首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vagus nerve stimulation (VNS) has been successfully performed in animals for the treatment of different experimental models of inflammation. The anti-inflammatory effect of VNS involves the release of acetylcholine by vagus nerve efferent fibers inhibiting pro-inflammatory cytokines (e.g. TNF-α) produced by macrophages. Moreover, it has recently been demonstrated that splenic lymphocytic populations may also be involved. As anesthetics can modulate the inflammatory response, the current study evaluated the effect of two different anesthetics, isoflurane and pentobarbital, on splenic cellular and molecular parameters in a VNS rat model. Spleens were collected for the characterization of lymphocytes sub-populations by flow cytometry and quantification of cytokines secretion after in vitro activation. Different results were observed depending on the anesthetic used. The use of isoflurane displayed a non-specific effect of VNS characterized by a decrease of most splenic lymphocytes sub-populations studied, and also led to a significantly lower TNF-α secretion by splenocytes. However, the use of pentobarbital brought to light immune modifications in non-stimulated animals that were not observed with isoflurane, and also revealed a specific effect of VNS, notably at the level of T lymphocytes’ activation. These differences between the two anesthetics could be related to the anti-inflammatory properties of isoflurane. In conclusion, pentobarbital is more adapted than isoflurane in the study of the anti-inflammatory effect of VNS on an anesthetized rat model in that it allows more accurate monitoring of subtle immunomodulatory processes.  相似文献   

3.
There are currently no available options to promote nerve regeneration through chronically denervated distal nerve stumps. Here we used a rat model of delayed nerve repair asking of prior insertion of side-to-side cross-bridges between a donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) nerve stump ameliorates poor nerve regeneration. First, numbers of retrogradely-labelled TIB neurons that grew axons into the nerve stump within three months, increased with the size of the perineurial windows opened in the TIB and CP nerves. Equal numbers of donor TIB axons regenerated into CP stumps either side of the cross-bridges, not being affected by target neurotrophic effects, or by removing the perineurium to insert 5-9 cross-bridges. Second, CP nerve stumps were coapted three months after inserting 0-9 cross-bridges and the number of 1) CP neurons that regenerated their axons within three months or 2) CP motor nerves that reinnervated the extensor digitorum longus (EDL) muscle within five months was determined by counting and motor unit number estimation (MUNE), respectively. We found that three but not more cross-bridges promoted the regeneration of axons and reinnervation of EDL muscle by all the CP motoneurons as compared to only 33% regenerating their axons when no cross-bridges were inserted. The same 3-fold increase in sensory nerve regeneration was found. In conclusion, side-to-side cross-bridges ameliorate poor regeneration after delayed nerve repair possibly by sustaining the growth-permissive state of denervated nerve stumps. Such autografts may be used in human repair surgery to improve outcomes after unavoidable delays.  相似文献   

4.
Because of the close proximity of the phrenic nerve to the pericardium, phrenic nerve damage caused by epicardial ablation can easily occur. We report two cases of epicardial VT ablation where pericardial injection of saline, combined with the use of a steerable sheath, successfully prevents the phrenic nerve from being damaged.  相似文献   

5.
Nerve injury may cause neuropathic pain, which involves hyperexcitability of spinal dorsal horn neurons. The mechanisms of action of spinal cord stimulation (SCS), an established treatment for intractable neuropathic pain, are only partially understood. We used Autofluorescent Flavoprotein Imaging (AFI) to study changes in spinal dorsal horn metabolic activity. In the Seltzer model of nerve-injury induced pain, hypersensitivity was confirmed using the von Frey and hotplate test. 14 Days after nerve-injury, rats were anesthetized, a bipolar electrode was placed around the affected sciatic nerve and the spinal cord was exposed by a laminectomy at T13. AFI recordings were obtained in neuropathic rats and a control group of naïve rats following 10 seconds of electrical stimulation of the sciatic nerve at C-fiber strength, or following non-noxious palpation. Neuropathic rats were then treated with 30 minutes of SCS or sham stimulation and AFI recordings were obtained for up to 60 minutes after cessation of SCS/sham. Although AFI responses to noxious electrical stimulation were similar in neuropathic and naïve rats, only neuropathic rats demonstrated an AFI-response to palpation. Secondly, an immediate, short-lasting, but strong reduction in AFI intensity and area of excitation occurred following SCS, but not following sham stimulation. Our data confirm that AFI can be used to directly visualize changes in spinal metabolic activity following nerve injury and they imply that SCS acts through rapid modulation of nociceptive processing at the spinal level.  相似文献   

