首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
GNRA tetraloops make a U-turn.   总被引:8,自引:3,他引:5       下载免费PDF全文
The U-turn (uridine turn) is an RNA structural motif that contains a change in backbone direction stabilized by specific interactions across the bend. It was first identified in the anticodon loop and the T-loop of yeast tRNA(Phe) (Quigley & Rich, 1976, Science 194:796-806) and has recently also been found in the crystal structure of the hammerhead ribozyme (Pley HW, Flaherty KM, McKay DB, 1994a, Nature 372:68-74). These U-turn motifs follow a UNR consensus sequence (where N is any nucleotide and R is G or A). Here we report that the frequently occurring GNRA tetraloops also contain a U-turn motif, and we discuss the role of U-turns as abundant tertiary structural motifs in RNA.  相似文献   

3.
Extensive 1H and 15H NMR investigations of the nucleotide moieties capable of hydrogen bonding to ribonuclease A were carried out in order to gain more detailed information on the specificity of nucleotide-enzyme interaction. The 1H investigations focussed on those protons presumed to be involved in hydrogen bonding between the various nucleotides and the enzyme. In particular these were the imino protons of the uridine nucleotides and the amino protons of the cytidine nucleotides. The technique of 15N-1H double quantum filtering was applied for observation of the resonances of the latter in the nucleotide-enzyme complex. The downfield shift observed for the imino proton resonance of the uridine nucleotides was indicative of hydrogen bond formation to the enzyme. 15N NMR spectra of the free nucleotides and the nucleotide-enzyme complexes were also acquired to examine the possibility of hydrogen bond formation at the N3 site of both pyrimidine bases and the amino group of the cytidine nucleotides. The downfield shift observed for the 15N3 resonance of the uridine nucleotides and the upfield shift observed for the corresponding resonance of the cytidine nucleotides was evidence that the N3 moiety acts as hydrogen donor or hydrogen acceptor in the nucleotide-enzyme complex. The effect of complex formation on the 15N1 resonance of the respective bases was also studied. Both 1H and 15N NMR results indicated subtle differences between the complexes of the 2' and 3' nucleotides. The extent of hydrogen bonding as well as the arrangement of the nucleotide base at the active site of the enzyme varies in dependence on the position of the phosphate group. It is established that hydrogen bonding, though not the main binding force between the nucleotides and the enzyme, is certainly a major factor of RNase A specificity for pyrimidine nucleotides.  相似文献   

4.
Analysis of atomic resolution structures of the rRNAs within the context of the 50S and the 30S ribosomal subunits have revealed the presence of nine examples of a recurrent structural motif, first observed in the TpsiC loop of tRNAs. The key component of this T-loop motif is a UA trans Watson-Crick/Hoogsteen base pair stacked on a Watson-Crick pair on one side. This motif is stabilized by several noncanonical hydrogen bonds, facilitating RNA-RNA as well as RNA-protein interactions. In particular, the sugar edge of the purine on the 3' side of the pivotal uridine in the UA pair frequently forms a noncanonical base pair with a distant residue. The bulged-out bases, usually seen as part of the motif, also use their Watson-Crick edges to interact with nearby residues via base-specific hydrogen bonds. In certain occurrences, a backbone reversal is stabilized by specific hydrogen bonds as is observed in the U-turn motifs and the adenosine residue of the key UA pair interacts with a third base via its Watson-Crick edge, essentially generating a base triple.  相似文献   

5.
While hydroxyl radical cleavage is widely used to map RNA tertiary structure, lack of mechanistic understanding of strand break formation limits the degree of structural insight that can be obtained from this experiment. Here, we determine how individual ribose hydrogens of sarcin/ricin loop RNA participate in strand cleavage. We find that substituting deuterium for hydrogen at a ribose 5′-carbon produces a kinetic isotope effect on cleavage; the major cleavage product is an RNA strand terminated by a 5′-aldehyde. We conclude that hydroxyl radical abstracts a 5′-hydrogen atom, leading to RNA strand cleavage. We used this approach to obtain structural information for a GUA base triple, a common tertiary structural feature of RNA. Cleavage at U exhibits a large 5′ deuterium kinetic isotope effect, a potential signature of a base triple. Others had noted a ribose-phosphate hydrogen bond involving the G 2′-OH and the U phosphate of the GUA triple, and suggested that this hydrogen bond contributes to backbone rigidity. Substituting deoxyguanosine for G, to eliminate this hydrogen bond, results in a substantial decrease in cleavage at G and U of the triple. We conclude that this hydrogen bond is a linchpin of backbone structure around the triple.  相似文献   

