共查询到20条相似文献,搜索用时 15 毫秒
1.
Fixed effects models have dominated the statistical analysis of genetic crosses between inbred strains. In spite of their popularity, the traditional models ignore polygenic background and must be tailored to each specific cross. We reexamine the role of random effect models in gene mapping with inbred strains. The biggest difficulty in implementing random effect models is the lack of a coherent way of calculating trait covariances between relatives. The standard model for outbred populations is based on premises of genetic equilibrium that simply do not apply to crosses between inbred strains since every animal in a strain is genetically identical and completely homozygous. We fill this theoretical gap by introducing novel combinatorial entities called strain coefficients. With an appropriate theory, it is possible to reformulate QTL mapping and QTL association analysis as an application of mixed models involving both fixed and random effects. After developing this theory, our first example compares the mixed effects model to a standard fixed effects model using simulated advanced intercross line (AIL) data. Our second example deals with hormone data. Here multivariate traits and parameter identifiability questions arise. Our final example involves random mating among eight strains and vividly demonstrates the versatility of our models. 相似文献
2.
利用水稻重组自交系群体定位谷粒外观性状的数量性状基因 总被引:38,自引:0,他引:38
用区间作图和混合线性模型的复合区间作图两种方法,对水稻(Oryza sativa L)珍汕97和明恢63组合的重组自交系群体的谷粒外观性状-粒长,粒宽和粒形进行了数量性状基因(QTL)定位,用区间作图法在LOD≥2.4水平上(近拟于a=0.005),1998年对粒长,粒宽和粒形分别检测到6,2放2个QTLs,1999年对以上3个性状分别检测到3,2和2个QTLs,其中7个QTLs在两年均检测到,位于第3染色体RG393-C1087区间的QTL效应大,同时影响粒长和粒形,两年贡献分别为57.5%,61.4%和26.7%,29.9%,位于第5染色体RG360-C734B区间的QTL效应大,同时影响粒宽和粒形,两年贡献率分别为44.2%,53.2%和32.1%和36.0%,用混合线性模型的复合区间作图法在P=0.005水平上,对粒长,粒宽和粒形分别检测到8,5和5个QTLs,共解释各自性状变异的58.81%,44.75%和57.47%,只检测到1个QTL与环境之间存在的显互作。 相似文献
3.
A linkage map consisting of 221 markers was constructed based on a recombinant inbred line (RIL) population from the cross between Zhenshan 97 and Minghui 63. Quantitative trait loci (QTL) mapping was carried out for grain appearance traits such as grain length, grain width and grain shape in rice in 1998 and 1999. Based on interval mapping method at the threshold LOD≥2.4, six, two and two QTLs were detected for grain length, grain width and grain shape, respectively, in 1998; In 1999, three, two and two QTLs were identified for the three traits, respectively. Of them, seven QTLs were simultaneously identified in both of the years. The QTL with large effects located in the interval RG393-C1087 on chromosome 3 not only controlled the grain length, but also influenced the grain shape. It explained 57.5%, 61.4% and 26.7%, 29.9% of phenotypic variation of the grain length and the grain shape in two years, respectively. The QTL with large effects located in the interval RG360-C734B on chromosome 5 affected the grain width and the grain shape. It explained 44.2%, 53.2% and 32.1%, 36.0% of phenotypic variation of the grain width and the shape in two years, respectively. Eight, five and five QTLs were identified for the grain length, width and shape, respectively, based on mixed linear-model composite interval mapping method at P =0.005. Their general contributions were 58.81%, 44.75%, and 57.47%. One QTL for the grain length was found to be significant interaction with environment. 相似文献
4.
Two-Locus Linkage Analysis Using Recombinant Inbred Strains and Bayes'' Theorem 总被引:8,自引:0,他引:8 下载免费PDF全文
P. E. Neumann 《Genetics》1990,126(1):277-284
Recombinant inbred (RI) strains are useful in linkage analysis and gene mapping. The currently available statistical tests of linkage using data derived from the study of RI strains, including a previous Bayesian analysis, have not been stringent enough guides for conclusions about linkage. In this paper, the probability of linkage was estimated using Bayes' theorem. Tables are presented that give the probability of linkage in sets of up to 30 RI strains and the critical values of i (the number of recombinants) in sets of up to 100 RI strains. Several means of increasing the power of RI strains in linkage analysis are discussed. 相似文献
5.
