首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genes of the major histocompatibility complex (MHC) are considered a paradigm of adaptive evolution at the molecular level and as such are frequently investigated by evolutionary biologists and ecologists. Accurate genotyping is essential for understanding of the role that MHC variation plays in natural populations, but may be extremely challenging. Here, I discuss the DNA-based methods currently used for genotyping MHC in non-model vertebrates, as well as techniques likely to find widespread use in the future. I also highlight the aspects of MHC structure that are relevant for genotyping, and detail the challenges posed by the complex genomic organization and high sequence variation of MHC loci. Special emphasis is placed on designing appropriate PCR primers, accounting for artefacts and the problem of genotyping alleles from multiple, co-amplifying loci, a strategy which is frequently necessary due to the structure of the MHC. The suitability of typing techniques is compared in various research situations, strategies for efficient genotyping are discussed and areas of likely progress in future are identified. This review addresses the well established typing methods such as the Single Strand Conformation Polymorphism (SSCP), Denaturing Gradient Gel Electrophoresis (DGGE), Reference Strand Conformational Analysis (RSCA) and cloning of PCR products. In addition, it includes the intriguing possibility of direct amplicon sequencing followed by the computational inference of alleles and also next generation sequencing (NGS) technologies; the latter technique may, in the future, find widespread use in typing complex multilocus MHC systems.  相似文献   

2.
Next‐generation sequencing (NGS) technologies are revolutionizing the fields of biology and medicine as powerful tools for amplicon sequencing (AS). Using combinations of primers and barcodes, it is possible to sequence targeted genomic regions with deep coverage for hundreds, even thousands, of individuals in a single experiment. This is extremely valuable for the genotyping of gene families in which locus‐specific primers are often difficult to design, such as the major histocompatibility complex (MHC). The utility of AS is, however, limited by the high intrinsic sequencing error rates of NGS technologies and other sources of error such as polymerase amplification or chimera formation. Correcting these errors requires extensive bioinformatic post‐processing of NGS data. Amplicon Sequence Assignment (amplisas ) is a tool that performs analysis of AS results in a simple and efficient way, while offering customization options for advanced users. amplisas is designed as a three‐step pipeline consisting of (i) read demultiplexing, (ii) unique sequence clustering and (iii) erroneous sequence filtering. Allele sequences and frequencies are retrieved in excel spreadsheet format, making them easy to interpret. amplisas performance has been successfully benchmarked against previously published genotyped MHC data sets obtained with various NGS technologies.  相似文献   

3.
The genotyping of highly polymorphic multigene families across many individuals used to be a particularly challenging task because of methodological limitations associated with traditional approaches. Next‐generation sequencing (NGS) can overcome most of these limitations, and it is increasingly being applied in population genetic studies of multigene families. Here, we critically review NGS bioinformatic approaches that have been used to genotype the major histocompatibility complex (MHC) immune genes, and we discuss how the significant advances made in this field are applicable to population genetic studies of gene families. Increasingly, approaches are introduced that apply thresholds of sequencing depth and sequence similarity to separate alleles from methodological artefacts. We explain why these approaches are particularly sensitive to methodological biases by violating fundamental genotyping assumptions. An alternative strategy that utilizes ultra‐deep sequencing (hundreds to thousands of sequences per amplicon) to reconstruct genotypes and applies statistical methods on the sequencing depth to separate alleles from artefacts appears to be more robust. Importantly, the ‘degree of change’ (DOC) method avoids using arbitrary cut‐off thresholds by looking for statistical boundaries between the sequencing depth for alleles and artefacts, and hence, it is entirely repeatable across studies. Although the advances made in generating NGS data are still far ahead of our ability to perform reliable processing, analysis and interpretation, the community is developing statistically rigorous protocols that will allow us to address novel questions in evolution, ecology and genetics of multigene families. Future developments in third‐generation single molecule sequencing may potentially help overcome problems that still persist in de novo multigene amplicon genotyping when using current second‐generation sequencing approaches.  相似文献   

