首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The study shows the results of research on the concentrations of metals (Cd, Pb, Mn, Cu, Cr, Fe, Zn, Na, K, Mg, and Ca) in deciduous and permanent teeth with respect to their location in the oral cavity (maxilla, mandible). It has been found that the concentrations of metals were significantly higher in the deciduous teeth than in permanent ones. Regression analysis and principal component analysis revealed an increased dynamics of the processes of binding the elements by the hydroxyapatite of deciduous teeth. Higher concentrations of the metals were found in the maxilla permanent and deciduous teeth than in the mandible ones.  相似文献   

3.
4.
Human exfoliated deciduous teeth have been considered to be a promising source for regenerative therapy because they contain unique postnatal stem cells from human exfoliated deciduous teeth (SHED) with self-renewal capacity, multipotency and immunomodulatory function. However preservation technique of deciduous teeth has not been developed. This study aimed to evaluate that cryopreserved dental pulp tissues of human exfoliated deciduous teeth is a retrievable and practical SHED source for cell-based therapy. SHED isolated from the cryopreserved deciduous pulp tissues for over 2 years (25–30 months) (SHED-Cryo) owned similar stem cell properties including clonogenicity, self-renew, stem cell marker expression, multipotency, in vivo tissue regenerative capacity and in vitro immunomodulatory function to SHED isolated from the fresh tissues (SHED-Fresh). To examine the therapeutic efficacy of SHED-Cryo on immune diseases, SHED-Cryo were intravenously transplanted into systemic lupus erythematosus (SLE) model MRL/lpr mice. Systemic SHED-Cryo-transplantation improved SLE-like disorders including short lifespan, elevated autoantibody levels and nephritis-like renal dysfunction. SHED-Cryo amended increased interleukin 17-secreting helper T cells in MRL/lpr mice systemically and locally. SHED-Cryo-transplantation was also able to recover osteoporosis bone reduction in long bones of MRL/lpr mice. Furthermore, SHED-Cryo-mediated tissue engineering induced bone regeneration in critical calvarial bone-defect sites of immunocompromised mice. The therapeutic efficacy of SHED-Cryo transplantation on immune and skeletal disorders was similar to that of SHED-Fresh. These data suggest that cryopreservation of dental pulp tissues of deciduous teeth provide a suitable and desirable approach for stem cell-based immune therapy and tissue engineering in regenerative medicine.  相似文献   

5.
目的:探讨核因子KB受体活化剂配体(receptor activator of the nuclear factor—κappa Bligand,RANKL)在人乳牙根消失不同时间段牙髓细胞内的表达及分化。方法:临床选取牙根生理早中晚期的乳牙各10颗,用原位杂交方法检测RANKL细胞因子在人的乳牙根消失的时候不同时期牙髓细胞内的mRNA表达情况。结果:牙髓细胞、成牙本质细胞RANKL原位杂交染色阳性,表达比对照组高(P〈0.05)。消失比较早的时候与消失中、晚的时候,比较各种细胞内RANKL表达差异有统计学意义(P〈0.05),而消失中间的时候和消失比较晚的各种细胞内的RANKL表达差异无统计学意义(P〉0.05)。结论:RANKL参与了乳牙牙根的消失过程,牙髓细胞、成牙本质细胞可能促进了破骨细胞分化成熟。  相似文献   

6.
Developing wisdom teeth are easy-accessible source of stem cells during the adulthood which could be obtained by routine orthodontic treatments. Human pulp-derived stem cells (hDPSCs) possess high proliferation potential with multi-lineage differentiation capacity compare to the ordinary source of adult stem cells1-8; therefore, hDPSCs could be the good candidates for autologous transplantation in tissue engineering and regenerative medicine. Along with these benefits, possessing the mesenchymal stem cells (MSC) features, such as immunolodulatory effect, make hDPSCs more valuable, even in the case of allograft transplantation6,9,10. Therefore, the primary step for using this source of stem cells is to select the best protocol for isolating hDPSCs from pulp tissue. In order to achieve this goal, it is crucial to investigate the effect of various isolation conditions on different cellular behaviors, such as their common surface markers & also their differentiation capacity.Thus, here we separate human pulp tissue from impacted third molar teeth, and then used both existing protocols based on literature, for isolating hDPSCs,11-13i.e. enzymatic dissociation of pulp tissue (DPSC-ED) or outgrowth from tissue explants (DPSC-OG). In this regards, we tried to facilitate the isolation methods by using dental diamond disk. Then, these cells characterized in terms of stromal-associated Markers (CD73, CD90, CD105 & CD44), hematopoietic/endothelial Markers (CD34, CD45 & CD11b), perivascular marker, like CD146 and also STRO-1. Afterwards, these two protocols were compared based on the differentiation potency into odontoblasts by both quantitative polymerase chain reaction (QPCR) & Alizarin Red Staining. QPCR were used for the assessment of the expression of the mineralization-related genes (alkaline phosphatase; ALP, matrix extracellular phosphoglycoprotein; MEPE & dentin sialophosphoprotein; DSPP).14  相似文献   