The Nxsm Recombinant Inbred Strains of Mice: Genetic Profile for 58 Loci Including the Mtv Proviral Loci 总被引:4,自引:0,他引:4 下载免费PDF全文
We report the construction of 17 recombinant inbred (RI) strains of mice derived from the progenitor strains NZB/BINRe and SM/J and the typing of this RI strain set, designated NXSM, for 58 loci distributed on 16 autosomes and the X chromosome. Two backcrosses involving NZB/BINJ and SM/J were constructed to confirm chromosomal assignments and determine gene orders suggested from NXSM RI strain data. From these results we recommend that chromosomal assignments and gene orders suggested from analyses of RI strain sets be confirmed using data obtained by other means. We also typed NZB/BINJ and SM/J for mammary tumor proviral (Mtv) loci. Both strains share three previously described Mtv loci: Mtv-7, Mtv-14 and Mtv-17. In addition, NZB/BINJ contains the previously described Mtv-3 and Mtv-9 loci and two new Mtv proviral loci: Mtv-27 located on chromosome (Chr) 1 and Mtv-28 located on the X chromosome. SM/J contains the previously described loci Mtv-6 and Mtv-8. Four LTR, mink cell focus-forming murine leukemia viral loci were identified and mapped: Ltrm-1 on Chr 12, Ltrm-2 on Chr 16, Ltrm-3 on Chr 5, and Ltrm-4 on Chr 13. The Tgn locus was positioned proximal to the Ly-6 locus on Chr 15. 相似文献
6.
水稻RIL群体苗期耐冷性QTL分析 总被引:7,自引:0,他引:7
水稻苗期冷害是影响早春季节和高纬度地区水稻成苗和秧苗生长的重要限制因素之一。为了鉴定控制水稻苗期耐冷性的QTL,研究采用了1个水稻“粳籼交”重组自交系(RIL)群体,结合1张高密度分子遗传图谱,对3叶期幼苗经过10℃冷处理3d、恢复培养2d和4d时的秧苗存活率进行复合区间作图。亲本Lemont和特青的苗期耐冷性具有极显著差异,Lemont的苗期耐冷性很强,而特青对低温敏感。在重组自交系群体中,苗期耐冷性表现为连续变异,在两个方向上均出现大量超亲分离。共检测到5个水稻苗期耐冷性QTL,分别位于水稻1、3、8和11号染色体上,单个QTL对性状的贡献率为7%~21%。其中,4个QTL的增效基因来源于亲本Lemont,另1个QTL的增效基因来源于亲本特青。2个主效QTL(qSCT-3和qSCT-8)分别位于3号染色体标记区间RM282-RM156和8号染色体标记区间RM230—RM264,对性状的贡献率达到或接近20%,被检测到的LOD值显著较高,其增效基因均来自于耐冷性亲本Lemont。研究结果进一步揭示了水稻苗期耐冷性QTL具有丰富的位点多样性,表明耐冷性普遍较强的粳稻是发掘苗期耐冷性优异基因的主要稻种资源。 相似文献
7.
Andrew Kirby Hyun Min Kang Claire M. Wade Chris Cotsapas Emrah Kostem Buhm Han Nick Furlotte Eun Yong Kang Manuel Rivas Molly A. Bogue Kelly A. Frazer Frank M. Johnson Erica J. Beilharz David R. Cox Eleazar Eskin Mark J. Daly 《Genetics》2010,185(3):1081-1095
The genetics of phenotypic variation in inbred mice has for nearly a century provided a primary weapon in the medical research arsenal. A catalog of the genetic variation among inbred mouse strains, however, is required to enable powerful positional cloning and association techniques. A recent whole-genome resequencing study of 15 inbred mouse strains captured a significant fraction of the genetic variation among a limited number of strains, yet the common use of hundreds of inbred strains in medical research motivates the need for a high-density variation map of a larger set of strains. Here we report a dense set of genotypes from 94 inbred mouse strains containing 10.77 million genotypes over 121,433 single nucleotide polymorphisms (SNPs), dispersed at 20-kb intervals on average across the genome, with an average concordance of 99.94% with previous SNP sets. Through pairwise comparisons of the strains, we identified an average of 4.70 distinct segments over 73 classical inbred strains in each region of the genome, suggesting limited genetic diversity between the strains. Combining these data with genotypes of 7570 gap-filling SNPs, we further imputed the untyped or missing genotypes of 94 strains over 8.27 million Perlegen SNPs. The imputation accuracy among classical inbred strains is estimated at 99.7% for the genotypes imputed with high confidence. We demonstrated the utility of these data in high-resolution linkage mapping through power simulations and statistical power analysis and provide guidelines for developing such studies. We also provide a resource of in silico association mapping between the complex traits deposited in the Mouse Phenome Database with our genotypes. We expect that these resources will facilitate effective designs of both human and mouse studies for dissecting the genetic basis of complex traits.PHENOTYPIC variation among inbred mouse strains exposed to a disease-causing agent (be it genetic, infectious, or environmental) provides potential insight into human disease processes that often cannot be practically achieved through direct human studies. Indeed, hundreds of phenotype measurements related to human diseases are available for dozens of inbred strains in common use over the past 50–100 years (Bogue et al. 2007; Grubb et