4.
5.
Metabarcoding data generated using next-generation sequencing (NGS) technologies are overwhelmed with rare taxa and skewed in Operational Taxonomic Unit (OTU) frequencies comprised of few dominant taxa. Low frequency OTUs comprise a rare biosphere of singleton and doubleton OTUs, which may include many artifacts. We present an in-depth analysis of global singletons across sixteen NGS libraries representing different ribosomal RNA gene regions, NGS technologies and chemistries. Our data indicate that many singletons (average of 38 % across gene regions) are likely artifacts or potential artifacts, but a large fraction can be assigned to lower taxonomic levels with very high bootstrap support (∼32 % of sequences to genus with ≥90 % bootstrap cutoff). Further, many singletons clustered into rare OTUs from other datasets highlighting their overlap across datasets or the poor performance of clustering algorithms. These data emphasize a need for caution when discarding rare sequence data en masse: such practices may result in throwing the baby out with the bathwater, and underestimating the biodiversity. Yet, the rare sequences are unlikely to greatly affect ecological metrics. As a result, it may be prudent to err on the side of caution and omit rare OTUs prior to downstream analyses.  相似文献   

6.
The immunopolymorphism database (IPD) provides a single nomenclature for alleles at the major histocompatibility complex (MHC) loci for a range of different species. The minimum requirements for inclusion of a sheep class II DRB1 sequence is a submission that includes all polymorphic sites within the second exon from at least two independent polymerase chain reactions (PCR). In order to meet these requirements, we have developed a DNA-based genotyping method for the rapid analysis of allelic diversity at the DRB1 locus in domestic sheep, Ovis aries. Using a series of primers located within introns flanking exon 2 and genomic DNA from a cohort of 214 sheep representing 15 different breeds and crossbreeds, the complete exon 2 sequences of 38 Ovar-DRB1 alleles were obtained. This sequence resource allowed the development of a generic set of locus-specific primers which amplify a fragment that includes all polymorphic sites within the second exon. Bidirectional sequence analysis of the PCR product provides a composite sequence where each polymorphic site is represented by the corresponding International Union of Biochemistry nucleotide code. A Basic Local Alignment Search Tool search of alleles held within the IPD or National Center for Biotechnology Information databases allows individual allele sequences to be identified. Low levels of homozygosity (7.48%) within the cohort and verification of previously genotyped samples confirmed the broad allelic specificity of this method. It improves on currently available methods and is broadly applicable to the analysis of MHC diversity in studies investigating linkages with resistance or susceptibility to disease.  相似文献   

7.
Accurate genotyping of complex systems, such as the major histocompatibility complex (MHC) often requires simultaneous analysis of multiple co-amplifying loci. Here we explore the utility of the massively parallel 454 sequencing method as a universal tool for genotyping complex MHC systems in nonmodel vertebrates. The power of this approach stems from the use of tagged polymerase chain reaction (PCR) primers to identify individual amplicons which can be simultaneously sequenced to the arbitrarily chosen coverage. However, the error-prone sequencing technology poses considerable challenges as it may be difficult to discriminate between sequencing errors and true rare alleles; due to complex nature of artefacts and errors, efficient quality control is required. Nevertheless, our study demonstrates the parallel 454 sequencing can be an efficient genotyping platform for MHC and provides an alternative to classical genotyping methods. We introduced procedures to identify the threshold that can be used to reduce number of genotyping errors by eliminating most of artefactual alleles (AA) representing PCR or sequencing errors. Our procedures are based on two expectations: first, that AA should be relatively rare, both overall and on per-individual basis, and second, that most AA result from errors introduced to sequences of true alleles. In our data set, alleles with an average per-individual frequency below 3% most likely represented artefacts. This threshold will vary in other applications according to the complexity of the genotyped system. We strongly suggest direct assessment of genotyping error in every experiment by running a fraction of duplicates: individuals amplified in independent PCRs.  相似文献   

8.
Next generation sequencing (NGS) technologies are being used to generate whole genome sequences for a wide range of crop species. When combined with precise phenotyping methods, these technologies provide a powerful and rapid tool for identifying the genetic basis of agriculturally important traits and for predicting the breeding value of individuals in a plant breeding population. Here we summarize current trends and future prospects for utilizing NGS-based technologies to develop crops with improved trait performance and increase the efficiency of modern plant breeding. It is our hope that the application of NGS technologies to plant breeding will help us to meet the challenge of feeding a growing world population.
This article is part of the PLOS Biology Collection “The Promise of Plant Translational Research.”
  相似文献   