7.
目的:比较传统机械切割法、非创伤性充填法(atraumatic restorative treatment,ART)和Carisolv化学法在临床乳牙龋病治疗中的应用效果差异。方法:选取2011年1月-2012年6月来我科就诊的5-8岁儿牙患者96名,患牙180颗,随机分为3个不同的治疗组:传统机械去龋组、ART组和Carisolv化学去龋组进行相应牙体充填治疗,通过去龋效果、去龋时间、术中疼痛发生率和术后长期疗效等方面比较不同去龋技术之间的差异。结果:常规机械去龋组和Carisolv组的去龋效果明显优于ART组(P0.05),二者之间无明显差异(P0.05);3种去龋方法的去龋操作时间无明显差异(P0.05);Carisolv组和ART组去龋治疗中患儿术中疼痛发生例数明显低于常规机械去龋组(P0.05),二者之间无明显差异(P0.05);治疗1年后的复诊发现,常规机械去龋组和Carisolv组中患牙继发龋发生率明显低于ART组(P0.05),二者之间无明显差异(P0.05);三种方法治疗后患牙充填物折断/脱落发生率无明显差异(P0.05)。结论:Carisolv化学去龋法能有效减轻术中疼痛和术后复发率,值得在临床乳牙治疗中推广应用;ART的去龋效果和远期疗效可能限制其广泛应用。  相似文献   

8.

Objectives

The present study was designed to investigate the microbial profiles of teeth in different locations in mixed-dentition-stage children, and to compare the microbiomes of permanent and deciduous teeth in the same healthy oral cavity.

Methods

Supragingival plaque samples of teeth in various locations—the first permanent molars, deciduous molars, deciduous canines and incisors and permanent incisors—were collected from 20 healthy mixed-dentition-stage children with 10–12 permanent teeth erupted. Plaque DNA was extracted, and the V3–V4 hypervariable region of the bacterial 16S rRNA gene was amplified and subjected to sequencing.

Results

On average, 18,051 high-quality sequences per sample were generated. Permanent tooth sites tended to host more diverse bacterial communities than those of deciduous tooth sites. A total of 12 phyla, 21 classes, 38 orders, 66 families, 74 genera were detected ultimately. Five predominant phyla (Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria and Actinobacteria) were highly variable among sites. Of 26 genera with a mean relative abundance of >0.1%, 16 showed significant differences in relative abundance among the groups. More than 20% of the total operational taxonomical units were detected only in permanent or deciduous teeth. The variation in the microbial community composition was due mainly to permanent teeth being enriched in Actinomyces and deciduous teeth in Treponema. The core microbiome of supragingival plaque in mixed dentition comprised 19 genera with complex correlationships.

Conclusion

Our results suggest differences in microbial diversity and composition between permanent and deciduous teeth sites in mixed dentition. Moreover, the core microbiome of these sites was determined. These findings enhance our understanding of the development of the native oral microbiota with age.  相似文献   

