首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genus Wallemia comprises xerophilic species. Based on parenthesome ultrastructure it has been linked to the Filobasidiales (basidiomycetes). Species show a unique type of conidiogenesis, including basauxic development of fertile hyphae, segregation of conidial units more or less basipetally, and disarticulation of conidial units into mostly four arthrospore-like conidia. Wallemia is known from air, soil, dried food (causing spoilage), and salt. It can be isolated from hypersaline water of man-made salterns on different continents. Based on analyses of the nuclear small subunit ribosomal DNA (SSU rDNA) Wallemia has been placed into a highly supported clade together with Ustilaginomycetes and Hymenomycetes (Basidiomycota). Within this clade, it possesses an isolated position distantly related to the Filobasidiales and was characterized by numerous nucleotide substitutions not shared by any other fungus. Tests on xerotolerance indicated that Wallemia presents one of the most xerophilic fungal taxa. Xerotolerance is otherwise rare in the Basidiomycota. To acknowledge its unique morphology, evolution, and xerotolerance, a new basidiomycetous class Wallemiomycetes covering an order Wallemiales, is proposed. Based on differences in conidial size, xerotolerance, and sequence data of the rDNA internal transcribed spacer regions (ITS rDNA), at least three Wallemia species are segregated, identified as Wallemia ichthyophaga, Wallemia sebi, and Torula epizoa var. muriae, for which the combination Wallemia muriae is proposed. The three species are neotypified. Wallemia ichthyophaga differs from W. sebi and W. muriae in numerous nucleotides of the SSU and ITS rDNA. This high variation within Wallemia indicates existence of at least two cryptic genera not distinguishable by morphological characters.  相似文献   

2.
Fungi from the food-borne basidiomycetous genus Wallemia, which comprises Wallemia ichthyophaga, Wallemia muriae and Wallemia sebi, are among the most xerophilic organisms described. Their morphological adaptations to life at high NaCl concentrations are reflected in increased cell-wall thickness and size of cellular aggregates. The objectives of this study were to examine their growth and to define cell morphology and any ultrastructural cell-wall changes when these fungi are grown in low and high glucose and honey concentrations, as environmental osmolytes. We analysed their growth parameters and morphological characteristics by light microscopy and transmission and scanning electron microscopy.Wallemia ichthyophaga grew slowly in all of the sugar-based media, while W. muriae and W. sebi demonstrated better growth. Wallemia ichthyophaga adapted to the high glucose and honey concentrations with formation of larger cellular aggregates, while cell-wall thickness was increased only at the high glucose concentration. Wallemia muriae and W. sebi demonstrated particularly smaller sizes of hyphal aggregates at the high glucose concentration, and different and less explicit changes in cell-wall thickness. Adaptive responses show that the phylogenetically more distant W. ichthyophaga is better adapted to high salt conditions, whereas W. muriae and W. sebi cope better with a high sugar environment.  相似文献   

3.
《Aquatic Botany》2007,87(2):167-170
We studied the germination responses of Arthrocnemum macrostachyum, Juncus acutus and Schoenus nigricans to saline stress caused by different salt types. The germination percentage and mean time to germination data were obtained by incubating seeds for 30 d in 1, 2, 3, 4 or 5% saline solutions of NaCl, MgCl2, MgSO4 and Na2SO4 at 30/20 °C and with a 12 h photoperiod. A. macrostachyum was the most tolerant species to salinity during the germination (65% in 2% NaCl). S. nigricans showed the lowest germination (none germinated in salt and only 26% in distilled water). J. acutus showed intermediate behaviour between the two above species, its germination being inhibited by high salt concentrations. The sulphates had less inhibitory effect than the equivalent chloride concentrations.  相似文献   

