首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Large amounts of microarray expression data have been generated for the Apicomplexan parasite Toxoplasma gondii in an effort to identify genes critical for virulence or developmental transitions. However, researchers’ ability to analyze this data is limited by the large number of unannotated genes, including many that appear to be conserved hypothetical proteins restricted to Apicomplexa. Further, differential expression of individual genes is not always informative and often relies on investigators to draw big-picture inferences without the benefit of context. We hypothesized that customization of gene set enrichment analysis (GSEA) to T. gondii would enable us to rigorously test whether groups of genes serving a common biological function are co-regulated during the developmental transition to the latent bradyzoite form.

Results

Using publicly available T. gondii expression microarray data, we created Toxoplasma gene sets related to bradyzoite differentiation, oocyst sporulation, and the cell cycle. We supplemented these with lists of genes derived from community annotation efforts that identified contents of the parasite-specific organelles, rhoptries, micronemes, dense granules, and the apicoplast. Finally, we created gene sets based on metabolic pathways annotated in the KEGG database and Gene Ontology terms associated with gene annotations available at http://www.toxodb.org. These gene sets were used to perform GSEA analysis using two sets of published T. gondii expression data that characterized T. gondii stress response and differentiation to the latent bradyzoite form.

Conclusions

GSEA provides evidence that cell cycle regulation and bradyzoite differentiation are coupled. Δgcn5A mutants unable to induce bradyzoite-associated genes in response to alkaline stress have different patterns of cell cycle and bradyzoite gene expression from stressed wild-type parasites. Extracellular tachyzoites resemble a transitional state that differs in gene expression from both replicating intracellular tachyzoites and in vitro bradyzoites by expressing genes that are enriched in bradyzoites as well as genes that are associated with the G1 phase of the cell cycle. The gene sets we have created are readily modified to reflect ongoing research and will aid researchers’ ability to use a knowledge-based approach to data analysis facilitating the development of new insights into the intricate biology of Toxoplasma gondii.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-515) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
4.
5.
6.
7.
8.
根据猪NM_213888及EST序列,设计特异引物扩增BMI CD46基因,并进行克隆、测序和生物信息学分析。同时应用半定量RT-PCR技术对BMI 30个重要组织进行表达谱分析。获得了BMI CD46 1 092 bp的编码区序列(Gen Bank登录号:KJ513478),编码363个氨基酸。分析表明,CD46蛋白质分子量(Mw)为39.60 k D,等电点(p I)为5.39,存在4个保守域和1个跨膜结构域,N端有信号肽序列;其N末端疏水,C末端亲水;亚细胞定位显示,该蛋白位于细胞周质的概率是56.7%。活性位点分析表明,BMI CD46蛋白有6类活性位点。系统进化分析表明,BMI与牛的亲缘关系最近。BMI 30种组织表达分析表明,CD46基因在十二指肠中高表达;在睾丸、胸腺、甲状腺、附睾、肺、淋巴结、空肠、回肠、结肠、小脑及舌下腺中中度表达;在颌下腺、肝、肾上腺、盲肠、直肠、食管、垂体及脑干中低表达;在心、脾、肾、肌肉、胰脏、胃、皮肤、大脑、下丘脑及脊髓中不表达。该结果为进一步研究基因功能奠定基础。  相似文献   

9.
10.
11.
12.
13.
14.
目的 克隆版纳微型猪近交系aquaporin 3(AQP3)基因,并利用生物信息学方法分析其序列特征,研究其在猪各组织中的表达情况.方法 从版纳微型猪近交系脾脏中提取总RNA,利用RT-PCR方法扩增猪AQP3编码区序列,将纯化的片段与pMD18-T载体连接,转化宿主菌DH 5α,筛选阳性克隆进行测序.并采用半定量RT...  相似文献   

15.
Voxelation and gene expression tomography or GET are novel methods for the high-throughput acquisition of gene expression patterns in the mammalian brain. Voxelation employs analysis of spatially registered voxels (cubes), while GET employs analysis of sets of parallel slices rotated about multiple independent axes of rotation. Both methods employ reconstruction of the data to result in multiple volumetric maps of gene expression analogous to those obtained from biomedical imaging techniques. Here, we describe the methodologies underlying voxelation and GET and briefly outline the insights that can be obtained from these approaches.  相似文献   

16.
A new microarray system has been developed for gene expression analysis using cationic gold nanoparticles with diameters of 250 nm as a target detection reagent. The approach utilizes nonlabeled target molecules hybridizing with complementary probes on the array, followed by incubation in a colloidal gold solution. The hybridization signal results from the precipitation of nanogold particles on the hybridized spots due to the electrostatic attraction of the cationic gold particles and the anionic phosphate groups in the target DNA backbone. In contrast to conventional fluorescent detection, this nanoparticle-based detection system eliminates the target labeling procedure. The visualization of hybridization signals can be accomplished with a flatbed scanner instead of a confocal laser scanner, which greatly simplifies the process and reduces the cost. The sensitivity is estimated to be less than 2 pg of DNA molecules captured on the array surface. The signal from hybridized spots quantitatively represents the amount of captured target DNA and therefore permits quantitative gene expression analysis. Cross-array reproducibility is adequate for detecting twofold or less signal changes across two microarray experiments.  相似文献   

17.
18.
Recruitment of mesenchymal stem cells (MSC) to tissue damages is a promising approach for in situ tissue regeneration. The physiological mechanisms and regulatory processes of MSC trafficking to injured tissue remain poorly understood. However, the pivotal role of chemokines in MSC recruitment has already been shown.The aim of this study was to determine the migratory potential and the gene expression profile of MSC stimulated with the CC chemokine CCL25 (TECK). Bone marrow derived human MSC were exposed to different doses of CCL25 in a standardized chemotaxis assay. Microarray gene expression profiling and pathway analysis were performed for CCL25 stimulated MSC.Maximum migration of MSC towards CCL25 was observed at 103 nM. Microarray analysis revealed an induction of molecules directly involved in chemotaxis and homing of bone marrow cells (CXCL1-3, CXCL8, PDE4B), cytoskeletal and membrane reorganisation (CXCL8, PLD1, IGFBP1), cellular polarity (PLD1), and cell movement (CXCL1-3, CXCL6, CXCL8, PTGS2, PDE4B, TGM2). Respective chemokine secretion was confirmed by protein membrane-array analysis. The activation of CXCR2 ligands (CXCL1-3, CXCL5-6, CXCL8) and a LIF-receptor/gp130 ligand (LIF) indicated an involvement of the respective signaling pathways during initiation of chemotaxis and migration.These results suggest CCL25 as a new potential candidate for further in situ regeneration approaches.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号