6.
The increasing incidence of implant-associated infections induced by Staphylococcus aureus (SA) in combination with growing resistance to conventional antibiotics requires novel therapeutic strategies. In the current study we present the first application of the biofilm-penetrating antimicrobial peptide lysostaphin in the context of bone infections. In a standardized implant-associated bone infection model in mice beta-irradiated lysostaphin-coated titanium plates were compared with uncoated plates. Coating of the implant was established with a poly(D,L)-lactide matrix (PDLLA) comprising lysostaphin formulated in a stabilizing and protecting solution (SPS). All mice were osteotomized and infected with a defined count of SA. Fractures were fixed with lysostaphin-coated locking plates. Plates uncoated or PDLLA-coated served as controls. All mice underwent debridement and lavage on Days 7, 14, 28 to determine the bacterial load and local immune reaction. Fracture healing was quantified by conventional radiography. On Day 7 bacterial growth in the lavages of mice with lysostaphin-coated plates showed a significantly lower count to the control groups. Moreover, in the lysostaphin-coated plate groups complete fracture healing were observed on Day 28. The fracture consolidation was accompanied by a diminished local immune reaction. However, control groups developed an osteitis with lysis or destruction of the bone and an evident local immune response. The presented approach of terminally sterilized lysostaphin-coated implants appears to be a promising therapeutic approach for low grade infection or as prophylactic strategy in high risk fracture care e.g. after severe open fractures.  相似文献   

7.
It was previously assumed, on the basis of changes in the ultraviolet absorption spectrum and of increase in ionizable sulfhydryl groups, that during excitation the proteins of excitable structures undergo some structural rearrangements, and these rearrangements may be similar to those designated by the term transconformation. In the present experiments, it was observed that electrical stimulation of peripheral nerves from rat, guinea pig, frog, and crab causes a decrease in their fluorescence. The peaks of the emission and activation spectra correspond to those attributed to proteins. Denaturing agents, such as urea, were also found to decrease the fluorescence of nerve extracts. It is, therefore, probable that the decrease in fluorescence, associated with the excited state, is due to a change in the configuration of the nerve proteins. The fluorescent method is applicable not only to tissue extracts but allows the observation of surviving nerve fibers before, during, and after stimulation. It showed that fluorescence of the fibers decreases invariably during stimulation and tends to return to the control level during restoration. The reduction in fluorescence is quantitatively related to the number of stimuli received by the nerve.  相似文献   

8.
Low intensity repetitive Transcranial Magnetic Stimulation (LI-rTMS), a non-invasive form of brain stimulation, has been shown to induce structural and functional brain plasticity, including short distance axonal sprouting. However, the potential for LI-rTMS to promote axonal regeneration following neurotrauma has not been investigated. This study examined the effect of LI-rTMS on retinal ganglion cell (RGC) survival, axon regeneration and levels of BDNF in an optic nerve crush neurotrauma model. Adult C57Bl/6J mice received a unilateral intraorbital optic nerve crush. Mice received 10 minutes of sham (handling control without stimulation) (n=6) or LI-rTMS (n = 8) daily stimulation for 14 days to the operated eye. Immunohistochemistry was used to assess RGC survival (β-3 Tubulin) and axon regeneration across the injury (GAP43). Additionally, BDNF expression was quantified in a separate cohort by ELISA in the retina and optic nerve of injured (optic nerve crush) (sham n = 5, LI-rTMS n = 5) and non-injured mice (sham n = 5, LI-rTMS n = 5) that received daily stimulation as above for 7 days. Following 14 days of LI-rTMS there was no significant difference in mean RGC survival between sham and treated animals (p>0.05). Also, neither sham nor LI-rTMS animals showed GAP43 positive labelling in the optic nerve, indicating that regeneration did not occur. At 1 week, there was no significant difference in BDNF levels in the retina or optic nerves between sham and LI-rTMS in injured or non-injured mice (p>0.05). Although LI-rTMS has been shown to induce structural and molecular plasticity in the visual system and cerebellum, our results suggest LI-rTMS does not induce neuroprotection or regeneration following a complete optic nerve crush. These results help define the therapeutic capacity and limitations of LI-rTMS in the treatment of neurotrauma.  相似文献   