4.
The basidiomycetous genus Wallemia is an active inhabitant of hypersaline environments, and it has recently been described as comprising three halophilic and xerophilic species: Wallemia ichthyophaga, Wallemia muriae, and Wallemia sebi. Considering the important protective role the fungal cell wall has under fluctuating physicochemical environments, this study was focused on cell morphology changes, with particular emphasis on the structure of the cell wall, when these fungi were grown in media with low and high salinities. We compared the influence of salinity on the morphological characteristics of Wallemia spp. by light, transmission, and focused-ion-beam/scanning electron microscopy. W. ichthyophaga was the only species of this genus that was metabolically active at saturated NaCl concentrations. W. ichthyophaga grew in multicellular clumps and adapted to the high salinity with a significant increase in cell wall thickness. The other two species, W. muriae and W. sebi, also demonstrated adaptive responses to the high NaCl concentration, showing in particular an increased size of mycelial pellets at the high salinities, with an increase in cell wall thickness that was less pronounced. The comparison of all three of the Wallemia spp. supports previous findings relating to the extremely halophilic character of the phylogenetically distant W. ichthyophaga and demonstrates that, through morphological adaptations, the eukaryotic Wallemia spp. are representative of eukaryotic organisms that have successfully adapted to life in extremely saline environments.Hypersaline habitats had long been considered to be populated almost exclusively by prokaryotic organisms and the research on hypersaline environments had consequently been monopolized by bacteriologists. In 2000, the first reports appeared showing that fungi are active inhabitants of solar salterns (20). Until then, fungi able to survive in environments with a low amount of biologically available water (low water activity [aw]) were only known as contaminants of foods preserved with high concentrations of salt or sugar. Since their first discovery in salterns, many new species have been discovered in natural hypersaline environments around the world, including some species that were previously known only as food-borne contaminants. Due to these discoveries, fungi are now recognized as an integral part of indigenous halophilic microbial communities since they can grow and adjust across the whole salinity range, from freshwater to almost saturated NaCl solutions (49). Most fungi differ from the majority of halophilic prokaryotes (16): they tend to be extremely halotolerant rather than halophilic and do not require salt to remain viable, with the exception of Wallemia spp.The order Wallemiales (Wallemiomycetes, Basidiomycota) was only recently introduced to define the single genus Wallemia, a phylogenetic maverick in the Basidiomycota (49). Until 2005, this genus contained only the species W. sebi. However, taxonomic analyses of isolates from sweet, salty, and dried foods (41) and from hypersaline evaporation ponds in the Mediterranean Sea, the Caribbean, and the Dead Sea (45, 49) have resolved this genus into three species: W. ichthyophaga, W. muriae, and W. sebi. The first two of these three Wallemia spp. require additional solutes in the growth media, and W. ichthyophaga is the most halophilic eukaryote described to date, since it cannot grow without the addition of 9% NaCl (wt/vol), and it still shows growth at aw of 0.77, equivalent to 30% NaCl (wt/vol) (49).The survival, and especially the growth, of microorganisms in highly saline environments requires numerous adaptations (6, 18, 21, 34). The dominant representatives and the most thoroughly investigated halophilic fungi in hypersaline waters of the salterns are the black yeasts, and particularly the model organism Hortaea werneckii (20). An important level of adaptation of the black yeasts to high salinity is seen in their extremophilic ecotype, which is characterized by a special meristematic morphology and changes in cell wall structure and pigmentation (27). Other fungal osmoadaptations include the accumulation of osmolytes (27, 28, 40), the extrusion of sodium (5), modification of the plasma membrane (44) and the cell wall, and even changes in fungal colony morphology (27).The fungal cell wall is the first line of defense against environmental stress; therefore, adaptation at the cell wall level is expected to have one of the most important roles for successful growth at a low aw (24, 32). The cell wall is essential for maintaining the osmotic homeostasis of cells, since it protects them against mechanical damage as well as high concentrations of salts (7). The central fibrillar glycan network of the cell wall is embedded in highly flexible amorphous cement, which allows considerable stretching with changing osmotic pressure (14, 29). Its balance between a rigid and a dynamic structure influences the shape of cells (14) and enables growth and hyphal branching (11).Since the species within the genus Wallemia have been recognized only recently (49), little is known about their mechanisms of adaptation to high salinity. To investigate the effects of low and high NaCl concentrations on cell morphology, with particular emphasis on cell wall ultrastructure, we compared W. ichthyophaga, the most halophilic fungal species known thus far, with the related xerophilic W. muriae and W. sebi. Micrographs were prepared by using light, transmission, and scanning electron microscopy. The results reveal how this eukaryotic genus uses adaptations at the cell wall level for thriving in extremely saline environments.  相似文献   