al. 2009). As with the direct study of chronic disease in humans, key steps toward determining the genetic underpinnings of this phenotypic variation are to develop a catalog of the genetic variation among inbred mouse strains and to interpret the structure of variation patterns across the strains. Recent advances in high-throughput genotyping and DNA resequencing technologies are making it possible to rapidly uncover the genetic variation maps of many model organisms (Lindblad-Toh et al. 2005; Mackay and Anholt 2006; Borevitz et al. 2007; Frazer et al. 2007; International Hapmap Consortium 2007; Star Consortium 2008). A recent whole-genome resequencing study of 15 inbred mouse strains captured a significant fraction of the genetic variation among a limited number of strains, allowing researchers to infer patterns of genetic variation and to identify the ancestral origin of the genetic variation (Frazer et al. 2007; Yang et al. 2007). Yet the availability and common experimental employment of hundreds of inbred strains, including >190 stocks available from the Jackson Laboratory, motivates the need for a high-density variation map for a larger set of strains. We have assembled the Mouse HapMap, a resource consisting of a dense set of genotypes for a total of 138,980 unique biallelic single nucleotide polymorphisms (SNPs) in 94 inbred mouse strains at an average spacing of 20 kb on chromosomes 1–19 and X.This resource is ideal for performing high-resolution mapping studies under QTL peaks. We evaluate the feasibility and effectiveness of such studies by examining a typical study from the Mouse Phenome Database (MPD) (Bogue et al. 2007; Grubb et al. 2009) (http://www.jax.org/phenome) and measure the statistical power to detect genetic associations in regions of various sizes. We provide several resources to the mouse genetics community for supporting such studies and a webserver that can estimate the significance threshold, compute the statistical power of a proposed study, and perform in the fine mapping of measured phenotypes. In addition, we provide a database of associations for all phenotypes contained in the MPD. The web resources are available at http://mouse.cs.ucla.edu/. 相似文献
8.
Pervez Haider Zaidi Zerka Rashid Madhumal Thayil Vinayan Gustavo Dias Almeida Ramesh Kumar Phagna Raman Babu 《PloS one》2015,10(4)
Waterlogging is an important abiotic stress constraint that causes significant yield losses in maize grown throughout south and south-east Asia due to erratic rainfall patterns. The most economic option to offset the damage caused by waterlogging is to genetically incorporate tolerance in cultivars that are grown widely in the target agro-ecologies. We assessed the genetic variation in a population of recombinant inbred lines (RILs) derived from crossing a waterlogging tolerant line (CAWL-46-3-1) to an elite but sensitive line (CML311-2-1-3) and observed significant range of variation for grain yield (GY) under waterlogging stress along with a number of other secondary traits such as brace roots (BR), chlorophyll content (SPAD), % stem and root lodging (S&RL) among the RILs. Significant positive correlation of GY with BR and SPAD and negative correlation with S&RL indicated the potential use of these secondary traits in selection indices under waterlogged conditions. RILs were genotyped with 331 polymorphic single nucleotide polymorphism (SNP) markers using KASP (Kompetitive Allele Specific PCR) Platform. QTL mapping revealed five QTL on chromosomes 1, 3, 5, 7 and 10, which together explained approximately 30% of phenotypic variance for GY based on evaluation of RIL families under waterlogged conditions, with effects ranging from 520 to 640 kg/ha for individual genomic regions. 13 QTL were identified for various secondary traits associated with waterlogging tolerance, each individually explaining from 3 to 14% of phenotypic variance. Of the 22 candidate genes with known functional domains identified within the physical intervals delimited by the flanking markers of the QTL influencing GY and other secondary traits, six have previously been demonstrated to be associated with anaerobic responses in either maize or other model species. A pair of flanking SNP markers has been identified for each of the QTL and high throughput marker assays were developed to facilitate rapid introgression of waterlogging tolerance in tropical maize breeding programs. 相似文献
9.