6.
The genome of the human hepatitis delta virus (HDV) harbors a self-cleaving catalytic RNA motif, the genomic HDV ribozyme, whose crystal structure shows the dangling nucleotides 5′ of the cleavage site projecting away from the catalytic core. This 5′-sequence contains a clinically conserved U − 1 that we find to be essential for fast cleavage, as the order of activity follows U − 1 > C − 1 > A − 1 > G − 1, with a >25-fold activity loss from U − 1 to G − 1. Terbium(III) footprinting detects conformations for the P1.1 stem, the cleavage site wobble pair and the A-minor motif of the catalytic trefoil turn that depend on the identity of the N − 1 base. The most tightly folded catalytic core, resembling that of the reaction product, is found in the U − 1 wild-type precursor. Molecular dynamics simulations demonstrate that a U − 1 forms the most robust kink around the scissile phosphate, exposing it to the catalytic C75 in a previously unnoticed U-turn motif found also, for example, in the hammerhead ribozyme and tRNAs. Strikingly, we find that the common structural U-turn motif serves distinct functions in the HDV and hammerhead ribozymes.  相似文献   

7.
Thermodynamic data are reported revealing that pseudouridine (Ψ) can stabilize RNA duplexes when replacing U and forming Ψ-A, Ψ-G, Ψ-U and Ψ-C pairs. Stabilization is dependent on type of base pair, position of Ψ within the RNA duplex, and type and orientation of adjacent Watson–Crick pairs. NMR spectra demonstrate that for internal Ψ-A, Ψ-G and Ψ-U pairs, the N3 imino proton is hydrogen bonded to the opposite strand nucleotide and the N1 imino proton may also be hydrogen bonded. CD spectra show that general A-helix structure is preserved, but there is some shifting of peaks and changing of intensities. Ψ has two hydrogen donors (N1 and N3 imino protons) and two hydrogen bond acceptors because the glycosidic bond is C-C rather than C-N as in uridine. This greater structural potential may allow Ψ to behave as a kind of structurally driven universal base because it can enhance stability relative to U when paired with A, G, U or C inside a double helix. These structural and thermodynamic properties may contribute to the biological functions of Ψ.  相似文献   

8.
Clostridium thermocellum polynucleotide kinase (CthPnk), the 5′-end-healing module of a bacterial RNA repair system, catalyzes reversible phosphoryl transfer from a nucleoside triphosphate (NTP) donor to a 5′-OH polynucleotide acceptor, either DNA or RNA. Here we report the 1.5-Å crystal structure of CthPnk-D38N in a Michaelis complex with GTP-Mg2+ and a 5′-OH RNA oligonucleotide. The RNA-binding mode of CthPnk is different from that of the metazoan RNA kinase Clp1. CthPnk makes hydrogen bonds to the ribose 2′-hydroxyls of the 5′ terminal nucleoside, via Gln51, and the penultimate nucleoside, via Gln83. The 5′-terminal nucleobase is sandwiched by Gln51 and Val129. Mutating Gln51 or Val129 to alanine reduced kinase specific activity 3-fold. Ser37 and Thr80 donate functionally redundant hydrogen bonds to the terminal phosphodiester; a S37A-T80A double mutation reduced kinase activity 50-fold. Crystallization of catalytically active CthPnk with GTP-Mg2+ and a 5′-OH DNA yielded a mixed substrate-product complex with GTP-Mg2+ and 5′-PO4 DNA, wherein the product 5′ phosphate group is displaced by the NTP γ phosphate and the local architecture of the acceptor site is perturbed.  相似文献   

9.
Intrinsic energetic and solvation factors contributing to the unusual structural and biochemical properties of N3′-phosphoramidate DNA analogs have been re-examined using a combination of quantum mechanical and molecular dynamics methods. Evaluation of the impact of the N3′-H substitution was performed via comparison of N3′-phosphoramidate DNA starting from both A- and B-form structures, B-form DNA and A-form RNA. The N3′-H group is shown to be flexible, undergoing reversible inversion transitions associated with motion of the hydrogen atom attached to the N3′ atom. The inversion process is correlated with both sugar pucker characteristics as well as other local backbone torsional dynamics, yielding increased dihedral flexibility over DNA. Solvation of N3′-phosphoramidate DNA is shown to be similar to RNA, consistent with thermodynamic data on the two species. A previously unobserved intrinsic conformational perturbation caused by the N5′-phosphoramidate substitution is identified and suggested to be linked to the differences in the properties of N3′- and N5′-phosphoramidate oligonucleotide analogs.  相似文献   