5.
Glycerol formation ofDunaliella cells in non-growing media was investigated.Dunaliella tertiolecta andD. bioculata grew well in a NaCl medium but not at all in a LiCl or a MgCl2 medium. When the cells originally suspended in a medium containing 0.5 M NaCl were transferred to media which contained one of 1 M NaCl, 1 M LiCl or 0.7 M MgCl2, the intracellular glycerol content increased.D. tertiolecta cultured in either a 1 M LiCl or a 0.7 M MgCl2 medium did not multiply, but maintained abilities to evolve O2 in the light and absorb O2 in thedark even after about a 5 day culture. From these results, it can be concluded that the halotolerance ofDunaliella to different kinds of salts is not directly related to osmoregulation by the glycerol formation.  相似文献   

6.
The effect of fluctuations of salinity in three different seasons on diazotrophic populations and N2 fixation in six mono cropped rice field soils of the coastal region of the Gangetic delta of West Bengal, India, was studied. The average pH, ECe, organic carbon and total nitrogen of the soils ranged from 4.99–7.08, 2.02–19.58 dSm−1, 4.68–12.03 g kg−1 and 0.44–1.70 g kg −1, respectively. The average log colony forming units of the bacterial populations and N2-fixation in the soils varied from 4.61 to 5.86 and 2.74 to 4.52 mg N2 fixed 50 ml −1 culture media respectively, with the lowest value recorded in summer. Recovery of microorganisms and N2- fixation gradually decreased with extraneous addition of NaCl in the culture media. All the eight isolates were Gram positive, spore and capsule formers. They could utilize glucose, sucrose, mannitol, starch, citrate and nitrate, and were catalase and gelatinase positive, but indole, methyl red and Vogues Proskauer reaction negative. The organisms produced alkaline reaction on TSI agar slant. The acetylene reduction assay of the isolates at 0 and 1% NaCl in the culture media were 4.51–164.52 and 1.72–100.6 nmole C2H4 ml−1 culture media in 72 h, respectively. The isolates could fix 2.42–4.45 and 2.04–4.08 mg N2 fixed 50 ml−1 culture media at 0 and 1% NaCl in the culture media respectively. 16S rDNA sequences of the isolates were similar to the species: Bacillus sp. isolate 28A, Bacillus sp. MOLA 87, Bacillus sp. By113 (B)Ydz-dh, Bacillus sp. PN13, Bacillus licheniformis strain RH101, Bacterium Antarctica 14, Bacillus sp. PN13 and Bacillus megaterium.  相似文献   

7.
The effects of sea salts, NaCl, KCl, MgCl2, MgSO4, and CaCl2, on the growth of protoplast cultures of two mangrove species, Sonneratia alba and Avicennia alba, were investigated using 96-well culture plates. Plants of these two species naturally grow at the seaward side of a mangrove forest. Cotyledon protoplasts of S. alba showed halophilic nature to NaCl, KCl, and MgCl2 at low concentrations (10–50 mM) when cultured in Murashige and Skoog’s (MS) medium containing 0.6 M mannitol. CaCl2 at a concentration higher than 25 mM was inhibitory to cell growth. On the other hand, in protoplast culture of A. alba suspension cells, which were induced from cotyledon tissues, in the modified amino acid (mAA) medium containing 1.2 M sorbitol, tolerance to NaCl, MgCl2 and MgSO4 were observed at a wide range of concentrations up to 400 mM. CaCl2 was always inhibitory for cell divisions in A. alba, but stimulatory for spherical enlargement of cells. However, no difference in cell enlargement was observed among other salts. Similarity and difference in reactivity to salts between protoplasts and suspension cells from our previous studies were discussed in relation to the site of salt tolerance or halophilic adaptation within mangrove cells. For protoplast cultures, the site(s) for response of S. alba and A. alba are located in the cytoplasm and/or the cell membrane.  相似文献   

8.
Abstract

Puccinellia festucaeformis (Host) Parl.: germination and early growth on different salt substrates. Germination behaviour of Puccinellia festucaeformis seeds and early growth of seedlings at different experimental conditions was analysed. The following growth substrates were utilized: NaCl, KCl, KNO3, MgCl2, MgSO4, Na2SO4, NaNO3, CaCl2 at the decreasing concentrations of 0.50, 0.25, 0.12, 0.06M. Caryopses were allowed to imbibe and grow at alternating temperatures (10°-20°C or 20°-30°C) in the dark for 3 days. Seedling were grown for 15 days, at controlled light and temperature conditions, in the same nutrient substrates as those used for the germination experiments.

