首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Collabieae (Orchidaceae) is a long neglected tribe with confusing tribal and generic delimitation and little-understood phylogenetic relationships. Using plastid matK, psaB, rbcL, and trnH-psbA DNA sequences and morphological evidence, the phylogenetic relationships within the tribe Collabieae were assessed as a basis for revising their tribal and generic delimitation. Collabieae (including the previously misplaced mycoheterotrophic Risleya) is supported as monophyletic and nested within a superclade that also includes Epidendreae, Podochileae, Cymbidieae and Vandeae. Risleya is nested in Collabiinae and sister to Chrysoglossum, a relationship which, despite their great vegetative differences, is supported by floral characters. Ania is a distinct genus supported by both morphological and molecular evidence, while redefined Tainia includes Nephelaphyllum and Mischobulbum. Calanthe is paraphyletic and consists four clades; the genera Gastrorchis, Phaius and Cephalantheropsis should be subsumed within Calanthe. Calanthe sect. Ghiesbreghtia is nested within sect. Calanthe, to which the disputed Calanthe delavayi belongs as well. Our results indicate that, in Collabieae, habit evolved from being epiphytic to terrestrial.  相似文献   

2.
The family Asclepiadaceae (Dicotyledones) was created by Brown in 1810 by splitting in two the family Apocynaceae of Jussieu established in 1789. The morphological characters used to make this distinction were mainly palynological, such as presence of tetrads or pollinia and number and orientation of pollinia. Those characters, still used in higher taxonomic delimitation (families, subfamilies, and tribes), are here critically reexamined and compared to a molecular phylogeny obtained with one of the more variable plastid genes (matK) of 46 species in the order Gentianales. In this molecular phylogeny, Asclepiadaceae form a monophyletic group derived from within Apocynaceae. Each of the subfamilies of Asclepiadaceae is monophyletic and based on reliable palynological characters, but palynological characters are not useful to delimit tribes of the subfamily Asclepiadoideae. Based on the molecular data, these tribes have undergone parallelisms in several reproductive traits.  相似文献   

3.
Small-eared shrews of the New World genus Cryptotis (Eulipotyphla, Soricidae) comprise at least 42 species that traditionally have been partitioned among four or more species groups based on morphological characters. The Cryptotis mexicana species group is of particular interest, because its member species inhibit a subtly graded series of forelimb adaptations that appear to correspond to locomotory behaviors that range from more ambulatory to more fossorial. Unfortunately, the evolutionary relationships both among species in the C. mexicana group and among the species groups remain unclear. To better understand the phylogeny of this group of shrews, we sequenced two mitochondrial and two nuclear genes. To help interpret the pattern and direction of morphological changes, we also generated a matrix of morphological characters focused on the evolutionarily plastic humerus. We found significant discordant between the resulting molecular and morphological trees, suggesting considerable convergence in the evolution of the humerus. Our results indicate that adaptations for increased burrowing ability evolved repeatedly within the genus Cryptotis.  相似文献   

4.
The genus Epilobium L. (Family Onagraceae) with about 200 species is taxonomically complicated due to wide inter-specific gene flow. There is no report on biosystematics of Epilobium species in Iran, therefore we studied 5 species of this genus using a combination of morphological, molecular (ISSR) and palynological data to delimit these species. All data revealed high degree of morphological and genetic overlap among the studied species. However, they could be separated when all studied features were used together. Morphological characters could delimit 3 species while genetic data separated them in two major groups. However, palynological data could delimit all five species studied. The species relationship was highly compatible in all three data sources used.  相似文献   