10.
The k-turn is a widespread structural motif that introduces a tight kink into the helical axis of double-stranded RNA. The adenine bases of consecutive G•A pairs are directed toward the minor groove of the opposing helix, hydrogen bonding in a typical A-minor interaction. We show here that the available structures of k-turns divide into two classes, depending on whether N3 or N1 of the adenine at the 2b position accepts a hydrogen bond from the O2′ at the −1n position. There is a coordinated structural change involving a number of hydrogen bonds between the two classes. We show here that Kt-7 can adopt either the N3 or N1 structures depending on environment. While it has the N1 structure in the ribosome, on engineering it into the SAM-I riboswitch, it changes to the N3 structure, resulting in a significant alteration in the trajectory of the helical arms.  相似文献   

11.
Cytidine deaminase (CDA) is a zinc-dependent enzyme that catalyzes the deamination of cytidine or deoxycytidine to form uridine or deoxyuridine. Here we present the crystal structure of mouse CDA (MmCDA), complexed with either tetrahydrouridine (THU), 3-deazauridine (DAU), or cytidine. In the MmCDA-DAU complex, it clearly demonstrates that cytidine is distinguished from uridine by its 4-NH(2) group that acts as a hydrogen bond donor. In the MmCDA-cytidine complex, cytidine, unexpectedly, binds as the substrate instead of the deaminated product in three of the four subunits, and in the remaining subunit it binds as the product uridine. Furthermore, the charge-neutralizing Arg68 of MmCDA has also exhibited two alternate conformations, I and II. In conformation I, the only conformation observed in the other structurally known homotetrameric CDAs, Arg68 hydrogen bonds Cys65 and Cys102 to modulate part of their negative charges. However, in conformation II the side chain of Arg68 rotates about 130 degrees around the Cgamma-Cdelta bond and abolishes these hydrogen bonds. The lack of hydrogen bonding may indirectly weaken the zinc-product interaction by increased electron donation from cysteine to the zinc ion, suggesting a novel product-expelling mechanism. On the basis of known structures, structural analysis further reveals two subclasses of homotetrameric CDAs that can be identified according to the position of the charge-neutralizing arginine residue. Implications for CDA-RNA interaction have also been considered.  相似文献   

12.
The capping box, a recurrent hydrogen bonded motif at the N-termini of alpha-helices, caps 2 of the initial 4 backbone amide hydrogen donors of the helix (Harper ET, Rose GD, 1993, Biochemistry 32:7605-7609). In detail, the side chain of the first helical residue forms a hydrogen bond with the backbone of the fourth helical residue and, reciprocally, the side chain of the fourth residue forms a hydrogen bond with the backbone of the first residue. We now enlarge the earlier definition of this motif to include an accompanying hydrophobic interaction between residues that bracket the capping box sequence on either side. The expanded box motif--in which 2 hydrogen bonds and a hydrophobic interaction are localized within 6 consecutive residues--resembles a glycine-based capping motif found at helix C-termini (Aurora R, Srinivasan R, Rose GD, 1994, Science 264:1126-1130).  相似文献   

13.
o-Nitrobenzyl group was introduced to the 2′-hydroxyl function of uridine via 2′,3′-O-(dibutylstannylene) uridine. The benzylated uridine was protected at the 5′-hydroxyl group with monomethoxytrityl chloride and condensed with 2′,3′-O-dibenzoyluridine 5′-phosphate or N,N′,2′,3′-O-tetrabenzoyladenosine 5′-phosphate using dicyclohexylcarbodiimide (DCC). o-Nitrobenzyl ether linkage of the dinucleotides was removed by UV irradiation with wavelength longer than 320 nm. Deprotected UpU and UpA thus obtained were characterized by RNase A digestion.  相似文献   