The germination experiments showed a high tolerance to salts up to 0.25M solution and for the whole range of MgSO4 concentrations. High growth temperatures increased the depressive effects of salt concentrations. Seedling growth was highly reduced when salt concentration was higher than 0.12M. High salt tolerance - maximum shoot and root growth - was showed by seedling allowed to grow on 0.50M MgSO4.

Germination and growth condition of Puccinellia festucaeformis is discussed in relation to the ecological features of this species and to its possible importance as bioindicator of MgSO4 rich natural substrates.  相似文献   

9.
To identify appropriate species of ectomycorrhizal fungi for use in the reclamation of saline‐alkaline sites, such as the composite tailings (alkaline, with high sodium, sulfate, and calcium) produced by the Canadian tar sands industry, pure cultures of nine fungal species indigenous to the Canadian boreal forest were grown on media containing different levels of CaCl2, CaSO4, NaCl, or Na2SO4, as well as on medium containing composite tailings (CT) release water, and on media at four different pH levels. Members of the Boletales (Suillus brevipes, Rhizopogon rubescens, and Paxillus involutus) and Amphinema byssoides (Aphyllophorales) were sensitive to alkalinity, and their growth was completely inhibited by CT release water. Laccaria and Hebeloma spp. (Agaricales) as well as Wilcoxina mikolae (Pezizales) were tolerant to alkalinity and survived on the medium containing CT release water. Calcium chloride proved to be the most toxic of the salts tested. Growth of seven isolates of Laccaria bicolor and three isolates of Hebeloma crustuliniforme on media containing CaCl2 and release water showed low intraspecific variation. A combination of fungal species, each with its own beneficial characteristics, is recommended for the inoculation of seedlings to be outplanted onto composite tailings.  相似文献   

10.
Aeromonas hydrophila SBK1 (GenBank accession no. HM802878.1), a potent chitinolytic bacterium, was isolated from a pool of 30 chitinolytic isolates. The isolate showed higher chitinolytic activity in respect to clear zone to colony size ratio of 2.15. Maximum production of chitinolytic enzymes, viz., β-N-acetyl-glucosaminidase and chitinase (specific activity 655.3 and 71.6 U mg−1, respectively) by A. hydrophila SBK1 was observed in the synthetic media, containing (w/v)-colloidal chitin, 4.0%; peptone, 0.3%; phosphate, 0.3% (0.15% of each KH2PO4 and K2HPO4); NaCl, 0.25%; MgSO4, 0.05%; KCl, 0.05%; pH 7.0 and at 35°C after 72 h of incubation. Both carbon-to-nitrogen (C/N) and carbon-to-phosphate (C/P) ratio of 13.33 were found optimum for chitinase production. Enzyme productivity increased about twofold in optimized culture condition in respect to its un-optimized state. The crude enzyme showed optimum activity against Culex quinquefasciatus larvae in native water at pH 7.0 and 35°C (LD50 0.60 U ml−1 at 48 h). Therefore, the studied chitinases can be used as an effective mosquitocidal agent.  相似文献   

11.
The sedimentation coefficient of calf thymus and of T7 DNA was determined at several concentrations up to saturation in solutions of each of the following salts: MgCl2, MgBr2, and MgSO4. Under certain conditions, a plot of the product of the relative viscosity and sedimentation coefficient against the density of the solution has been found to be linear and to extrapolate to zero at a density corresponding to that of the solvated molecule. This behavior was realized in MgSO4 solutions, the zero intercept occurring at a density of 1.41 g/cc, corresponding to a wafer activity of 0.89. The preferential solvation of DNA in MgSO4 solutions calculated for this value is 10.5 moles water/mole of nucleotide, in good agreement with published values of solvation of DNA at the same water activity in univalent salt solutions. Since linear plots were not obtained in MgCl2 and MgBr2 solutions, buoyant densities could not be determined in these cases. The nonlinear behavior observed in MgCl2 and MgBr2 solutions may be due to a change in shape of the DNA molecule at the lower water activities reached in these solutions. The possibility of increased DNA–solute interactions in MgBr2 and MgCl2 solutions is also considered as an explanation for the difference in behavior between MgSO4 and the two magnesium halides.  相似文献   

12.

