首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is generally accepted that the periodontal ligament (PDL) plays a crucial role in transferring occlusal forces from the teeth to the alveolar bone. Studies using finite element analysis (FEA) have helped to better understand this role and show that the stresses and strains in the alveolar bone are influenced by whether and how PDL is included in FE models. However, when the overall distribution of stresses and strains in crania and mandibles are of interest, PDL is often not included in FE models, although little is known about how this affects the results. Here we study the effect of representing PDL as a layer of solid material with isotropic homogeneous properties in an FE model of a human mandible using a novel application of geometric morphometrics. The results show that the modelling of the PDL affects the deformation and thus strain magnitudes not only of the alveolar bone around the biting tooth, but that the whole mandible deforms differently under load. As a result, the strain in the mandibular corpus is significantly increased when PDL is included, while the strain in the bone beneath the biting tooth is reduced. These results indicate the importance of the PDL in FE studies. Thus we recommend that the PDL should be included in FE models of the masticatory apparatus, with tests to assess the sensitivity of the results to changes in the Young's modulus of the PDL material.  相似文献   

2.
A knowledge of the mechanical processes triggered in the bone and periodontal ligament (PDL) by orthodontic forces applied to a tooth is of decisive importance for an understanding of the subsequent remodelling around the tooth. To investigate these mechanical relationships, three-dimensional finite element (FE) models of the first lower molar in the rat were established. On the basis of digitized serial histological sections, these FE models were generated semi-automatically. Using various simplified geometrical variations, an appropriate FE model for the analysis of the stress and strain distributions was established. The numerical analyses were carried out under a mesially directed force of 0.1 N. Stress distributions in the bone and PDL showed a similar pattern, while strains in the bone were lower than in the PDL by a factor of 10-5. The data confirm the assumption that strain patterns in the PDL may be the key stimulus of bone remodelling.  相似文献   

3.
This study presents a biomechanical model of orthodontic tooth movement. Although such models have already been presented in the literature, most of them incorporate computationally expensive finite elements (FE) methods to determine the strain distribution in the periodontal ligament (PDL). In contrast, the biomechanical model presented in this work avoids the use of FE methods. The elastic deformation of the PDL is modelled using an analytical approach, which does not require setting up a 3D model of the tooth. The duration of the lag phase is estimated using the calculated hydrostatic stresses, and bone remodelling is predicted by modelling the alveolar bone as a viscous material. To evaluate the model, some typically used motion patterns were simulated and a sensitivity analysis was carried out on the parameters. Results show that despite some shortcomings, the model is able to describe commonly used motion patterns in orthodontic tooth movement, in both single- and multi-rooted teeth.  相似文献   

4.
The aim of the present study was to investigate experimentally the mechanical properties of tooth deflection under external loading. These properties have a significant impact on tooth movement during orthodontic treatment. The stresses and strains caused by tooth movement influence bone remodelling, which is the basis of orthodontic treatment. The movement of a tooth as a direct reaction to the forces acting on it is termed "initial" movement. It is nonlinear and has a clearly time-dependent component. While the initial tooth movement represents the totality of the reaction mechanisms of all the tissues of the tooth unit, it is determined primarily by the mechanical properties of the periodontal ligament (PDL). The PDL is the softest tissue of the tooth unit and is therefore subject to the largest deformations when forces act on the crown of the tooth. The objective of orthodontic treatment is to achieve as precise and rapid tooth movement as possible, without provoking such undesired effects as bone and root resorption. To enable the implementation of an optimal orthodontic force system that meets these requirements, a thorough knowledge of the biomechanics of tooth movement is a must.  相似文献   