5.
Metapenaeopsis Bouvier, 1905 is the most diverse genus within Penaeidae. Metapenaeopsis shrimps exhibited subtle morphological differences, which make identification a difficult task based on taxonomic keys alone. In this study, we carried out DNA barcoding and phylogenetic analyses to examine taxonomy and phylogeny of genus Metapenaeopsis based on mitochondrial (COI) and nuclear (PEPCK and NaK) genes. Despite limited performance of DNA barcoding in delineating Metapenaeopsis shrimps, it questioned the taxonomic status of the two subspecies, Metapenaeopsis mogiensis intermedia and Metapenaeopsis mogiensis mogiensis, as well as three separate species: Metapenaeopsis provocatoria longirostris, Metapenaeopsis quinquedentata and Metapenaeopsis velutina. The major pattern of relationships between all studied taxa of Metapenaeopsis was similar across all analytical methods in which species with one-valved petasma were genetically distinct from those with two-valved petasma. As expected from morphology, the remaining species with stridulating organ constituted a strongly supported clade. In contrast, a paraphyletic clade was resolved for species without stridulating organ which contradicts Crosnier's morphological classification scheme for Metapenaeopsis. Overall, the present molecular data indicated that the shape of petasma and stridulating organ were both phylogenetically significant morphological characters for this genus, adding further evidence for the Crosnier's proposal.  相似文献   

6.
The phylogeny of Lecidella species is studied, based on a 7-locus data set using ML and Bayesian analyses. Phylogenetic relationships among 43 individuals representing 11 Lecidella species, mainly from mainland China, were included in the analyses and phenotypical characters studied and mapped onto the phylogeny. The Lecidella species fall into three major clades, which are proposed here as three informal groups–Lecidella stigmatea group, L. elaeochroma group and L. enteroleucella group, each of them strongly supported. Our phylogenetic analyses support traditional species delimitation based on morphological and chemical traits in most but not all cases. Individuals considered as belonging to the same species based on phenotypic characters were found to be paraphyletic, indicating that cryptic species might be hidden under these names (e.g. L. carpathica and L. effugiens). Potentially undescribed species were found within the phenotypically circumscribed species L. elaeochroma and L. stigmatea. Additional sampling across a broader taxonomic and geographic scale will be crucial to fully resolving the taxonomy in this cosmopolitan genus.  相似文献   

7.
8.
A first attempt to establish the phylogeny of the generaEchinops andAcantholepis has been carried out using the analysis of the internal transcribed spacers (ITS) sequences of the nuclear ribosomal DNA including 30Echinops species and the only species of the monotypicAcantholepis. The results of this analysis are discussed in the light of morphological and cytogenetic characters. The genusAcantholepis is placed in a robust clade withEchinops nanus, and together they appear in a basal position to other members ofEchinops. The ITS phylogeny and several other characters, such as chromosome number and nuclear DNA amount, do not agree with the sections currently recognized withinEchinops. Some groups are defined in the present approach, but further studies are necessary to reach a complete, stable and natural infrageneric classification of this genus.  相似文献   

9.
10.
Coptis (Ranunculaceae) contains 15 species and is one of the pharmaceutically most important plant genera in eastern Asia. Understanding of the evolution of morphological characters and phylogenetic relationships within the genus is very limited. Here, we present the first comprehensive phylogenetic analysis of the genus based on two plastid and one nuclear markers. The phylogeny was reconstructed using Bayesian inference, as well as maximum parsimony and maximum likelihood methods. The Swofford-Olsen-Waddell-Hillis and Bayesian tests were used to assess the strength of the conflicts between traditional taxonomic units and those suggested by the phylogenetic inferences. Evolution of morphological characters was inferred using Bayesian method to identify synapomorphies for the infrageneric lineages. Our data recognize two strongly supported clades within Coptis. The first clade contains subgenus Coptis and section Japonocoptis of subgenus Metacoptis, supported by morphological characters, such as traits of the central leaflet base, petal color, and petal shape. The second clade consists of section Japonocoptis of subgenus Metacoptis. Coptis morii is not united with C. quinquefolia, in contrast with the view that C. morii is a synonym of C. quinquefolia. Two varieties of C. chinensis do not cluster together. Coptis groenlandica and C. lutescens are reduced to C. trifolia and C. japonica, respectively. Central leaflet base, sepal shape, and petal blade carry a strong phylogenetic signal in Coptis, while leaf type, sepal and petal color, and petal shape exhibit relatively higher levels of evolutionary flexibility.  相似文献   

11.

