首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toxin-antitoxin (TA) systems play important roles in bacterial physiology, such as multidrug tolerance, biofilm formation, and arrest of cellular growth under stress conditions. To develop novel antimicrobial agents against tuberculosis, we focused on VapBC systems, which encompass more than half of TA systems in Mycobacterium tuberculosis. Here, we report that theMycobacterium tuberculosis VapC30 toxin regulates cellular growth through both magnesium and manganese ion-dependent ribonuclease activity and is inhibited by the cognate VapB30 antitoxin. We also determined the 2.7-Å resolution crystal structure of the M. tuberculosis VapBC30 complex, which revealed a novel process of inactivation of the VapC30 toxin via swapped blocking by the VapB30 antitoxin. Our study on M. tuberculosis VapBC30 leads us to design two kinds of VapB30 and VapC30-based novel peptides which successfully disrupt the toxin-antitoxin complex and thus activate the ribonuclease activity of the VapC30 toxin. Our discovery herein possibly paves the way to treat tuberculosis for next generation.  相似文献   

2.
Bacteria have evolved mechanisms that allow them to survive in the face of a variety of stresses including nutrient deprivation, antibiotic challenge and engulfment by predator cells. A switch to dormancy represents one strategy that reduces energy utilization and can render cells resistant to compounds that kill growing bacteria. These persister cells pose a problem during treatment of infections with antibiotics, and dormancy mechanisms may contribute to latent infections. Many bacteria encode toxin-antitoxin (TA) gene pairs that play an important role in dormancy and the formation of persisters. VapBC gene pairs comprise the largest of the Type II TA systems in bacteria and they produce a VapC ribonuclease toxin whose activity is inhibited by the VapB antitoxin. Despite the importance of VapBC TA pairs in dormancy and persister formation, little information exists on the structural features of VapC proteins required for their toxic function in vivo. Studies reported here identified 17 single mutations that disrupt the function of VapC1 from non-typeable H. influenzae in vivo. 3-D modeling suggests that side chains affected by many of these mutations sit near the active site of the toxin protein. Phylogenetic comparisons and secondary mutagenesis indicate that VapC1 toxicity requires an alternative active site motif found in many proteobacteria. Expression of the antitoxin VapB1 counteracts the activity of VapC1 mutants partially defective for toxicity, indicating that the antitoxin binds these mutant proteins in vivo. These findings identify critical chemical features required for the biological function of VapC toxins and PIN-domain proteins.  相似文献   

3.
4.
5.
The VapBC toxin-antitoxin (TA) family is the largest of nine identified TA families. The toxin, VapC, is a metal-dependent ribonuclease that is inhibited by its cognate antitoxin, VapB. Although the VapBCs are the largest TA family, little is known about their biological roles. Here we describe a new general method for the overexpression and purification of toxic VapC proteins and subsequent determination of their RNase sequence-specificity. Functional VapC was isolated by expression of the nontoxic VapBC complex, followed by removal of the labile antitoxin (VapB) using limited trypsin digestion. We have then developed a sensitive and robust method for determining VapC ribonuclease sequence-specificity. This technique employs the use of Pentaprobes as substrates for VapC. These are RNA sequences encoding every combination of five bases. We combine the RNase reaction with MALDI-TOF MS to detect and analyze the cleavage products and thus determine the RNA cut sites. Successful MALDI-TOF MS analysis of RNA fragments is acutely dependent on sample preparation methods. The sequence-specificity of four VapC proteins from two different organisms (VapC(PAE0151) and VapC(PAE2754) from Pyrobaculum aerophilum, and VapC(Rv0065) and VapC(Rv0617) from Mycobacterium tuberculosis) was successfully determined using the described strategy. This rapid and sensitive method can be applied to determine the sequence-specificity of VapC ribonucleases along with other RNA interferases (such as MazF) from a range of organisms.  相似文献   

6.
7.

