proposed.  相似文献   

9.
Idiopathic torsion dystonia (ITD) is characterized by involuntary twisting movements and postures. A gene for this disorder, DYT1, was mapped to chromosome 9q34 in 12 Ashkenazi Jewish (AJ) families and one large non-Jewish kindred. In the AJ population, strong linkage disequilibrium exists between DYT1 and adjacent markers within a 2-cM region. The associated haplotype occurs in >90% of early limb-onset AJ cases. We examined seven non-Jewish ITD families of northern European and French Canadian descent to determine the extent to which early-onset ITD in non-Jews maps to DYT1. Results are consistent with linkage to the DYT1 region. Affected individuals in these families are clinically similar to the AJ cases; i.e., the site of onset is predominantly in the limbs and at least one individual in each pedigree had onset before age 12 years. None carries the AJ haplotype; therefore, they probably represent different mutations in the DYT1 gene. The two French Canadian families, however, display the same haplotype. Estimates of penetrance in non-Jewish families range from .40 to .75. We identified disease gene carriers and, with adjustments for age at onset, obtained a direct estimate of penetrance of .46. This is consistent with estimates of 30%–40% in the AJ population. Two other non-Jewish families with atypical ITD (later onset and/or cranial or cervical involvement) are not linked to DYT1, which indicates involvement of other genes in dystonia.  相似文献   

10.
Human induced pluripotent stem cells (hiPSCs) could be used to generate autologous cells for therapeutic purposes, which are expected to be tolerated by the recipient. However, iPSC-derived grafts are at risk of giving rise to teratomas in the host, if residuals of tumorigenic cells are not rejected by the recipient. We have analyzed the susceptibility of hiPSC lines to allogeneic and autologous natural killer (NK) cells. IL-2-activated, in contrast to resting NK cells killed hiPSC lines efficiently (P=1.69x10-39). Notably, the specific lysis of the individual hiPSC lines by IL-2-activated NK cells was significantly different (P=1.72x10-6) and ranged between 46 % and 64 % in 51Cr-release assays when compared to K562 cells. The hiPSC lines were killed by both allogeneic and autologous NK cells although autologous NK cells were less efficient (P=8.63x10-6). Killing was partly dependent on the activating NK receptor DNAM-1 (P=8.22x10-7). The DNAM-1 ligands CD112 and CD155 as well as the NKG2D ligands MICA and MICB were expressed on the hiPSC lines. Low amounts of human leukocyte antigen (HLA) class I proteins, which serve as ligands for inhibitory and activating NK receptors were also detected. Thus, the susceptibility to NK cell killing appears to constitute a common feature of hiPSCs. Therefore, NK cells might reduce the risk of teratoma formation even after autologous transplantations of pluripotent stem cell-derived grafts that contain traces of pluripotent cells.  相似文献   

11.
12.
Cells of Saccharomyces cerevisiae express two tryptophan permeases, Tat1 and Tat2, which have different characteristics in terms of their affinity for tryptophan and intracellular localization. Although the high-affinity permease Tat2 has been well documented in terms of its ubiquitin-dependent degradation, the low-affinity permease Tat1 has not yet been characterized fully. Here we show that a high hydrostatic pressure of 25 MPa triggers a degradation of Tat1 which depends on Rsp5 ubiquitin ligase and the EH domain-containing protein End3. Tat1 was resistant to a 3-h cycloheximide treatment, suggesting that it is highly stable under normal growth conditions. The ubiquitination of Tat1 most likely occurs at N-terminal lysines 29 and 31. Simultaneous substitution of arginine for the two lysines prevented Tat1 degradation, but substitution of either of them alone did not, indicating that the roles of lysines 29 and 31 are redundant. When cells were exposed to high pressure, Tat1-GFP was completely lost from the plasma membrane, while substantial amounts of Tat1K29R-K31R-GFP remained. The HPG1-1 (Rsp5P514T) and rsp5-ww3 mutations stabilized Tat1 under high pressure, but any one of the rsp5-ww1, rsp5-ww2, and bul1Δ bul2Δ mutations or single deletions of genes encoding arrestin-related trafficking adaptors did not. However, simultaneous loss of 9-arrestins and Bul1/Bul2 prevented Tat1 degradation at 25 MPa. The results suggest that multiple PPxY motif proteins share some essential roles in regulating Tat1 ubiquitination in response to high hydrostatic pressure.  相似文献   