9.
Dorsal root ganglia from 8-day chick embryos can be stimulated to extend nerve processes in culture by inclusion of cytosine arabinoside (Ara-C) in the culture medium, in the absence of exogenous nerve growth factor (NGF). The degree of stimulation is dose dependent, and is not mimicked by either free cytosine or free arabinose. Since Ara-C is known to inhibit DNA synthesis, other inhibitors of DNA synthesis were tested. Hydroxyurea, fluorodeoxyuridine, and 3 mM thymidine all stimulated nerve outgrowth in the absence of exogenous NGF. In addition, bromodeoxyuridine also stimulated nerve outgrowth. In all cases, stimulation was observable after 24 h of culture, with maximal outgrowth achieved by 72 h of culture. The experimental response was never as large as the response to NGF, but was up to seven times greater than control outgrowth. In all cultures, nerve processes were characterized by growth cones at their distal tips, colchicine-sensitivity, and a high tubulin content visualized by immunofluorescence with anti-tubulin antibody.  相似文献   

10.
小型猪胰腺移植急性排斥反应模型的实验研究   总被引:2,自引:0,他引:2  
目的 建立小型猪胰腺移植动物模型 ,探索早期诊断急性排斥反应的方法。方法  4 0只猪随机配对行胰腺移植 2 0次 ,将供胰所带的血管与受体髂血管吻合 ,所带小段十二指肠与空肠吻合 ,术中监测平均动脉压、中心静脉压及血气。术后测定受体的血淀粉酶、血糖 ,监测外周血免疫指标 ,彩色多普勒检测供胰血流及超声引导下活检、组织病理检查。结果 移植手术成功率为 90 % ,受体平均动脉压在吻合血管开放后有明显下降 ,与血流开放前差异有显著性 (P <0 0 5 ) ,输血有助于手术成功 ,受体术后平均存活 (12 6± 2 3)d。外周血免疫学监测指标早于供胰的组织病理改变 ,两者的改变均早于急性排斥反应的临床表现。结论 小型猪适用于胰腺移植模型的建立 ,加强术中循环功能的管理、及时输血有利于受体成活 ;超声引导下穿刺活检供胰的组织病理学检查与监测外周血免疫指标均适于早期诊断急性排斥反应  相似文献   

11.
12.
Abstract: Experiments were performed to determine whether ppsttranslational addition of amino acids to axonal proteins occurs in axons of the rat sciatic nerve. Two ligatures were placed 1 cm apart on sciatic nerves. Six days later, segments proximal to each ligature were removed, homogenized, centrifuged at 150,000 · g , and analyzed for the ability to incorporate 3H-amino acids into proteins. No incorporation of amino acids into proteins was found in the high-speed supernatant, but when the supernatant was passed through a Sephacryl S-200 chromatography column (removing molecules less than 20 kD), [3H]arginine, lysine, leucine and aspartic acid were incorporated into proteins in both proximal and distal nerve segments. Small but consistently greater amounts of radioactivity were incorporated into proteins in proximal segments compared with distal segments, indicating that the components necessary for the reaction are transported axonally. This reaction represents the posttranslational incorporation of a variety of amino acids into proteins of rat sciatic nerve axons. Other experiments showed that the incorporation of amino acids into proteins is by covalent bonding, that the amino acid donor is likely to be tRNA, and that the reaction is inhibited in vivo by a substance whose molecular mass is less than 20 kD. This inhibition is not affected by incubation with physiological concentrations of unlabeled amino acids, by boiling, or by treatment with Proteinase K. When the axonally transported component of the reaction was determined in regenerating nerves, the amount of incorporation of amino acids into protein was 15–150 times that in intact nerves. The results indicate that the components of this reaction are transported axonally in rat sciatic nerves and that the reaction is increased dramatically in growing axons during nerve regeneration.  相似文献   