9.
10.
Angiogenesis, the formation of capillaries from pre-existing blood vessels, is a key process in tissue engineering. If blood supply cannot be established rapidly, there is insufficient oxygen and nutrient transport and necrosis of the implanted tissue will occur. Recent studies indicate that the human dental pulp contains precursor cells, named dental pulp stem cells (hDPSC) that show self-renewal and multilineage differentiation capacity. Since these cells can be easily isolated, cultured and cryopreserved, they represent an attractive stem cell source for tissue engineering. Until now, only little is known about the angiogenic abilities and mechanisms of the hDPSC. In this study, the angiogenic profile of both cell lysates and conditioned medium of hDPSC was determined by means of an antibody array. Numerous pro-and anti-angiogenic factors such as vascular endothelial growth factor (VEGF), monocyte chemotactic protein-1 (MCP-1), plasminogen activator inhibitor-1 (PAI-1) and endostatin were found both at the mRNA and protein level. hDPSC had no influence on the proliferation of the human microvascular endothelial cells (HMEC-1), but were able to significantly induce HMEC-1 migration in vitro. Addition of the PI3K-inhibitor LY294002 and the MEK-inhibitor U0126 to the HMEC-1 inhibited this effect, suggesting that both Akt and ERK pathways are involved in hDPSC-mediated HMEC-1 migration. Antibodies against VEGF also abolished the chemotactic actions of hDPSC. Furthermore, in the chicken chorioallantoic membrane (CAM) assay, hDPSC were able to significantly induce blood vessel formation. In conclusion, hDPSC have the ability to induce angiogenesis, meaning that this stem cell population has a great clinical potential, not only for tissue engineering but also for the treatment of chronic wounds, stroke and myocardial infarctions.  相似文献   

11.
Some physico-chemical properties of the enamel of deciduous and permanent (young and old) teeth were investigated and compared using x-ray diffraction, infrared absorption spectroscopy, scanning electron microscopy and chemical analyses. Results demonstrated the following: all enamel samples gave x-ray diffraction patterns of only apatite; all enamel samples gave IR absorption spectra of carbonate-containing apatite; the α-axis of deciduous enamel apatite was larger than that of permanent (both young and old) enamel apatite (mean values, deciduous = 9.458 ± 0.003A; permanent =9 443 ± 0.003A); apatite crystallite dimensions increased with age especially along the c-axis; when compared to permanent, deciduous enamel contained slightly more carbonate, magnesium and HPO42-; the prism (enamel rods) dimensions were slightly smaller, and the extent of acid-etching was more extensive in deciduous enamel than in permanent enamel. These observations combined with other factors such as the difference in the orientation of and crystal density in prism rods and the difference in conditions of the oral environment between deciduous and permanent enamel may account for the reported observations of a decrease in caries prevalance with age.  相似文献   

12.

Background

Many adult tissues contain a population of stem cells with the ability to regenerate structures similar to the microenvironments from which they are derived in vivo and represent a promising therapy for the regeneration of complex tissues in the clinical disorder. Human adult stem cells (SCs) including bone marrow stem cells (BMSCs), dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) have been characterized for their high proliferative potential, expression of characteristic SC-associated markers and for the plasticity to differentiate in different lineage in vitro.

Methodology/Principal Findings

The aim of this study is to define the molecular features of stem cells from oral tissue by comparing the proteomic profiles obtained with 2-DE followed by MALDI-TOF/TOF of ex-vivo cultured human PDLSCs, DPSCs and BMSCs. Our results showed qualitative similarities in the proteome profiles among the SCs examined including some significant quantitative differences. To enrich the knowledge of oral SCs proteome we performed an analysis in narrow range pH 4–7 and 6–9, and we found that DPSCs vs PDLSCs express differentially regulated proteins that are potentially related to growth, regulation and genesis of neuronal cells, suggesting that SCs derived from oral tissue source populations may possess the potential ability of neuronal differentiation which is very consistent with their neural crest origin.

Conclusion/Significance

This study identifies some differentially expressed proteins by using comparative analysis between DPSCs and PDLSCs and BMSCs and suggests that stem cells from oral tissue could have a different cell lineage potency compared to BMSCs.  相似文献   