Leina Zheng Wenwei Zhang Xingang Chen Jing Ma Weiwei Chen Zhigang Zhao Huqu Zhai Jianmin Wan 《Journal of Plant Biology》2011,54(5):321-328
Protein content (PC) and protein index (PI) play important roles in determining nutritional quality in rice (Oryza sativa L.). We used 71 lines derived from “Asominori/IR24” to analyze the developmental behavior of PC and PI through unconditional and conditional QTL mapping methods. In all, 10 unconditional QTLs and 6 conditional QTLs for PC, and 11 unconditional QTLs and 9 conditional QTLs for PI, were identified at four stages of grain filling. More were identified in the first three stages than at the final stage. Temporal patterns of gene expression for PC and PI differed over time, with several QTLs being expressed across two or three stages but many being expressed at only one stage. Some of these QTLs were closely linked with maturity QTLs reported previously. Many QTLs for PC and PI were co-localized, supporting the significant correlation found between PC and PI. Our results suggest that dynamic QTL mapping might be a valid means for revealing more genetic information about protein accumulations during seed development. 相似文献
10.
Sandal N Jin H Rodriguez-Navarro DN Temprano F Cvitanich C Brachmann A Sato S Kawaguchi M Tabata S Parniske M Ruiz-Sainz JE Andersen SU Stougaard J 《DNA research》2012,19(4):317-323
Model legumes such as Lotus japonicus have contributed significantly to the understanding of symbiotic nitrogen fixation. This insight is mainly a result of forward genetic screens followed by map-based cloning to identify causal alleles. The L. japonicus ecotype 'Gifu' was used as a common parent for inter-accession crosses to produce F2 mapping populations either with other L. japonicus ecotypes, MG-20 and Funakura, or with the related species L. filicaulis. These populations have all been used for genetic studies but segregation distortion, suppression of recombination, low polymorphism levels, and poor viability have also been observed. More recently, the diploid species L. burttii has been identified as a fertile crossing partner of L. japonicus. To assess its qualities in genetic linkage analysis and to enable quantitative trait locus (QTL) mapping for a wider range of traits in Lotus species, we have generated and genotyped a set of 163 Gifu × L. burttii recombinant inbred lines (RILs). By direct comparisons of RIL and F2 population data, we show that L. burttii is a valid alternative to MG-20 as a Gifu mapping partner. In addition, we demonstrate the utility of the Gifu × L. burttii RILs in QTL mapping by identifying an Nfr1-linked QTL for Sinorhizobium fredii nodulation. 相似文献
11.
Sureshkumar Balasubramanian Christopher Schwartz Anandita Singh Norman Warthmann Min Chul Kim Julin N. Maloof Olivier Loudet Gabriel T. Trainer Tsegaye Dabi Justin O. Borevitz Joanne Chory Detlef Weigel 《PloS one》2009,4(2)
Background
Even when phenotypic differences are large between natural or domesticated strains, the underlying genetic basis is often complex, and causal genomic regions need to be identified by quantitative trait locus (QTL) mapping. Unfortunately, QTL positions typically have large confidence intervals, which can, for example, lead to one QTL being masked by another, when two closely linked loci are detected as a single QTL. One strategy to increase the power of precisely localizing small effect QTL, is the use of an intercross approach before inbreeding to produce Advanced Intercross RILs (AI-RILs).Methodology/Principal Findings
We present two new AI-RIL populations of Arabidopsis thaliana genotyped with an average intermarker distance of 600 kb. The advanced intercrossing design led to expansion of the genetic map in the two populations, which contain recombination events corresponding to 50 kb/cM in an F2 population. We used the AI-RILs to map QTL for light response and flowering time, and to identify segregation distortion in one of the AI-RIL populations due to a negative epistatic interaction between two genomic regions.Conclusions/Significance
The two new AI-RIL populations, EstC and KendC, derived from crosses of Columbia (Col) to Estland (Est-1) and Kendallville (Kend-L) provide an excellent resource for high precision QTL mapping. Moreover, because they have been genotyped with over 100 common markers, they are also excellent material for comparative QTL mapping. 相似文献12.