Toxin–antitoxin (TA) systems of Mycobacterium tuberculosis (Mtb) is a prerequisite for the bacterium to survive in extreme conditions. Antimicrobial peptides inhibiting the formation of these complexes provide a novel strategy for TB drug discovery process. Absence of TA genes in human, makes these systems as an attractive target for drug development. In this study using Peptiderive server, we have derived a number of potential inhibitory peptides for nine TA complexes—VapBC3, VapBC5, VapBC11, VapBC15, VapBC26, VapBC30, RelBE2, RelJK, MazEF4 of Mtb. We have studied about the common interacting toxin residues with the antitoxin and with the derived peptide. Further, using Cluspro server, we compared the binding efficacy of the in silico derived peptides with the published potential peptides for the toxins VapC26, VapC30 and MazF. Thus, these in silico derived peptides would serve as basis for developing peptide based therapeutics for TA complexes of Mtb.

  相似文献   

8.
9.
10.
11.
12.
Toxin–antitoxin (TA) complexes play an important role in stress responses and programmed cell death in bacteria. The RelB-RelE toxin antitoxin system is well studied in Escherichia coli. In this study, we used combined in silico and in vitro approaches to study a novel Xn-RelT toxin from Xenorhabdus nematophila bearing its own antitoxin Xn-RelAT—a RelB homolog of E. coli. The structure for this toxin–antitoxin pair is yet unknown. We generated homology-based models of X. nematophila RelT toxin and antitoxin. The deduced models were further characterized for protein–nucleic acid, protein–protein interactions and gene ontology. A detrimental effect of recombinant Xn-RelT on host E. coli was determined through endogenous toxicity assay. When expressed from a isopropyl β-d-1-thiogalactopyranoside-regulated LacZ promoter, Xn-RelT toxin showed a toxic effect on E. coli cells. These observations imply that the conditional cooperativity governing the Xn-RelT TA operon in X. nematophila plays an important role in stress management and programmed cell death.  相似文献   

13.
Members of the genus Shigella carry a large plasmid, pINV, which is essential for virulence. In Shigella flexneri, pINV harbours three toxin‐antitoxin (TA) systems, CcdAB, GmvAT and VapBC that promote vertical transmission of the plasmid. Type II TA systems, such as those on pINV, consist of a toxic protein and protein antitoxin. Selective degradation of the antitoxin by proteases leads to the unopposed action of the toxin once genes encoding a TA system have been lost, such as following failure to inherit a plasmid harbouring a TA system. Here, we investigate the role of proteases in the function of the pINV TA systems and demonstrate that Lon, but not ClpP, is required for their activity during plasmid stability. This provides the first evidence that acetyltransferase family TA systems, such as GmvAT, can be regulated by Lon. Interestingly, S. flexneri pINV also harbours two putative partitioning systems, ParAB and StbAB. We show that both systems are functional for plasmid maintenance although their activity is masked by other systems on pINV. Using a model vector based on the pINV replicon, we observe temperature‐dependent differences between the two partitioning systems that contribute to our understanding of the maintenance of virulence in Shigella species.  相似文献   

14.
The Mycobacterium tuberculosis genome harbors a striking number (>40) of toxin-antitoxin systems. Among them are at least seven MazF orthologs, designated MazF-mt1 through MazF-mt7, four of which have been demonstrated to function as mRNA interferases that selectively target mRNA for cleavage at distinct consensus sequences. As is characteristic of all toxin-antitoxin systems, each of the mazF-mt toxin genes is organized in an operon downstream of putative antitoxin genes. However, only one of the seven putative upstream antitoxins (designated MazE-mt1 through MazE-mt7) has significant sequence similarity to Escherichia coli MazE, the cognate antitoxin for E. coli MazF. Interestingly, the M. tuberculosis genome contains two independent operons encoding E. coli MazE orthologs, but they are not paired with mazF-mt-like genes. Instead, the genes encoding these two MazE orthologs are each paired with proteins containing a PIN domain, indicating that they may be members of the very large VapBC toxin-antitoxin family. We tested a spectrum of pair-wise combinations of cognate and noncognate Mtb toxin-antitoxins using in vivo toxicity and rescue experiments along with in vitro interaction experiments. Surprisingly, we uncovered several examples of noncognate toxin-antitoxin association, even among different families (e.g. MazF toxins and VapB antitoxins). These results challenge the “one toxin for one antitoxin” dogma and suggest that M. tuberculosis may enlist a sophisticated toxin-antitoxin network to alter its physiology in response to environmental cues.  相似文献   