14.
The conformational study on Ac‐pSer‐Pro‐NHMe and Ac‐pThr‐Pro‐NHMe peptides has been carried out using hybrid density functional methods with the implicit solvation reaction field theory at the B3LYP/ 6‐311++G(d,p)//B3LYP/6‐31+G(d) level of theory in the gas phase and in solution (chloroform and water). For both pSer‐Pro and pThr‐Pro peptides in the gas phase and in chloroform, the most preferred conformation has the α‐helical structure for the pSer/pThr residue, the down‐puckered polyproline I structure for the Pro residue, and the cis prolyl peptide bond between the two residues, in which two hydrogen bonds between the phosphate oxygens with the backbone N? H groups seem to play a role. However, the trans conformations that have a single hydrogen bond of the phosphate oxygen with either of two backbone N? H groups become most preferred for both peptides in water. This is because the hydration free energy of the anionic oxygen of the phosphate group is expected to dramatically decrease for the cis conformation upon formation of the hydrogen bond with the backbone N? H groups. These calculated results are consistent with the observations by NMR and IR experiments, suggesting the existence of hydrogen bonds between the charged phosphoryl group and the backbone amide protons in solution. The calculated cis populations of 14.7 and 14.2% and rotational barriers of 19.87 and 20.57 kcal/mol to the cis‐to‐trans isomerization for pSer‐Pro and pThr‐Pro peptides in water, respectively, are consistent with the observed values for pSer‐Pro and pThr‐Pro containing peptides from NMR experiments. However, the hydrogen bond between the prolyl nitrogen and the following amide N? H group, which was suggested to be capable of catalyzing the prolyl isomerization, does not play a role in stabilizing the preferred transition state for the pSer/pThr‐Pro peptides in water. Instead, the amide hydrogen of the NHMe group is involved in a bifurcated hydrogen bond with the anionic oxygen and phosphoester oxygen of the phosphate group. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 330–339, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

15.
Based on our recent studies of RNA cleavage by oligonucleotide–terpyridine·Cu(II) complex 5′- and/or 3′-conjugates, we designed 2′-O-methyloligonucleotides with two terpyridine-attached nucleosides at contiguous internal sites. To connect the 2′-terpyridine-modified uridine residue at the 5′-side to the 5′-O-terpyridyl nucleoside residue at the 3′-side, a dimethoxytrityl derivative of 5-hydroxypropyl-5′-O-terpyridyl-2′-deoxyuridine-3′-phosphoramidite was newly synthesized. Using this unit, we constructed two terpyridine conjugates, with either an unusual phophodiester bond or the bond extended by a propanediol(s)-containing linker. Cleavage reactions of the target RNA oligomer, under the conditions of conjugate excess in the presence of Cu(II), indicated that the conjugates precisely cleaved the RNA at the predetermined site and that one propanediol-containing linker was the most appropriate for inducing high cleavage activity. Furthermore, a comparison of the activity of the propanediol agent with those of the control conjugates with one complex confirmed that the two complexes are required for efficient RNA cleavage. The reaction of the novel cleaver revealed a bell-shaped pH–rate profile with a maximum at pH ~7.5, which is a result of the cooperative action of the complexes. In addition, we demonstrated that the agent catalytically cleaves an excess of the RNA, with the kinetic parameter kcat/Km = 0.118 nM–1 h–1.  相似文献   

16.
We reported previously on NMR studies of (Y+)n.(R+)n(Y-)n DNA triple helices containing one oligopurine strand (R)n and two oligopyrimidine strands (Y)n stabilized by T.AT and C+.GC base triples [de los Santos, C., Rosen, M., & Patel, D. J. (1989) Biochemistry 28, 7282-7289]. Recently, it has been established that guanosine can recognize a thymidine.adenosine base pair to form a G.TA triple in an otherwise (Y+)n.(R+)n(Y-)n triple-helix motif. [Griffin, L. C., & Dervan, P. B. (1989) Science 245, 967-971]. The present study extends the NMR research to the characterization of structural features of a 31-mer deoxyoligonucleotide that folds intramolecularly into a 7-mer (Y+)n.(R+)n(Y-)n triplex with the strands linked through two T5 loops and that contains a central G.TA triple flanked by T.AT triples. The G.TA triplex exhibits an unusually well resolved and narrow imino and amino exchangeable proton and nonexchangeable proton spectrum in H2O solution, pH 4.85, at 5 degrees C. We have assigned the imino protons of thymidine and amino protons of adenosine involved in Watson-Crick and Hoogsteen pairing in T.AT triples, as well as the guanosine imino and cytidine amino protons involved in Watson-Crick pairing and the protonated cytidine imino and amino protons involved in Hoogsteen pairing in C+.GC triples in the NOESY spectrum of the G.TA triplex. The NMR data are consistent with the proposed pairing alignment for the G.TA triple where the guanosine in an anti orientation pairs through a single hydrogen bond from one of its 2-amino protons to the 4-carbonyl group of thymidine in the Watson-Crick TA pair.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Here, we show that Escherichia coli Ribonuclease III cleaves specifically the RNA genome of hepatitis C virus (HCV) within the first 570 nt with similar efficiency within two sequences which are ~400 bases apart in the linear HCV map. Demonstrations include determination of the specificity of the cleavage sites at positions C27 and U33 in the first (5′) motif and G439 in the second (3′) motif, complete competition inhibition of 5′ and 3′ HCV RNA cleavages by added double-stranded RNA in a 1:6 to 1:8 weight ratio, respectively, 50% reverse competition inhibition of the RNase III T7 R1.1 mRNA substrate cleavage by HCV RNA at 1:1 molar ratio, and determination of the 5′ phosphate and 3′ hydroxyl end groups of the newly generated termini after cleavage. By comparing the activity and specificity of the commercial RNase III enzyme, used in this study, with the natural E.coli RNase III enzyme, on the natural bacteriophage T7 R1.1 mRNA substrate, we demonstrated that the HCV cuts fall into the category of specific, secondary RNase III cleavages. This reaction identifies regions of unusual RNA structure, and we further showed that blocking or deletion of one of the two RNase III-sensitive sequence motifs impeded cleavage at the other, providing direct evidence that both sequence motifs, besides being far apart in the linear RNA sequence, occur in a single RNA structural motif, which encloses the HCV internal ribosome entry site in a large RNA loop.  相似文献   