Background and Aims

Pteris (Pteridaceae), comprising over 250 species, had been thought to be a monophyletic genus until the three monotypic genera Neurocallis, Ochropteris and Platyzoma were included. However, the relationships between the type species of the genus Pteris, P. longifolia, and other species are still unknown. Furthermore, several infrageneric morphological classifications have been proposed, but are debated. To date, no worldwide phylogenetic hypothesis has been proposed for the genus, and no comprehensive biogeographical history of Pteris, crucial to understanding its cosmopolitan distribution, has been presented.

Methods

A molecular phylogeny of Pteris is presented for 135 species, based on cpDNA rbcL and matK and using maximum parsimony, maximum likelihood and Bayesian inference approaches. The inferred phylogeny was used to assess the biogeographical history of Pteris and to reconstruct the evolution of one ecological and four morphological characters commonly used for infrageneric classifications.

Key Results

The monophyly of Pteris remains uncertain, especially regarding the relationship of Pteris with Actiniopteris + Onychium and Platyzoma. Pteris comprises 11 clades supported by combinations of ecological and morphological character states, but none of the characters used in previous classifications were found to be exclusive synapomorphies. The results indicate that Pteris diversified around 47 million years ago, and when species colonized new geographical areas they generated new lineages, which are associated with morphological character transitions.

Conclusions

This first phylogeny of Pteris on a global scale and including more than half of the diversity of the genus should contribute to a new, more reliable infrageneric classification of Pteris, based not only on a few morphological characters but also on ecological traits and geographical distribution. The inferred biogeographical history highlights long-distance dispersal as a major process shaping the worldwide distribution of the species. Colonization of different niches was followed by subsequent morphological diversification. Dispersal events followed by allopatric and parapatric speciation contribute to the species diversity of Pteris.  相似文献   

12.
13.
Thum  Ryan A. 《Hydrobiologia》2004,519(1-3):135-141
The phylogenetic relationships among the numerous genera of diaptomid copepods remain elusive due to difficulties in obtaining sufficient numbers of phylogenetically informative morphological characters for cladistic analysis. Molecular phylogenetic techniques offer high potential to resolve phylogenetic relationships in the absence of sufficient morphological characters because of the ease in which many characters can be unambiguously coded. I present the first molecular phylogeny for diaptomid copepod genera using 18S rDNA. Specifically, I test Light’s (1939) hypothesis regarding the interrelationships among the North American diaptomid genera. The 18S phylogeny is remarkably consistent with Light’s hypothesis. The endemic North American genera represent a monophyletic group exclusive of the non-endemic genera. Moreover, his hypothesized basal genus for the North America genera, Hesperodiaptomus, is the basal genus in this analysis. However, his Leptodiaptomus group is not reciprocally monophyletic with his Hesperodiaptomus group, but is rather a derived member of the latter group. Finally, the genus Mastigodiaptomus is found to be more closely allied with the non-endemic genera, as Light suggested. This phylogeny contributes heavily to the understanding of phylogenetic relationships among North American diaptomids and has large implications for the systematics of diaptomids in general. The use of 18S rDNA sequences in phylogenetic analyses of diaptomid copepods can be used to confirm the monophyly of recognized genera, the interrelationships among genera, and subsequent biogeographic interpretation of the family’s diversification. The use of molecular data, such as 18S rDNA sequences, to test phylogenetic hypotheses based on a very limited number of morphological characters will be a particularly useful approach to phylogenetic analysis in this system.  相似文献   