5.
During orthodontic tooth movement, the application of adequate orthodontic forces allows teeth to be moved through the alveolar bone. These forces are transmitted through the periodontal ligaments (PDL) to the supporting alveolar bone and lead to deposition or resorption of bone, depending on whether the tissues are exposed to a tensile or compressive mechanical strain. Fibroblasts within the PDL (PDLF) are considered to be mechanoresponsive. The transduction mechanisms from mechanical loading of the PDLF to the initiation of bone remodeling are not clearly understood. Recently, members of the ephrin/Eph family have been shown to be involved in the regulation of bone homeostasis. For the first time, we demonstrate that PDLF exposed to tensile strain induce the expression of ephrin-B2 via a FAK-, Ras-, ERK1/2-, and SP1-dependent pathway. Osteoblasts of the alveolar bone stimulated with ephrin-B2 increased their osteoblastogenic gene expression and showed functional signs of osteoblastic differentiation. In a physiological setting, ephrin-B2-EphB4 signaling between PDLF and osteoblasts of the alveolar bone might contribute to osteogenesis at tension sites during orthodontic tooth movement.  相似文献   

6.
The periodontal ligament (PDL) is an essential fibrous tissue for tooth retention in the alveolar bone socket. PDL tissue further functions to cushion occlusal force, maintain alveolar bone height, allow orthodontic tooth movement, and connect tooth roots with bone. Severe periodontitis, deep caries, and trauma cause irreversible damage to this tissue, eventually leading to tooth loss through the destruction of tooth retention. Many patients suffer from these diseases worldwide, and its prevalence increases with age. To address this issue, regenerative medicine for damaged PDL tissue as well as the surrounding tissues has been extensively investigated regarding the potential and effectiveness of stem cells, scaffolds, and cytokines as well as their combined applications. In particular, PDL stem cells (PDLSCs) have been well studied. In this review, I discuss comprehensive studies on PDLSCs performed in vivo and contemporary reports focusing on the acquisition of large numbers of PDLSCs for therapeutic applications because of the very small number of PDLSCs available in vivo.  相似文献   

7.
Abstract

Orthodontic tooth movement is mainly regulated by the biomechanical responses of loaded periodontal ligament (PDL). We investigated the effective intervals of orthodontic force in pure maxillary canine intrusion and extrusion referring to PDL hydrostatic stress and logarithmic strain. Finite element analysis (FEA) models, including a maxillary canine, PDL and alveolar bone, were constructed based on computed tomography (CT) images of a patient. The material properties of alveolar bone were non-uniformly defined using HU values of CT images; PDL was assumed to be a hyperelastic–viscoelastic material. The compressive stress and tensile stress ranging from 0.47 to 12.8?kPa and 18.8 to 51.2?kPa, respectively, were identified as effective for tooth movement; a strain 0.24% was identified as the lower limit of effective strain. The stress/strain distributions within PDL were acquired in canine intrusion and extrusion using FEA; root apex was the main force-bearing area in intrusion–extrusion movements and was more prone to resorption. Owing to the distinction of PDL biomechanical responses to compression and tension, the effective interval of orthodontic force was substantially lower in canine intrusion (80–90?g) than in canine extrusion (230–260?g). A larger magnitude of force remained applicable in canine extrusion. This study revised and complemented orthodontic biomechanical behaviours of tooth movement with intrusive–extrusive force and could further help optimize orthodontic treatment.  相似文献   

8.
Orthodontic tooth movement is achieved by the process of repeated alveolar bone resorption on the pressure side and new bone formation on the tension side. In order to optimize orthodontic treatment, it is important to identify and study the biological processes involved. This article presents a mechanobiological model using partial differential equations to describe cell densities, growth factor concentrations, and matrix densities occurring during orthodontic tooth movement. We hypothesize that such a model can predict tooth movement based on the mechanobiological activity of cells in the PDL. The developed model consists of nine coupled non-linear partial differential equations, and two distinct signaling pathways were modeled: the RANKL–RANK–OPG pathway regulating the communication between osteoblasts and osteoclasts and the TGF-β pathway mediating the differentiation of mesenchymal stem cells into osteoblasts. The predicted concentrations and densities were qualitatively validated by comparing the results to experiments reported in the literature. In the current form, the model supports our hypothesis, as it is capable of conceptually simulating important features of the biological interactions in the alveolar bone—PDL complex during orthodontic tooth movement.  相似文献   