15.
Toxin–antitoxin (TA) systems are proposed to play crucial roles in bacterial growth under stress conditions such as phage infection. The type III TA systems consist of a protein toxin whose activity is inhibited by a noncoding RNA antitoxin. The toxin is an endoribonuclease, while the antitoxin consists of multiple repeats of RNA. The toxin assembles with the individual antitoxin repeats into a cyclic complex in which the antitoxin forms a pseudoknot structure. While structure and functions of some type III TA systems are characterized, the complex assembly process is not well understood. Using bioinformatics analysis, we have identified type III TA systems belonging to the ToxIN family across different Escherichia coli strains and found them to be clustered into at least five distinct clusters. Furthermore, we report a 2.097 Å resolution crystal structure of the first E. coli ToxIN complex that revealed the overall assembly of the protein-RNA complex. Isothermal titration calorimetry experiments showed that toxin forms a high-affinity complex with antitoxin RNA resulting from two independent (5′ and 3′ sides of RNA) RNA binding sites on the protein. These results further our understanding of the assembly of type III TA complexes in bacteria.  相似文献   

16.
17.
Type II toxin‐antitoxin (TA) modules, which are important cellular regulators in prokaryotes, usually encode two proteins, a toxin that inhibits cell growth and a nontoxic and labile inhibitor (antitoxin) that binds to and neutralizes the toxin. Here, we demonstrate that the res‐xre locus from Photorhabdus luminescens and other bacterial species function as bona fide TA modules in Escherichia coli. The 2.2 Å crystal structure of the intact Pseudomonas putida RES‐Xre TA complex reveals an unusual 2:4 stoichiometry in which a central RES toxin dimer binds two Xre antitoxin dimers. The antitoxin dimers each expose two helix‐turn‐helix DNA‐binding domains of the Cro repressor type, suggesting the TA complex is capable of binding the upstream promoter sequence on DNA. The toxin core domain shows structural similarity to ADP‐ribosylating enzymes such as diphtheria toxin but has an atypical NAD+‐binding pocket suggesting an alternative function. We show that activation of the toxin in vivo causes a depletion of intracellular NAD+ levels eventually leading to inhibition of cell growth in E. coli and inhibition of global macromolecular biosynthesis. Both structure and activity are unprecedented among bacterial TA systems, suggesting the functional scope of bacterial TA toxins is much wider than previously appreciated.  相似文献   

18.
19.
The origin and the evolution of toxin–antitoxin (TA) systems remain to be uncovered. TA systems are abundant in bacterial chromosomes and are thought to be part of the flexible genome that originates from horizontal gene transfer. To gain insight into TA system evolution, we analyzed the distribution of the chromosomally encoded ccdO157 system in 395 natural isolates of Escherichia coli. It was discovered in the E. coli O157:H7 strain in which it constitutes a genomic islet between two core genes (folA and apaH). Our study revealed that the folA–apaH intergenic region is plastic and subject to insertion of foreign DNA. It could be composed (i) of a repetitive extragenic palindromic (REP) sequence, (ii) of the ccdO157 system or subtle variants of it, (iii) of a large DNA piece that contained a ccdAO157 antitoxin remnant in association with ORFs of unknown function, or (iv) of a variant of it containing an insertion sequence in the ccdAO157 remnant. Sequence analysis and functional tests of the ccdO157 variants revealed that 69% of the variants were composed of an active toxin and antitoxin, 29% were composed of an active antitoxin and an inactive toxin, and in 2% of the cases both ORFs were inactive. Molecular evolution analysis showed that ccdBO157 is under neutral evolution, suggesting that this system is devoid of any biological role in the E. coli species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号