13.
BackgroundPhrenic nerve stimulation (PNS) and high pacing thresholds (HPT) hinder biventricular stimulation in patients (pts) undergoing cardiac resynchronization therapy (CRT). A new quadripolar left ventricular (LV) lead (Quartet 1458Q, St. Jude Medical) with increased number of pacing configuration, might overcome this problem.MethodsAll consecutive pts in whom a standard bipolar lead intraoperatively resulted in PNS and/or HPT (≥ 4.00 V/1 mV), received, during the same implant, a quadripolar LV lead. Aim of the study was to evaluate acute and short term outcome.Results26 pts [24 (92%) male, mean age 74 ± 6 years)] with PNS (22 pts; 85%) and HPT (4 pts; 15%) were included. Permanent right ventricular pacing was the reason for broad QRS complex in 4 (15%) pts, whereas all other pts had a left bundle branch block. Severely symptomatic (NYHA Class ≥ 3) heart failure with reduced ejection fraction (EF 31 ± 9%) was mostly caused by ischemic heart disease (14 pts; 54%). Idiopathic dilated cardiomyopathy and valvular heart disease were diagnosed in 6 (23%) pts each. In most (24/26, 92%) pts the use of the Quartet lead led to successful biventricular pacing due to a significant reduction in intraoperative pacing threshold (5.2 V/1.0 ms vs. 1.4 V/0.8 ms; p = 0.03), which was maintained (1.2 V/0.7 ms) at follow-up. PNS never represented reason for failed LV pacing, neither acutely nor during follow-up.ConclusionsExcessively HPT and/or PNS are frequently encountered when conventional bipolar leads are used for CRT. A new quadripolar LV lead increases the rate of successful biventricular stimulation. Lower pacing threshold and freedom from PNS are maintained at follow-up.  相似文献   

14.
Abstract: Cyclic GMP accumulation in pinealocytes is elevated>100-fold by norepinephrine (NE) through a mechanism involving conjoint activation of α1- and β1-adrenergic receptors. Little or no stimulation occurs if either α1- or β1-adrenergic receptors alone are activated. It appears that α1-adrenergic effects are mediated by Ca2+ acting in part through nitric oxide (NO), and β1-adrenergic effects are mediated by Gs. In the study presented here we investigated effects of adrenergic agonists or related postreceptor-active agents on stimulation of pineal cyclic GMP accumulation by the NO generator sodium nitroprusside (NP). The cyclic GMP response to NP (1 m M ) was potentiated by NE and isoproterenol (ISO) but not by phenylephrine, indicating that activation of β1-adrenergic receptors potentiates the effects of NP. Similarly, vasoactive intestinal peptide (VIP), cholera toxin (CTX), and forskolin, all of which are known to mimic the effects of ISO in this system, also potentiated the effects of NP. In contrast, neither dibutyryl cyclic AMP nor agents that elevate intracellular Ca2+ levels caused marked potentiation of the effects of NP on pineal cyclic GMP. Depletion (90%) of Gsα by 21-h treatment with CTX reduced β-adrenergic potentiation of NP. These findings indicate that β-adrenergic agonists and VIP potentiate the effects of NP through a mechanism involving Gs. The molecular basis of this action may be an increase in guanylyl cyclase responsiveness to NO.  相似文献   

15.
16.
Cannabinoids have been reported to be involved in affecting various biological functions through binding with cannabinoid receptors type 1 (CB1) and 2 (CB2). The present study was designed to investigate whether swallowing, an essential component of feeding behavior, is modulated after the administration of cannabinoid. The swallowing reflex evoked by the repetitive electrical stimulation of the superior laryngeal nerve in rats was recorded before and after the administration of the cannabinoid receptor agonist, WIN 55-212-2 (WIN), with or without CB1 or CB2 antagonist. The onset latency of the first swallow and the time intervals between swallows were analyzed. The onset latency and the intervals between swallows were shorter after the intravenous administration of WIN, and the strength of effect of WIN was dose-dependent. Although the intravenous administration of CB1 antagonist prior to intravenous administration of WIN blocked the effect of WIN, the administration of CB2 antagonist did not block the effect of WIN. The microinjection of the CB1 receptor antagonist directly into the nucleus tractus solitarius (NTS) prior to intravenous administration of WIN also blocked the effect of WIN. Immunofluorescence histochemistry was conducted to assess the co-localization of CB1 receptor immunoreactivity to glutamic acid decarboxylase 67 (GAD67) or glutamate in the NTS. CB1 receptor was co-localized more with GAD67 than glutamate in the NTS. These findings suggest that cannabinoids facilitate the swallowing reflex via CB1 receptors. Cannabinoids may attenuate the tonic inhibitory effect of GABA (gamma-aminobuteric acid) neurons in the central pattern generator for swallowing.  相似文献   