9.
A novel 90-kDa protein named periostin, which is preferentially expressed in the periosteum and the periodontal ligament (PDL), may play a role in bone metabolism and remodeling. However, the precise role of periostin in the PDL remains unclear. Therefore, we examined the expression of periostin mRNA during experimental tooth movement. Experimental tooth movement was achieved in 7-week-old male Sprague-Dawley rats. In control specimens without tooth movement, the expression of periostin mRNA was uniformly observed in the PDL surrounding the mesial and distal roots of the upper molars and was weak in the PDL of the root furcation area. The periostin mRNA-expressing cells were mainly fibroblastic cells in the PDL and osteoblastic cells on the alveolar bone surfaces. The divergent expression of periostin mRNA in the PDL began to be observed at 3 h and continued up to 96 h after tooth movement. The maximum changes, which showed stronger staining in the pressure sites than in the tension sites, were observed at 24 h. The expression of periostin mRNA in the PDL 168 h after tooth movement exhibited a similar distribution to that of the control specimens. These results suggest that periostin is one of the local contributing factors in bone and periodontal tissue remodeling following mechanical stress during experimental tooth movement.  相似文献   

10.
In orthodontics, the 3D translational and rotational movement of a tooth is determined by the force–moment system applied and the location of the tooth’s centre of resistance (CR). Because of the practical constraints of in-vivo experiments, the finite element (FE) method is commonly used to determine the CR. The objective of this study was to investigate the geometric model details required for accurate CR determination, and the effect of material non-linearity of the periodontal ligament (PDL). A FE model of a human lower canine derived from a high-resolution µCT scan (voxel size: 50 µm) was investigated by applying four different modelling approaches to the PDL. These comprised linear and non-linear material models, each with uniform and realistic PDL thickness. The CR locations determined for the four model configurations were in the range 37.2–45.3% (alveolar margin: 0%; root apex: 100%). We observed that a non-linear material model introduces load-dependent results that are dominated by the PDL regions under tension. Load variation within the range used in clinical orthodontic practice resulted in CR variations below 0.3%. Furthermore, the individualized realistic PDL geometry shifted the CR towards the alveolar margin by 2.3% and 2.8% on average for the linear and non-linear material models, respectively. We concluded that for conventional clinical therapy and the generation of representative reference data, the least sophisticated modelling approach with linear material behaviour and uniform PDL thickness appears sufficiently accurate. Research applications that require more precise treatment monitoring and planning may, however, benefit from the more accurate results obtained from the non-linear constitutive law and individualized realistic PDL geometry.  相似文献   

11.
Due to its significance in tooth movement, the stress/deformation field of periodontium and the alveolar bone remodeling process, periodontal ligament (PDL) cannot be excluded from the studies investigating dental biomechanics regarding its excessive deformability. Therefore, many analytical and numerical researches are carried out to simulate its response and to create a constitutive model via experiments intending to discover the material properties of PDL. The aim of this study is to formulate a user specified contact model that can be used in conjunction with finite element (FE) software and reflects PDL’s influence on neighboring structures based on the currently available information, without requiring an actual volumetric finite element mesh of ligament. The results show good agreement with available experimental tooth mobility data. Smooth stress fields are obtained on the tooth root and alveolar bone, which is a significant aspect in bone-remodeling studies. The advantage of simulating PDL as a contact model at the interface of tooth root and the alveolar process instead of a solid-meshed FE model with poor geometric morphology and/or very dense mesh is expected to save pre/post-processing workforce, to increase the accuracy and to contribute to the smoothness of interface stress distributions.  相似文献   

12.
The V–W exponential hyperelastic model is adopted to describe the instantaneous elastic response of the periodontal ligament (PDL). The general theoretical framework of constitutive modeling is described based on nonlinear continuum mechanics, and the elasticity tensor used to develop UMAT subroutine is formulated. Nanoindentation experiment is performed to characterize mechanical properties of an adult pig PDL specimen. Then the experiment is simulated by using the finite element (FE) analysis. Meanwhile, the optimized material parameters are identified by the inverse FE method. The good agreement between the simulated results and experimental data demonstrates that the V–W model is capable of describing the mechanical behavior of the PDL. Therefore, the model and its implementation into FE code are validated. By using the model, we simulate the tooth movement under orthodontic loading to predict the mechanical responses of the PDL. The results show that local concentrations of stress and strain in the PDL are found.  相似文献   