In the December issue of Plant and Cell Physiology 相似文献
13.
To investigate the genetic basis of drought tolerance in soybean (Glycine max L. Merr.) a recombinant inbred population with 184 F2:7:11 lines developed from a cross between Kefengl (drought tolerant) and Nannong1138-2 (drought sensitive) were tested under water-stressed and well-watered conditions in field and greenhouse trials. Traits measured included leaf wilting coefficient, excised leaf water loss and relative water content as indicators of plant water status and seed yield. A total of 40 quantitative trait loci (QTLs) were identified: 17 for leaf water status traits under drought stress and 23 for seed yield under well-watered and drought-stressed conditions in both field and greenhouse trials. Two seed yield QTLs were detected under both well-watered and drought-stressed conditions in the field on molecular linkage group H and Dlb, while two seed yield QTLs on molecular linkage group C2 were found under greenhouse conditions. Several QTLs for traits associated with plant water status were identified in both field and greenhouse trials, including two leaf wilting coefficient QTLs on molecular linkage group A2 and one excised leaf water loss QTL on molecular linkage group H. Phenotypic correlations of traits suggested several QTLs had pleiotropic or location-linked associations. These results will help to elucidate the genetic basis of drought tolerance in soybean, and could be incorporated into a marker-assisted selection breeding program to develop high-yielding soybean cultivars with improved tolerance to drought stress. 相似文献
14.
To investigate the genetic basis of drought tolerance in soybean ( Glycine max L. Merr.) a recombinant inbred population with 184 F2:7:11 lines developed from a cross between Kefeng1 (drought tolerant) and Nannong1138-2 (drought sensitive) were tested under water-stressed and well-watered conditions in field and greenhouse trials. Traits measured included leaf wilting coefficient, excised leaf water loss and relative water content as indicators of plant water status and seed yield. A total of 40 quantitative trait loci (QTLs) were identified: 17 for leaf water status traits under drought stress and 23 for seed yield under well-watered and drought-stressed conditions in both field and greenhouse trials. Two seed yield QTLs were detected under both well-watered and drought-stressed conditions in the field on molecular linkage group H and D1b, while two seed yield QTLs on molecular linkage group C2 were found under greenhouse conditions. Several QTLs for traits associated with plant water status were identified in both field and greenhouse trials, including two leaf wilting coefficient QTLs on molecular linkage group A2 and one excised leaf water loss QTL on molecular linkage group H. Phenotypic correlations of traits suggested several QTLs had pleiotropic or location-linked associations. These results will help to elucidate the genetic basis of drought tolerance in soybean, and could be incorporated into a marker-assisted selection breeding program to develop high-yielding soybean cultivars with improved tolerance to drought stress. 相似文献
15.
Wang Ming Li Wang Hui Zhao Chuanzhi Tonnis Brandon Tallury Shyam Wang Xingjun Clevenger Josh Guo Baozhu 《Plant Molecular Biology Reporter》2022,40(1):208-217
Plant Molecular Biology Reporter - Seed dormancy is an important breeding trait for the development of certain types of peanut cultivars. Peanut cultivars with seed dormancy can inhibit preharvest... 相似文献
16.
Phil Hartman Patrick Belmont Sylvia Zuber Naoaki Ishii Julie Anderson 《Journal of nematology》2003,35(3):314-319
Johnson and Wood constructed recombinant inbred strains of Caenorhabditis elegans with life spans ranging from 10 to 31 days. Using these strains, we have demonstrated previously that hyperoxia and methyl viologen inhibited development at rates inversely correlated with life span. The growth rates of the short-lived recombinant inbred strains were more profoundly inhibited by oxidative stress than were those of the long-lived strains. Here we report a positive correlation between life span and catalase levels in these same strains. Specifically, when compared to short-lived strains at 10 days after fertilization, the long-lived strains possessed higher levels of total enzymatic catalase. Northern blots indicated a similar relationship between life span and clt-1mRNA (the cytosolic catalase). This suggests that at least some of the polygenes that influence life span are also responsible for regulating gene expression of catalase, an important defense component against oxidative stress. 相似文献
17.