Shewanella species are widely distributed in sea, brackish, and fresh water areas, growing psychrophilically or mesophilically, and piezophilically or piezo-sensitively. Here, membrane-bound 5′-nucleotidases (NTases) from deep-sea Shewanella violacea and brackish water Shewanella amazonensis were examined from the aspect of NaCl tolerance to gain an insight into protein stability against salt. Both NTases were single polypeptides with molecular masses of ~59 kDa, as determined on mass spectroscopy. They similarly required 10 mM MgCl2 for their activities, and they exhibited the same pH dependency and substrate specificity for 5′-nucleotides. However, S. violacea 5′-nucleotidase (SVNTase) was active enough in the presence of 2.5 M NaCl, whereas S. amazonensis 5′-nucleotidase (SANTase) exhibited significantly reduced activity with the same concentration of the salt. Although SVNTase and SANTase exhibited high sequence identity (69.7%), differences in the ratio of acidic to basic amino acid residues and the number of potential salt bridges maybe being responsible for the difference in the protein stability against salt. 5′-Nucleotidases from these Shewanella species will provide useful information regarding NaCl tolerance, which may be fundamental for understanding bacterial adaptation to growth environments.

  相似文献   

13.
The in vitro germination of 11 Metarhizium anisopliae and 11 Beauveria bassiana isolates originating from substrates collected in rural peridomestic areas in Central Brazil where triatomines are common was tested. Conidia completed germination up to 24 h after exposure to water activity of >0.99 aw in all isolates tested. At lower 0.93 aw germination was delayed but conidia of most isolates germinated at high rates (>98 %) within 216 h of incubation. Activities of 2 M. anisopliae and 2 B. bassiana isolates with different patterns of germination at 0.93 aw were tested in Triatoma infestans third instar nymphs. There was no relationship between germination kinetics in vitro at 0.93 aw and their activity in vivo at 98, 75 and 43 % relative humidity (rh). Isolates with accelerated germination at 0.93 aw were not more virulent at 75 and 43 % rh compared with isolates with retarded or no germination. Highest mortalities were observed at 98 % rh, and they did not exceed 25 % after 25 d incubation at lower 75 and 43 % rh. Isolates that originated from a region with an extensive annual arid period showed no adaptation to lower humidity in their activity against T. infestans.  相似文献   

14.
Potato plants grown in vitro were subjected to different salt stresses by providing the salts NaCl, Na2SO4, MgCl2 and MgSO4 in different concentrations up to 300 mM. Salinity greatly affected the survival and the rooting of the plants. Shoot and root growth decreased with increasing salt concentrations. Under mild stress conditions, i.e. in conditions where the plant is able to adapt to the stress, the observed decrease was dependent upon the salt used. Under severe stress conditions, however, the decrease of the shoot and root growth was independent of the nature of the ions.  相似文献   

15.
The cells of Halicystis impaled on capillaries reach a steady P.D. of 60 to 80 millivolts across the protoplasm from sap to sea water. The outer surface of the protoplasm is positive in the electrometer to the inner surface. The P.D. is reduced by contact with sap and balanced NaCl-CaCl2 mixtures; it is abolished completely in solutions of NaCl, CaCl2, KCl, MgSO4, and MgCl2. There is prompt recovery of P.D. in sea water after these exposures.  相似文献   

16.
Abstract

Endophytic fungal strains isolated from indigenous Nicotiana plants naturally growing in dry and hot regions of north-western Australia were characterised based on their tolerance to salinity and temperature. Sixty-eight fungal isolates were tested on eight levels (0.5 M, 1.0 M, 1.5 M, 2.0 M, 2.5 M, 3.0 M, 3.5 M and 4.0 M) of five different of salts solutions NaCl, KCl, MgCl2, CaCl2 and MgSO4 and at various temperatures (25–50?°C). The salt adaptation test indicated that the fungal strains namely Aspergillus niger (E-202), A. ochraceous-A (E-134), Aurantiporus sp. (E-135), Cladosporium halotolerance (E-128), Pleurostomophora richardsiae (E-13) and Trichoderma sp. (E-185.1) were tolerant to higher concentrations of various salts. The most growth-limiting salt turned out to be MgCl2 followed by the chaotrope CaCl2. Responses to temperature tolerance revealed that most fungi tested could grow at 30?°C. About 50% all the fungi did not show any growth when the temperature was raised above 30?°C. When the temperature was raised up to 50?°C all the fungi failed to grow but the fungus Rasamsonia piperina (E-172). Endophyte strains identified could be promising candidates for future research in investigating the fungus–plant interactions and their roles in plant adaptation to inhospitable environments.  相似文献   