13.
One strategy evolved by teeth to avoid irreversible damage is to move and deform under the loads incurred during mastication. A key component in this regard is the periodontal ligament (PDL). The role of the bone underlying the PDL is less well defined. We study the interplay between the PDL and the underlying alveolar bone when loaded in the minipig. Using an Instron loading device we confirmed that the force-displacement curves of the molars and premolars of relatively fresh minipig intact mandibles are similar to those obtained for humans and other animals. We then used this information to obtain 3D images of the teeth before and after loading the tooth in a microCT such that the load applied is in the third linear part of the force displacement curve. We observed that at many locations there is a complimentary topography of the cementum and alveolar bone surface, strongly suggesting an active interplay between the tooth and the bone during mastication. We also observed that the loaded tooth does not come into direct contact with the underlying bone surface. A highly compressed layer of PDL is present between the tooth and the bone. The structure of the bone in the upper furcation region has a unique appearance with little obvious microstructure, abundant pores that have a large size range and at many locations the bone at the PDL interface has a needle-like shape. We conclude that there is a close interaction between the tooth, the PDL and the underlying alveolar bone during mastication. The highly compressed PDL layer that separates the tooth from the bone may fulfill a key shock absorbing function.  相似文献   

14.
Periodontal ligament (PDL) cells convert the orthodontic forces into biological responses by secreting signaling molecules to induce modeling of alveolar bone and tooth movement. Beta-catenin pathway is activated in response to mechanical loading in PDL cells. The upstream signaling pathways activated by mechanical loading resulting in the activation of β-catenin pathway through Wnt-independent mechanism remains to be characterized. We hypothesized that mechanical loading induces activation of β-catenin signaling by mechanisms that dependent on focal adhesion kinase (FAK) and nitric oxide (NO). We found that mechanical or pharmacological activation of β-catenin signaling in PDL cells upregulated the expression of β-catenin target genes. Pre-treatment of PDL cells with FAK inhibitor-14 prior to mechanical loading abolished the mechanical loading-induced phosphorylation of Akt and dephosphorylation of β-catenin. PDL cells pre-treated with NO donor or NO inhibitor and subjected to mechanical loading. Western blot analysis showed that the mechanical loading or pre-treatment with NO donor increased the levels of dephosphorylated β-catenin, pAkt, and pGSK-3β. Pre-treatment with NO inhibitor blocked the mechanical loading-induced phosphorylation of Akt and dephosphorylation of β-catenin. These data indicate that mechanical loading-induced β-catenin stabilization in PDL cells involves phosphorylation of Akt by two parallel pathways requiring FAK and NO.  相似文献   

15.
The periodontal ligament (PDL), a soft tissue connecting the tooth and the bone, is essential for tooth movement, bone remodeling and force dissipation. A collagenous network that connects the tooth root surface to the alveolar jaw bone is one of the major components of the PDL. The organization of the collagenous component and how it changes under load is still poorly understood. Here using a state-of-the-art custom-made loading apparatus and a humidified environment inside a microCT, we visualize the PDL collagenous network of a fresh rat molar in 3D at 1 μm voxel size without any fixation or contrasting agents. We demonstrate that the PDL collagen network is organized in sheets. The spaces between sheets vary thus creating dense and sparse networks. Upon vertical loading, the sheets in both networks are stretched into well aligned arrays. The sparse network is located mainly in areas which undergo compressive loading as the tooth moves towards the bone, whereas the dense network functions mostly in tension as the tooth moves further from the bone. This new visualization method can be used to study other non-mineralized or partially mineralized tissues, and in particular those that are subjected to mechanical loads. The method will also be valuable for characterizing diseased tissues, as well as better understanding the phenotypic expressions of genetic mutants.  相似文献   