9.
In recent years, the bank voleMyodes glareolus (Schreber, 1780) has emerged as a model system for parasitological, behavioural and ecological studies and seems ideally suited to address questions concerning the importance of MHC variation at individual and population levels. Here, we provide the first extensive survey of sequence variation in the MHC class II DRB genes in this species. Among 34 analysed voles we found 15 unique sequences, representing most likely two loci, at least one of them expressed. Despite very high overall sequence divergence, particularly in the Antigen Binding Sites (ABS), we detected signatures of positive selection that has been acting on DRB in the bank vole. Phylogenetic analysis demonstrated that the bank vole DRB alleles do not form a monophyletic group but are intermingled with other rodent alleles that is consistent with long-term persistence of ancient allelic lineages maintained through balancing selection. Our sequence data will forward the design of efficient genotyping methods, which will permit testing hypotheses pertaining to the ecological causes and consequences of MHC variation in the bank vole.  相似文献   

10.
Rhesus macaques (Macaca mulatta) provide well-established models for studying human disease pathogenesis and vaccine development. When challenged with infectious agents, macaques exhibit individual differences in susceptibility. An important determinant of these differences is the complement of major histocompatability complex (MHC) class I sequences expressed by each animal. Although previous studies have reported strong associations between MHC expression and disease outcome, a rapid, cost-effective method for high-resolution MHC genotyping in macaques is lacking. In this study, we adapted a modified heteroduplex assay, reference strand-mediated conformational analysis (RSCA) to an ABI 3130xl capillary electrophoresis genetic analyzer for macaque MHC class I genotyping. For validation, we investigated the concordance of RSCA genotyping for 14 MHC class I sequences in 12 Chinese rhesus macaques whose genotypes were established through complementary DNA cloning and sequencing of MHC class I sequences. We observed a concordance greater than 98% between RSCA and the cloning and sequencing data. Furthermore, RSCA confirmed the presence of MHC haplotype sharing between three macaques as predicted previously by microsatellite analysis. RSCA genotyping of an additional 25 Chinese rhesus macaques demonstrated that the frequency of these 14 MHC class I sequences ranged from 5% to 32%, with the Mamu-A1*2601 sequence being most common in this cohort. Capillary RSCA genotyping has the potential to enable researchers to rapidly evaluate MHC class I genotypes in rhesus macaques and associate specific MHC sequences with disease susceptibility.  相似文献   

11.
12.
The applicability of single strand conformation polymorphism (SSCP) analysis for major histocompatibility complex (MHC) genotyping in sheep was studied. A panel of Ovar-DRB1 exon 2 'allele fingerprints' was defined. The panel could accelerate DRB1 genotyping of new breeds when already existing sequences are used as references in SSCP analysis. In this study, seven new exon 2 sequences and 19 different alleles in total were detected from 31 animals of Finnish and Russian sheep breeds. Ovar-DRB1 * 0201 was detected in all the six grey Finnsheep animals included in this study, suggesting reduced MHC diversity within these animals.  相似文献   

13.
Duplicated loci, for example those associated with major histocompatibility complex (MHC) genes, often have similar DNA sequences that can be coamplified with a pair of primers. This results in genotyping difficulties and inaccurate analyses. Here, we present a method to assign alleles to different loci in amplifications of duplicated loci. This method simultaneously considers several factors that may each affect correct allele assignment. These are the sharing of identical alleles among loci, null alleles, copy number variation, negative amplification, heterozygote excess or heterozygote deficiency, and linkage disequilibrium. The possible multilocus genotypes are extracted from the alleles for each individual and weighted to estimate the allele frequencies. The likelihood of an allele configuration is calculated and is optimized with a heuristic algorithm. Monte‐Carlo simulations and three empirical MHC data sets are used as examples to evaluate the efficacy of our method under different conditions. Our new software, mhc‐typer V1.1, is freely available at https://github.com/huangkang1987/mhc-typer .  相似文献   