17.
Glycerol production by a highly glycerol-producing local isolate (Eurotium amstelodami) and a standard reference isolate (Aspergillus wentii) was markedly enhanced by high saline media. Glycerol concentration depended on the external osmotic. Thus, the highest glycerol concentration was found in the presence of NaCl, followed by KCl, with considerably lower values for MgCl2 and CaCl2 saline media. With glucose (5–50%) used as a nonionic osmotic, low levels of glycerol were obtained and the main pool of polyols was mannitol. Glycerol production was gradually increased with the increase of NaCl concentration of cheese whey, reaching maxima by both organisms when whey was supplemented with 8% NaCl (total of 16% NaCl). The quantity of glycerol produced byA. wentii was twice higher than that obtained byE. amstelodami on whey treated with 8% NaCl.  相似文献   

18.
《Mycological Research》2006,110(6):713-724
Melanized yeast-like meristematic fungi are characteristic inhabitants of highly stressed environments and are rare eukaryotic extremophiles. Therefore, they are attractive organisms for studies of adaptations. In this study we compared two meristematic species of the genus Trimmatostroma on media of differing water potentials isolated from distinct water-stressed environments: T. salinum from the hypersaline water of a solar saltern, and T. abietis from a marble monument in Crimea. The morphology and melanization of both isolates in response to sodium chloride-induced water stress were investigated by means of light and electron microscopy. We describe and compare the colony form and structure, ultrastructure, and degree of cell-wall melanization of both species in reaction to salinity and to inhibited melanin synthesis. The halophilic T. salinum responded to changed salinity conditions on the level of individual cell ultrastructure and degree of cell wall melanization, whereas the xerophilic rock-inhabiting T. abietis responded with modification of its colony structure. Surprisingly, both the halophilic and the xerophilic Trimmatostroma species were able to adapt to hypersaline growth conditions, although their growth patterns show distinct adaptation of each species to their natural ecological niches.  相似文献   

19.
We evaluated the response of the Antarctic soil nematodes Scottnema lindsayae and Plectus antarcticus to various salts (NaCl, MgSO4, KNO3 and NaCl + MgSO4) and salt concentrations in prepared salt solutions ranging from 0.1 to 3 M, and in saturation paste extracts of soils collected from multiple locations where nematode abundance varied from zero to numerous, and where electrical conductivity ranged from 108 to >12,000 μS/cm. Nematode salt tolerance was salt specific; both nematode species survived in low-experimental concentrations of NaCl and MgSO4, and neither species survived in KNO3 solutions of any concentration. There was no survival of nematodes in the saturation paste extracts of highly saline soils (4,100 μS/cm), while survival was over 80–97% in less saline soils (1,945 μS/cm). A 1:1 dilution of these highly saline saturation paste extracts increased S. lindsayae survival to 80%, while survival of P. antarcticus was not observed until dilutions of greater than 200%. The results complement previous studies demonstrating niche partitioning of S. lindsayae and P. antarcticus across salinity gradients and strengthen interpretations of the physiological mechanisms underlying previously reported spatial correlation between soil salinity and nematodes abundance in the Antarctic Dry Valleys.  相似文献   

20.
Petunia (Petunia hybrida Vilm. cv. ‘Snowstorm') plants were grown in saline solution (NaCl, MgCl2, and/or CaCl2) of 0, 1, 2, and 3 bars osmotic pressures. Pollen viability was tested by tetrazolium chloride staining and by germination (by the hanging drop method, using 15 % sucrose and 0.01 % boric acid as the nutrient medium, at 27 ± 1 C). Pollen viability decreased with increased salinity. Pollen from plants grown in single salt solutions of NaCl, MgCl2, and CaCl2 (each at 0, 1, 2, or 3 bars osmotic pressure) was germinated in base culture medium. Pollen viability decreased more with NaCl than with MgCl2 or CaCl2. In vitro studies of the effects of three salts, viz., NaCl, MgCl2, and CaCl2, on pollen germination and tube growth showed that NaCl inhibited germination and pollen tube growth more than did MgCl2 or CaCl2. MgCl2 was least injurious, and even promoted tube growth at 0.5 and 0.75 bars osmotic pressure. Adding low concentrations of MgCl2 reduced the toxic effect of NaCl and increased the percentage of germination. CaCl2 reduced the effect of NaCl less than did MgCl2. We conclude that specific ion effects were more important than osmotic pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号