17.
Chronic monitoring of heart rate, blood pressure, and flow in conscious free-roaming large animals can offer considerable opportunity to understand the progression of cardiovascular diseases and can test new diagnostics and therapeutics. The objective of this study was to demonstrate the feasibility of chronic, simultaneous measurement of several hemodynamic parameters (left ventricular pressure, systemic pressure, blood flow velocity, and heart rate) using a totally implantable multichannel telemetry system in swine heart failure models. Two solid-state blood pressure sensors were inserted in the left ventricle and the descending aorta for pressure measurements. Two Doppler probes were placed around the left anterior descending (LAD) and the brachiocephalic arteries for blood flow velocity measurements. Electrocardiographic (ECG) electrodes were attached to the surface of the left ventricle to monitor heart rate. The telemeter body was implanted in the right side of the abdomen under the skin for approximately 4 to 6 weeks. The animals were subjected to various heart failure models, including volume overload (A-V fistula, n = 3), pressure overload (aortic banding, n = 2) and dilated cardiomyopathy (pacing-induced tachycardia, n = 3). Longitudinal changes in hemodynamics were monitored during the progression of the disease. In the pacing-induced tachycardia animals, the systemic blood pressure progressively decreased within the first 2 weeks and returned to baseline levels thereafter. In the aortic banding animals, the pressure progressively increased during the development of the disease. The pressure in the A-V fistula animals only showed a small increase during the first week and remained stable thereafter. The results demonstrated the ability of this telemetry system of long-term, simultaneous monitoring of blood flow, pressure and heart rate in heart failure models, which may offer significant utility for understanding cardiovascular disease progression and treatment.  相似文献   

18.
Melatonin plays a protective role in type 2 diabetes (T2D) through regulation of glucose metabolism. Whether transcutaneous vagus nerve stimulation (taVNS) is antidiabetic and whether a modulated melatonin production is involved in the antidiabetic mechanism of taVNS is unknown. In this study, once daily 30min noninvasive taVNS was administered in Zucker diabetic fatty (ZDF, fa/fa) and Zucker lean (ZL, +/fa) littermates under anesthesia for 5 consecutive weeks. The acute and chronic influences of taVNS on the secretion of melatonin were studied as well as the effects of taVNS on blood glucose metabolism. We found that naïve ZDF rats develop hyperglycemia naturally with age. Each taVNS session would trigger a tidal secretion of melatonin both during and after the taVNS procedure and induce an acute two-phase glycemic change, a steep increase followed by a gradual decrease. Once daily taVNS sessions eventually reduced the glucose concentration to a normal level in seven days and effectively maintained the normal glycemic and plasma glycosylated hemoglobin (HbAlc) levels when applied for five consecutive weeks. These beneficial effects of taVNS also exist in pinealectomized rats, which otherwise would show overt and continuous hyperglycemia, hyperinsulinemia, and high HbAlc levels. We concluded that multiple taVNS sessions are antidiabetic in T2D through triggering of tidal secretion of melatonin. This finding may have potential importance in developing new approaches to the treatment of T2D, which is highly prevalent, incurable with any current approaches, and very costly to the world.  相似文献   

19.
目的:探讨重复经颅磁刺激在脑卒中康复的应用及效果.方法:选择2010年9月至2012年9月在我院神经内科收治的58例脑卒中患者分为两组,即A组和B组,A组患者给予常规药物治疗和康复训练,B组患者在上述治疗的基础上加用低频重复经颅磁刺激治疗,比较两组患者美国国立卫生院神经功能缺损评分情况、日常生活活动(ADL)评分和不良反应发生情况.结果:治疗后,随着时间的推移,两组患者美国国立卫生院神经功能缺损评分得分逐渐下降(P<0.05).B组患者2周后和6周后两个时点美国国立卫生院神经功能缺损评分得分明显低于A组患者的,差异有显著性(P<0.05),而随着时间的推移,两组患者日常生活活动(ADL)评分得分逐渐上升(P<0.05).B组患者2周后和6周后两个时点日常生活活动(ADL)评分得分明显高于A组患者的,差异有显著性(P<0.05).两组患者在不良反应发生方面差异无显著性(P>0.05).结论:低频重复经颅磁刺激治疗脑卒中单侧肢体功能障碍患者临床疗效确切,安全可靠,不良反应少.  相似文献   