14.
Next-generation sequencing technologies (NGS) have revolutionized biological research by significantly increasing data generation while simultaneously decreasing the time to data output. For many ecologists and evolutionary biologists, the research opportunities afforded by NGS are substantial; even for taxa lacking genomic resources, large-scale genome-level questions can now be addressed, opening up many new avenues of research. While rapid and massive sequencing afforded by NGS increases the scope and scale of many research objectives, whole genome sequencing is often unwarranted and unnecessarily complex for specific research questions. Recently developed targeted sequence enrichment, coupled with NGS, represents a beneficial strategy for enhancing data generation to answer questions in ecology and evolutionary biology. This marriage of technologies offers researchers a simple method to isolate and analyze a few to hundreds, or even thousands, of genes or genomic regions from few to many samples in a relatively efficient and effective manner. These strategies can be applied to questions at both the infra- and interspecific levels, including those involving parentage, gene flow, divergence, phylogenetics, reticulate evolution, and many more. Here we provide a brief overview of targeted sequence enrichment, and emphasize the power of this technology to increase our ability to address a wide range of questions of interest to ecologists and evolutionary biologists, particularly for those working with taxa for which few genomic resources are available.  相似文献   

15.

Background

HLA genotyping by next generation sequencing (NGS) requires three basic steps, PCR, NGS, and allele assignment. Compared to the conventional methods, such as PCR-sequence specific oligonucleotide primers (SSOP) and -sequence based typing (SBT), PCR-NGS is extremely labor intensive and time consuming. In order to simplify and accelerate the NGS-based HLA genotyping method for multiple DNA samples, we developed and evaluated four multiplex PCR methods for genotyping up to nine classical HLA loci including HLA-A, HLA-B, HLA-C, HLA-DRB1/3/4/5, HLA-DQB1, and HLA-DPB1.

Results

We developed multiplex PCR methods using newly and previously designed middle ranged PCR primer sets for genotyping different combinations of HLA loci, (1) HLA-DRB1/3/4/5, (2) HLA-DQB1 (3.8 kb to 5.3 kb), (3) HLA-A, HLA-B, HLA-C, and (4) HLA-DPB1 (4.6 kb to 7.2 kb). The primer sets were designed to genotype polymorphic exons to the field 3 level or 6-digit typing. When we evaluated the PCR method for genotyping all nine HLA loci (9LOCI) using 46 Japanese reference subjects who represented a distribution of more than 99.5% of the HLA alleles at each of the nine HLA loci, all of the 276 alleles genotyped, except for HLA-DRB3/4/5 alleles, were consistent with known alleles assigned by the conventional methods together with relevant locus balance and no excessive allelic imbalance. One multiplex PCR method (9LOCI) was able to provide precise genotyping data even when only 1 ng of genomic DNA was used for the PCR as a sample template.

Conclusions

In this study, we have demonstrated that the multiplex PCR approach for NGS-based HLA genotyping could serve as an alternative routine HLA genotyping method, possibly replacing the conventional methods by providing an accelerated yet robust amplification step. The method also could provide significant merits for clinical applications with its ability to amplify lower quantity of samples and the cost-saving factors.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1514-4) contains supplementary material, which is available to authorized users.  相似文献   

16.
To date we have little knowledge of how accurate next-generation sequencing (NGS) technologies are in sequencing repetitive sequences beyond known limitations to accurately sequence homopolymers. Only a handful of previous reports have evaluated the potential of NGS for sequencing short tandem repeats (microsatellites) and no empirical study has compared and evaluated the performance of more than one NGS platform with the same dataset. Here we examined yeast microsatellite variants from both long-read (454-sequencing) and short-read (Illumina) NGS platforms and compared these to data derived through Sanger sequencing. In addition, we investigated any locus-specific biases and differences that might have resulted from variability in microsatellite repeat number, repeat motif or type of mutation. Out of 112 insertion/deletion variants identified among 45 microsatellite amplicons in our study, we found 87.5% agreement between the 454-platform and Sanger sequencing in frequency of variant detection after Benjamini-Hochberg correction for multiple tests. For a subset of 21 microsatellite amplicons derived from Illumina sequencing, the results of short-read platform were highly consistent with the other two platforms, with 100% agreement with 454-sequencing and 93.6% agreement with the Sanger method after Benjamini-Hochberg correction. We found that the microsatellite attributes copy number, repeat motif and type of mutation did not have a significant effect on differences seen between the sequencing platforms. We show that both long-read and short-read NGS platforms can be used to sequence short tandem repeats accurately, which makes it feasible to consider the use of these platforms in high-throughput genotyping. It appears the major requirement for achieving both high accuracy and rare variant detection in microsatellite genotyping is sufficient read depth coverage. This might be a challenge because each platform generates a consistent pattern of non-uniform sequence coverage, which, as our study suggests, may affect some types of tandem repeats more than others.  相似文献   