18.
The ribose 2′-hydroxyl is the key chemical difference between RNA and DNA and primary source of their divergent structural and functional characteristics. Macromolecular X-ray diffraction experiments typically do not reveal the positions of hydrogen atoms. Thus, standard crystallography cannot determine 2′-OH orientation (H2′-C2′-O2′-HO2′ torsion angle) and its potential roles in sculpting the RNA backbone and the expansive fold space. Here, we report the first neutron crystal structure of an RNA, the Escherichia coli rRNA Sarcin-Ricin Loop (SRL). 2′-OD orientations were established for all 27 residues and revealed O-D bonds pointing toward backbone (O3′, 13 observations), nucleobase (11) or sugar (3). Most riboses in the SRL stem region show a 2′-OD backbone-orientation. GAGA-tetraloop riboses display a 2′-OD base-orientation. An atypical C2′-endo sugar pucker is strictly correlated with a 2′-OD sugar-orientation. Neutrons reveal the strong preference of the 2′-OH to donate in H-bonds and that 2′-OH orientation affects both backbone geometry and ribose pucker. We discuss 2′-OH and water molecule orientations in the SRL neutron structure and compare with results from a solution phase 10 μs MD simulation. We demonstrate that joint cryo-neutron/X-ray crystallography offers an all-in-one approach to determine the complete structural properties of RNA, i.e. geometry, conformation, protonation state and hydration structure.  相似文献   

19.
It has been reported that a 183 residue fragment, consisting of the two RNA-binding domains (RBD1- RBD2) of the Drosophila melanogster Sex-lethal (Sxl) protein, strongly binds an oligonucleotide of the target RNA sequence (5'-GUUUUUUUUC-3') that regulates alternative splicing, and forms four or five hydrogen bonds with the imino groups of the RNA. In the present study, we used site-directed mutagenesis to improve the solubility of the didomain fragment of Sxl, and confirmed that this mutant fragment forms hydrogen bonds with the target RNA in the same manner as that of the wild-type fragment. The mutant fragment was shown to bind the cognate RNA sequences GUUUUUUUUC and AUUUUUUUUC more tightly than UUUUUUUUC. By using a [3-15N]uridine phosphoramidite, we synthesized a series of15N-labeled target RNAs, in which one of the uridine residues was specifically replaced by [3-15N]uridine. By observing the imino1H-15N coupling of the labeled uridine residue, we assigned all four of the hydrogen-bonded imino protons to U1, U2, U5 and U6, respectively, of the target RNA. The imino protons of U2 and U6 exhibited nuclear Overhauser effects with aliphatic protons of the protein. All these results indicate that the A/G, U1, U2, U5 and U6 residues in the target sequence of (G/A)UUUUUUUU are specifically recognized by the two RNA-binding domains of the Sxl protein.  相似文献   

20.
RNA 3′-phosphate cyclase (RtcA) catalyzes the ATP-dependent cyclization of a 3′-phosphate to form a 2′,3′-cyclic phosphate at RNA termini. Cyclization proceeds through RtcA–AMP and RNA(3′)pp(5′)A covalent intermediates, which are analogous to intermediates formed during catalysis by the tRNA ligase RtcB. Here we present a crystal structure of Pyrococcus horikoshii RtcA in complex with a 3′-phosphate terminated RNA and adenosine in the AMP-binding pocket. Our data reveal that RtcA recognizes substrate RNA by ensuring that the terminal 3′-phosphate makes a large contribution to RNA binding. Furthermore, the RNA 3′-phosphate is poised for in-line attack on the P–N bond that links the phosphorous atom of AMP to Nε of His307. Thus, we provide the first insights into RNA 3′-phosphate termini recognition and the mechanism of 3′-phosphate activation by an Rtc enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号