13.
The dopamine transporter (DAT) belongs to the family of neurotransmitter:sodium symporters and controls dopamine (DA) homeostasis by mediating Na+- and Cl-dependent reuptake of DA. Here we used two-electrode voltage clamp measurements in Xenopus oocytes together with targeted mutagenesis to investigate the mechanistic relationship between DAT ion binding sites and transporter conductances. In Li+, DAT displayed a cocaine-sensitive cation leak current ∼10-fold larger than the substrate-induced current in Na+. Mutation of Na+ coordinating residues in the first (Na1) and second (Na2) binding sites suggested that the Li+ leak depends on Li+ interaction with Na2 rather than Na1. DA caused a marked inhibition of the Li+ leak, consistent with the ability of the substrate to interact with the Li+-occupied state of the transporter. The leak current in Li+ was also potently inhibited by low millimolar concentrations of Na+, which according to our mutational data conceivably depended on high affinity binding to Na1. The Li+ leak was further regulated by Cl that most likely increases Li+ permeation by allosterically lowering Na2 affinity. Interestingly, mutational lowering of Na2 affinity by substituting Asp-420 with asparagine dramatically increased cation permeability in Na+ to a level higher than seen in Li+. In addition to reveal a functional link between the bound Cl and the cation bound in the Na2 site, the data support a key role of Na2 in determining cation permeability of the transporter and thereby possibly in regulating the opening probability of the inner gate.  相似文献   

14.
The oil palm (Elaeis guineensis Jacq.) maintains a large leafarea throughout the year, but its productivity is limited bya low rate of dry matter production per unit leaf area. Stomatalclosure, at times of low soil water availability and high atmosphericvapour pressure deficit, is an important factor limiting photosynthesisand hence dry matter production. In this paper, laboratory andfield data are used to prepare a model of the relationshipsbetween net photosynthetic rate and stomatal conductance, andbetween stomatal conductance and environmental variables. Resultsshow that high atmospheric vapour pressure deficits may limitproduction even in parts of the world where oil palms are notnormally considered to suffer from water stress. The model canbe used to design and evaluate irrigation systems, and to helpquantify the potential value of oil palm genotypes with lowstomatal sensitivity to either VPD or available soil water foruse where irrigation is impractical. Key words: Elaeis guineensis Jacq., drought, irrigation, plant breeding  相似文献   

15.
16.
The snapdragon (Antirrhinum majus) centroradialis mutant (cen) is characterized by the development of a terminal flower, thereby replacing the normally open inflorescence by a closed inflorescence. In contrast to its Arabidopsis counterpart, terminal flower1, the cen-null mutant displays an almost constant number of lateral flowers below the terminal flower. Some partial revertants of an X-radiation-induced cen mutant showed a delayed formation of the terminal flower, resulting in a variable number of lateral flowers. The number of lateral flowers formed was shown to be environmentally controlled, with the fewer flowers formed under the stronger flower-inducing conditions. Plants displaying this "Delayed terminal flower" phenotype were found to be heterozygous for a mutant allele carrying a transposon in the coding region and an allele from which the transposon excised, leaving behind a 3-bp duplication as footprint. As a consequence, an iso-leucine is inserted between Asp148 and Gly149 in the CENTRORADIALIS protein. It is proposed that this mutation results in a low level of functional CEN activity, generating a phenotype that is more similar to the Arabidopsis Terminal flower phenotype.  相似文献   

17.
18.
Russian Journal of Plant Physiology - In silico analysis of the promoter region of the At4g01870 gene of Arabidopsis thaliana (L.) Heynh. showed the presence of ABRE, W-box, RAV1-A, MYB, and LFY...  相似文献   

19.
Abstract

HPLC methodology has found wide application in analytical problems in biochemistry. To study the metabolism of phosphatidylinositol and its regulation by receptor mediated events, HPLC could be a valuable technique. It has been recently demonstrated that a variety of hormones and neurotransmittors act to stimulate hydrolysis of phosphoinositides by a phospholipase C. To monitor this reaction, we have analysed the formation of radiolabelled inositol phosphates from phosphoinositides. The present paper describes a rapid HPLC procedure, to separate inositol phosphates from myo-inositol, which could be used in pharmacological studies of receptors linked to phosphoinositide hydrolysis. The potential of the application of HPLC to the analysis of the phospholipids involved is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号