14.
15.
16.
Salix L. is the largest genus in the family Salicaceae (450 species). Several classifications have been published, but taxonomic subdivision has been under continuous revision. Our goal is to establish the phylogenetic structure of the genus using molecular data on all American willows, using three DNA markers. This complete phylogeny of American willows allows us to propose a biogeographic framework for the evolution of the genus. Material was obtained for the 122 native and introduced willow species of America. Sequences were obtained from the ITS (ribosomal nuclear DNA) and two plastid regions, matK and rbcL. Phylogenetic analyses (parsimony, maximum likelihood, Bayesian inference) were performed on the data. Geographic distribution was mapped onto the tree. The species tree provides strong support for a division of the genus into two subgenera, Salix and Vetrix. Subgenus Salix comprises temperate species from the Americas and Asia, and their disjunction may result from Tertiary events. Subgenus Vetrix is composed of boreo-arctic species of the Northern Hemisphere and their radiation may coincide with the Quaternary glaciations. Sixteen species have ambiguous positions; genetic diversity is lower in subg. Vetrix. A molecular phylogeny of all species of American willows has been inferred. It needs to be tested and further resolved using other molecular data. Nonetheless, the genus clearly has two clades that have distinct biogeographic patterns.  相似文献   

17.
European representatives of Apium sensu lato (Apiaceae), and Apium prostratum and Naufraga balearica, were studied with morphological, fruit anatomical, and palynological methods. Morphometric data were compared with phylogenetic results from previous molecular studies. This confirms that most of the European Apium species belong to a separate group corresponding to the previously named genus Helosciadium. All these species had previously been formally named as Helosciadium species, except for the new combination Helosciadium bermejoi, which is formally described here. Molecular studies place Apium prostratum and Naufraga balearica close to Apium graveolens, the type species of Apium. Our morphometric results show similarities of Naufraga with H. bermejoi, but fruit anatomy distinguishes it both from Helosciadium and from A. graveolens/prostratum. The placement of Cyclospermum leptophyllum in a separate genus is confirmed. Diagnostic keys to the genera and Helosciadium species, and an annotated checklist are given.  相似文献   

18.
Cyanobacteria (Phylum Cyanobacteriota) are Gram-negative bacteria capable of performing oxygenic photosynthesis. Although the taxonomic classification of cyanobacteria was for a long time based primarily on morphological characters, the application of other techniques (e.g. molecular phylogeny), especially in recent decades, has contributed to a better resolution of cyanobacteria systematics, leading to a revision of the phylum. Although Desmonostoc occurs as a new genus/cluster and some species have been described recently, relatively few studies have been carried out to elucidate its diversity, which encompasses strains from different ecological origins, or examine the application of new characterization tools. In this context, the present study investigated the diversity within Desmonostoc, based on morphological, molecular, metabolic, and physiological characteristics. Although the usage of physiological parameters is unusual for a polyphasic approach, they were efficient in the characterization performed here. The phylogenetic analysis based on 16S rRNA gene sequences put all studied strains (25) into the D1 cluster and indicated the emergence of novel sub-clusters. It was also possible to observe that nifD and nifH exhibited different evolutionary histories within the Desmonostoc strains. Collectively, metabolic and physiological data, coupled with the morphometric data, were in general, in good agreement with the separation based on the phylogeny of the 16S rRNA gene. Furthermore, the study provided important information on the diversity of Desmonostoc strains collected from different Brazilian biomes by revealing that they were cosmopolitan strains, acclimatized to low luminous intensities, with a large metabolic diversity and great biotechnological potential.  相似文献   

19.
20.
A plethora of unionid names was established in the nineteenth century by the “Nouvelle Ecole”. Although naiad morphological plasticity is well documented, the currently recognized fauna, with 17 species and subspecies included in the French checklist for the Unio genus, is still based upon morphological characters only. Insights have been provided from molecular data elsewhere in Europe and North Africa, but the French fauna remains unstudied. We present a molecular phylogeny of the Unio genus in France based on COI, 16S and 28S genes; taking up all available data in Europe plus 273 specimens collected in all main French drainages. The results show that there are either three valid species in France, with U. pictorum and U. mancus synonymized, or five, with the subspecies U. crassus courtillieri elevated to species level. Subspecies were generally not recovered, which questions the evolutionary units tacitly implied by subspecific names. Although sampling topotypes is the most reliable way to evaluate the status of a nominal subspecies, major human-induced changes in aquatic hydrosystems challenge the method. Nevertheless, operational taxonomy has to rely on ground-truthed data and we propose to reduce the actual number of valid taxa in France to the seven observed operational taxonomic units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号