16.
Orthodontic tooth movement is achieved by the remodeling of alveolar bone in response to mechanical loading, and is supposed to be mediated by several host mediators, such as chemokines. In this study we investigated the pattern of mRNAs expression encoding for osteoblast and osteoclast related chemokines, and further correlated them with the profile of bone remodeling markers in palatal and buccal sides of tooth under orthodontic force, where tensile (T) and compressive (C) forces, respectively, predominate. Real-time PCR was performed with periodontal ligament mRNA from samples of T and C sides of human teeth submitted to rapid maxillary expansion, while periodontal ligament of normal teeth were used as controls. Results showed that both T and C sides exhibited significant higher expression of all targets when compared to controls. Comparing C and T sides, C side exhibited higher expression of MCP-1/CCL2, MIP-1α/CCL3 and RANKL, while T side presented higher expression of OCN. The expression of RANTES/CCL5 and SDF-1/CXCL12 was similar in C and T sides. Our data demonstrate a differential expression of chemokines in compressed and stretched PDL during orthodontic tooth movement, suggesting that chemokines pattern may contribute to the differential bone remodeling in response to orthodontic force through the establishment of distinct microenvironments in compression and tension sides.  相似文献   

17.
18.
Orthodontic treatments not only displace irregular teeth but also induce responses in surrounding bone tissues. Bone remodelling is regarded as the regulatory mechanism triggered by mechanical loading. This study was aimed at investigating the effect of orthodontic loading on both tooth movement and neighbouring bone density distribution. A set of computational algorithms incorporating both external and internal remodelling mechanisms was implemented into a patient-specific 3D finite element (FE) model to investigate and analyse orthodontic treatment under four typical modes of orthodontic loading. The consequence of orthodontic treatment was reproduced numerically by using this FE-based technique. The results indicated that the diverse modes of orthodontic loading would result in different magnitudes of tooth movement and particular morphology of bone density distribution. It is illuminated that the newly developed algorithms may replicate the clinical situation more closely compared with the previous proposed method.  相似文献   

19.
The purpose of this study was to investigate immunolocalization of collagenolytic enzymes including cathepsin K, matrix metalloproteinase (MMP) 1 and 2 in the compressed periodontal ligament (PDL) during orthodontic tooth movement using a periostin deficient (Pn-/-) mouse model. Twelve-week-old male mice homozygous for the disrupted periostin gene and their wild type (WT) littermates were used in these experiments. The tooth movement was performed according to Waldo’s method, in which elastic bands of 0.5 mm thickness were inserted between the first and second upper molars of mice under anesthesia. At 1 and 3 days after orthodontic force application, mice were fixed with transcardial perfusion of 4 % paraformaldehyde in 0.1 M phosphate buffer (pH 7.4), and the first molars and peripheral alveolar bones were extracted for histochemical analyses. Compared with WT mice, immunolocalization of cathepsin K, MMP1 and MMP2 was significantly decreased at 1 and 3 days after orthodontic tooth movement in the compressed PDL of Pn-/- mice, although MMP1-reactivity and MMP2-reactivity decreased at different amounts. Very little cathepsin K-immunoreactivity was observed in the assessed regions of Pn-/- mice, both before and after orthodontic force application. Furthermore, Pn-/- mice showed a much wider residual PDL than WT mice. Taken together, we concluded that periostin plays an essential role in the function of collagenolytic enzymes like cathepsin K, MMP1 and MMP2 in the compressed PDL after orthodontic force application.  相似文献   

20.
<正>畸牙移动是在机械力的作用下,通过对牙周膜产生牵张或压缩的力来引起牙周组织在生理限度内的组织改建,从而达到牙齿移动、矫治畸形的目的。由于没有明显的年龄限制,正畸矫治在全球范围已变得越来越普遍。因此,相关的研究也日益增多。牙齿移动的生物学基础是正畸力作用于牙周组织激活一系列信号转导通路,进而引起牙周膜的修复改建。为指导临床、加速正畸矫治疗程提供新的思路,本文综述了近年来有关正畸牙移动相关信号通路的研究进展。发现最新的研究集中在MAPK信号通路,Wnt/β-catenin信号通路,PI3K/AKt/m TOR信号通路,BMP-2信号通路,Caspase-3介导的凋亡通路较多。但是正畸牙移动引起的牙周组织改建是一个多种生物力学信号转导通路相互调节相互作用的过程,对于上述信号通路之间的相互关系还有待于我们更进一步的探索。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号