17.
SUMMARY: Characterizing genetic diversity through genotyping short amplicons is central to evolutionary biology. Next-generation sequencing (NGS) technologies changed the scale at which these type of data are acquired. SESAME is a web application package that assists genotyping of multiplexed individuals for several markers based on NGS amplicon sequencing. It automatically assigns reads to loci and individuals, corrects reads if standard samples are available and provides an intuitive graphical user interface (GUI) for allele validation based on the sequences and associated decision-making tools. The aim of SESAME is to help allele identification among a large number of sequences. AVAILABILITY: SESAME and its documentation are freely available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported Licence for Windows and Linux from http://www1.montpellier.inra.fr/CBGP/NGS/ or http://tinyurl.com/ngs-sesame.  相似文献   

18.
Studying the different roles of adaptive genes is still a challenge in evolutionary ecology and requires reliable genotyping of large numbers of individuals. Next-generation sequencing (NGS) techniques enable such large-scale sequencing, but stringent data processing is required. Here, we develop an easy to use methodology to process amplicon-based NGS data and we apply this methodology to reliably genotype four major histocompatibility complex (MHC) loci belonging to MHC class I and II of Alpine marmots (Marmota marmota). Our post-processing methodology allowed us to increase the number of retained reads. The quality of genotype assignment was further assessed using three independent validation procedures. A total of 3069 high-quality MHC genotypes were obtained at four MHC loci for 863 Alpine marmots with a genotype assignment error rate estimated as 0.21%. The proposed methodology could be applied to any genetic system and any organism, except when extensive copy-number variation occurs (that is, genes with a variable number of copies in the genotype of an individual). Our results highlight the potential of amplicon-based NGS techniques combined with adequate post-processing to obtain the large-scale highly reliable genotypes needed to understand the evolution of highly polymorphic functional genes.  相似文献   

19.
In recent years, unprecedented DNA sequencing capacity provided by next generation sequencing (NGS) has revolutionized genomic research. Combining the Illumina sequencing platform and a scFv library designed to confine diversity to both CDR3, >1.9 × 107 sequences have been generated. This approach allowed for in depth analysis of the library’s diversity, provided sequence information on virtually all scFv during selection for binding to two targets and a global view of these enrichment processes. Using the most frequent heavy chain CDR3 sequences, primers were designed to rescue scFv from the third selection round. Identification, based on sequence frequency, retrieved the most potent scFv and valuable candidates that were missed using classical in vitro screening. Thus, by combining NGS with display technologies, laborious and time consuming upfront screening can be by-passed or complemented and valuable insights into the selection process can be obtained to improve library design and understanding of antibody repertoires.  相似文献   

20.
Genotyping of classical major histocompatibility complex (MHC) genes is challenging when they are hypervariable and occur in multiple copies. In this study, we used several different approaches to genotype the moderately variable MHC class I exon 3 (MHCIe3) and the highly polymorphic MHC class II exon 2 (MHCIIβe2) in the bluethroat (Luscinia svecica). Two family groups (eight individuals) were sequenced in replicates at both markers using Ion Torrent technology with both a single‐ and a dual‐indexed primer structure. Additionally, MHCIIβe2 was sequenced on Illumina MiSeq. Allele calling was conducted by modifications of the pipeline developed by Sommer et al. (BMC Genomics, 14, 2013, 542) and the software AmpliSAS. While the different genotyping strategies gave largely consistent results for MHCIe3, with a maximum of eight alleles per individual, MHCIIβe2 was remarkably complex with a maximum of 56 MHCIIβe2 alleles called for one individual. Each genotyping strategy detected on average 50%–82% of all MHCIIβe2 alleles per individual, but dropouts were largely allele‐specific and consistent within families for each strategy. The discrepancies among approaches indicate PCR biases caused by the platform‐specific primer tails. Further, AmpliSAS called fewer alleles than the modified Sommer pipeline. Our results demonstrate that allelic dropout is a significant problem when genotyping the hypervariable MHCIIβe2. As these genotyping errors are largely nonrandom and method‐specific, we caution against comparing genotypes across different genotyping strategies. Nevertheless, we conclude that high‐throughput approaches provide a major advance in the challenging task of genotyping hypervariable MHC loci, even though they may not reveal the complete allelic repertoire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号