20.
We describe a novel prokaryotic expression system for the production of cationic antimicrobial peptides (AMPs). The method relies on a translationally coupled two-cistron system, in which the termination codon for the first cistron (which encodes the anionic polypeptide mIFc2, a derivative of human gamma interferon) overlaps with the initiation codon for the second cistron (which encodes a cationic AMP) in the sequence of 5′-TAATG-3′. By forming an insoluble complex with the AMP upon translation, the mIFc2 protein efficiently neutralized the toxicity of the coexpressed cationic AMP and minimized the sensitivity of AMP to proteolytic degradation in a host. The AMPs were retrieved from the insoluble inclusion bodies without any chemical or enzymatic cleavage step by simple cation-exchange chromatography. With our system, ∼100 mg of various AMPs (buforin IIb, parasin I, and pexiganan) were obtained from 1 liter of Escherichia coli culture. Our expression system may represent a universal cost-effective solution for the mass production of intact AMPs in their natural forms.Of worldwide concern is the increasing development of bacterial and fungal strains that are resistant to currently available antimicrobial drugs. This worsening situation has spurred Herculean efforts to develop new classes of antibiotics with novel targets and modes of action (19). Cationic antimicrobial peptides (AMPs) play a key role in the primary host defense of living organisms against infections by pathogenic microorganisms. Because their mechanisms of antimicrobial action differ from those of conventional antibiotics, AMPs have received increasing attention as a potential new class of therapeutic substances (22, 30).In contrast to bacterial growth in the presence of commonly prescribed antibiotics, the growth of bacteria in the presence of AMPs does not easily give rise to the selection of pathogenic drug-resistant mutant strains. This is because AMPs rapidly kill microbes by a variety of mechanisms, including (i) fatal depolarization of the normally energized bacterial membrane, (ii) creation of physical holes that cause cellular contents to leak out, (iii) degradation of the cell wall, (iv) disturbance of membrane functions, and/or (v) damaging of critical intracellular targets after internalization of the AMPs (7, 11, 19, 22, 30). Moreover, AMPs activate the host''s innate (nonspecific) immune response without acting as a foreign antigen target of the host''s adaptive immune system (23, 30). Despite the fact that AMPs show great potential as a novel class of antibiotics, the lack of a cost-effective means of mass production has limited the development of these peptides as human therapeutics (8).Numerous biological expression systems have been introduced for the cost-effective production of AMPs in Escherichia coli (9). To decrease their natural destructive behavior toward microorganisms and sensitivity to proteolytic degradation, AMPs are often produced as fusion proteins in heterologous hosts (12, 16). These studies show that certain fusion partner proteins neutralize the toxicity of AMPs and improve their stability against proteolysis in an expression host. In another series of experiments, recombinant AMP-containing fusion proteins are expressed in tandem repeats in an attempt to increase AMP production. As expected, multimeric expression further enhanced the yield of AMP fusion proteins (9, 12, 16). However, all of these methods require that the AMP be separated from its fusion partner, and recombinant fusion proteins, including multimeric ones, are usually cleaved with enzymes such as furin or chemicals such as CNBr (12, 16). This additional process results in inefficient cleavage and thus poor recovery of AMPs from fusion partners. Moreover, unwanted amino acid residue(s) are often included in the AMPs after the cleavage reaction and can decrease antimicrobial activity and cause problematic side effects (18). Therefore, a new approach for producing an intact and biologically active AMP without the inclusion of an enzymatic or chemical cleavage step is needed.We have developed here a novel translationally coupled, two-cistron expression system for the production of recombinant AMPs in their natural forms. Using this system, we were able to produce, from 1 liter of E. coli culture, ∼100 mg of a potent AMP, buforin IIb (BIIb) (15), without a cleavage step, and other cationic AMPs (parasin I [24] and pexiganan [6]) were also successfully produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号