Plants hypoploid for specific segments of each of the maize (Zea mays L.) chromosomes were generated using 24 different B-A translocations. Plants carrying each of the B-A translocations were crossed as male parents to inbreds, and sibling progeny hypoploid or not hypoploid for specific chromosomal segments were recovered. Genomic DNAs from the parents, hypoploid progeny, and nonhypoploid (euploid or hyperploid) progeny for each of these B-A translocations were digested with restriction enzymes, electrophoresed in agarose gels, blotted onto reusable nylon membranes, and probed with nick-translated, cloned DNA fragments which had been mapped previously by restriction fragment length polymorphism (RFLP) analysis to the chromosome involved in the B-A translocation. The chromosomal segment on our RFLP map which was uncovered by each of the B-A translocations was determined. This work unequivocally identified the short and long arms of each chromosome on this map, and it also identified the region on each chromosome which contains the centromere. Because the breakpoints of the B-a translocations were previously known on the cytological and the conventional genetic maps, this study also allowed this RFLP map to be more highly correlated with these maps. 相似文献
18.
In this study, QTL mapping of physiological traits in the model Legume (Medicago truncatula) was performed using a set of RILs derived from LR5. Twelve parameters associated with Na+ and K+ content in leaves, stems and roots were measured. Broad-sense heritability of these traits was ranged from 0.15 to 0.83 in control and from 0.14 to 0.61 in salt stress. Variation among RILs was dependent on line, treatment and line by treatment effect. We mapped 6 QTLs in control, 2 in salt stress and 5 for sensitivity index. No major QTL was identified indicating that tolerance to salt stress is governed by several genes with low effects. Detected QTL for leaf, stem and root traits did not share the same map locations, suggesting that genes controlling transport of Na+ and K+ may be different. The maximum of QTL was observed on chromosome 1, no QTL was detected on chromosomes 5 and 6. 相似文献
19.
Fine-Scale Mapping of Quantitative Trait Loci Using Historical Recombinations 总被引:5,自引:0,他引:5 下载免费PDF全文
With increasing popularity of QTL mapping in economically important animals and experimental species, the need for statistical methodology for fine-scale QTL mapping becomes increasingly urgent. The ability to disentangle several linked QTL depends on the number of recombination events. An obvious approach to increase the recombination events is to increase sample size, but this approach is often constrained by resources. Moreover, increasing the sample size beyond a certain point will not further reduce the length of confidence interval for QTL map locations. The alternative approach is to use historical recombinations. We use analytical methods to examine the properties of fine QTL mapping using historical recombinations that are accumulated through repeated intercrossing from an F(2) population. We demonstrate that, using the historical recombinations, both simple and multiple regression models can reduce significantly the lengths of support intervals for estimated QTL map locations and the variances of estimated QTL map locations. We also demonstrate that, while the simple regression model using historical recombinations does not reduce the variances of the estimated additive and dominant effects, the multiple regression model does. We further determine the power and threshold values for both the simple and multiple regression models. In addition, we calculate the Kullback-Leibler distance and Fisher information for the simple regression model, in the hope to further understand the advantages and disadvantages of using historical recombinations relative to F(2) data. 相似文献
20.
Neutrophil recruitment (NR) to sites of sterile inflammation plays a key role in tissue damage and healing potential of lesions characteristic to non-infectious inflammatory diseases. Previous studies suggested significant genetic control of neutrophil survival, function, and migration in inflammatory responses to endogenous and exogenous stimuli. We have mapped the murine genome for quantitative trait loci (QTLs) harbouring genetic determinants that regulate NR in SI using a murine model of chemically-induced peritonitis. NR was quantified in 16 AXB-BXA recombinant inbred strains and their progenitors, A/J (A) and C57BL/6J (B). A continuous distribution of NR was found among the strains, with parent B showing higher NR and parent A showing lower NR (3.0-fold difference, p=0.05). Within the progeny strains, a 5.5-fold difference in NR was observed between the lowest, BXA1, and the highest responders AXB19 (p<0.001). This data was analyzed using GeneNetwork, which linked NR to one significant QTL on chromosome 12 (Peritoneal Neutrophil Recruitment 1, PNR1) and two suggestive QTLs (PNR2, PNR3) on chromosomes 12 and 16 respectively. Sixty-four candidate genes within PNR1 were cross-referenced with currently published data, mRNA expression from two NR microarrays, and single nucleotide polymorphism analysis. The present study brings new light into the genetics of NR in response to cell injury and highlights potential candidate genes Hif1α, Fntb, and Prkch and their products for further studies on neutrophil infiltration and inflammation resolution in sterile inflammation. 相似文献