13.
Myofibroblasts and extracellular matrix are important components in wound healing. Alpha-smooth muscle actin (α-SMA) is a marker of myofibroblasts. Fibrillin-1 is a major constituent of microfibrils and an extracellular-regulator of TGF-β1, an important cytokine in the transdifferentiation of resident fibroblasts into myofibroblasts. To study the correlation between changes in fibrillin-1 expression and myofibroblast differentiation, we examined alterations in fibrillin-1 and α-SMA expression in organotypic cultures of dental pulp in vitro. Extracted healthy human teeth were cut to 1-mm-thick slices and cultured for 7 days. In intact dental pulp, fibrillin-1 was broadly distributed, and α-SMA was observed in pericytes and vascular smooth muscle cells. After 7 days of culture, immunostaining for fibrillin-1 became faint concomitant with a downregulation in its mRNA levels. Furthermore, fibroblasts, odontoblasts and Schwann cells were immunoreactive for α-SMA with a significant increase in α-SMA mRNA expression. Double immunofluorescence staining was positive for pSmad2/3, central mediators of TGF-β signaling, and α-SMA. The administration of inhibitors for extracellular matrix proteases recovered fibrillin-1 immunostaining; moreover, fibroblasts lost their immunoreactivity for α-SMA along with a downregulation in α-SMA mRNA. These findings suggest that the expression of α-SMA is TGF-β1 dependent, and fibrillin-1 degradation and downregulation might be implicated in the differentiation of myofibroblasts in dental pulp wound healing.  相似文献   

14.
The Anthropology of Modern Human Teeth: Dental Morphology and Its Variation in Recent Human Populations. G. Richard Scott and Christy G. Turner 11. New York: Cambridge University Press, 1997.382 pp.  相似文献   

15.
BackgroundAcute kidney injury (AKI) is a critical condition associated with high mortality. However, the available treatments for AKI are limited. Stem cells from human exfoliated deciduous teeth (SHED) have recently gained attention as a novel source of stem cells. The purpose of this study was to clarify whether SHED have a therapeutic effect on AKI induced by ischemia-reperfusion injury.MethodsThe left renal artery and vein of the mice were clamped for 20 min to induce ischemia. SHED, bone marrow derived mesenchymal stem cells (BMMSC) or phosphate-buffered saline (control) were administered into the subrenal capsule. To confirm the potency of SHED in vitro, H2O2 stimulation assays and scratch assays were performed.ResultsThe serum creatinine and blood urea nitrogen levels of the SHED group were significantly lower than those of the control group, while BMMSC showed no therapeutic effect. Infiltration of macrophages and neutrophils in the kidney was significantly attenuated in mice treated with SHED. Cytokine levels (MIP-2, IL-1β, and MCP-1) in mice kidneys were significantly reduced in the SHED group. In in vitro experiments, SHED significantly decreased MCP-1 secretion in tubular epithelial cells (TEC) stimulated with H2O2. In addition, SHED promoted wound healing in the scratch assays, which was blunted by anti-HGF antibodies.DiscussionSHED attenuated the levels of inflammatory cytokines and improved kidney function in AKI induced by IRI. SHED secreted factors reduced MCP-1 and increased HGF expression, which promoted wound healing. These results suggest that SHED might provide a novel stem cell resource, which can be applied for the treatment of ischemic kidney injury.  相似文献   

16.
This study aimed at analysing the erosive potential of 30 substances (drinks, candies, and medicaments) on deciduous enamel, and analyse the associated chemical factors with enamel dissolution. We analysed the initial pH, titratable acidity (TA) to pH 5.5, calcium (Ca), inorganic phosphate (Pi), and fluoride (F) concentration, and degree of saturation ((pK -pI)HAP, (pK -pI)FAP, and (pK−pI)CaF2) of all substances. Then, we randomly distributed 300 specimens of human deciduous enamel into 30 groups (n = 10 for each of the substances tested. We also prepared 20 specimens of permanent enamel for the sake of comparison between the two types of teeth, and we tested them in mineral water and Coca-Cola®. In all specimens, we measured surface hardness (VHN: Vickers hardness numbers) and surface reflection intensity (SRI) at baseline (SHbaseline and SRIbaseline), after a total of 2 min (SH2min) and after 4 min (SH4min and SRI4min) erosive challenges (60 ml of substance for 6 enamel samples; 30°C, under constant agitation at 95 rpm). There was no significant difference in SHbaseline between deciduous and permanent enamel. Comparing both teeth, we observed that after the first erosive challenge with Coca-Cola®, a significantly greater hardness loss was seen in deciduous (−90.2±11.3 VHN) than in permanent enamel (−44.3±12.2 VHN; p = 0.007), but no differences between the two types of teeth were observed after two challenges (SH4min). After both erosive challenges, all substances except for mineral water caused a significant loss in relative surface reflectivity intensity, and most substances caused a significant loss in surface hardness. Multiple regression analyses showed that pH, TA and Ca concentration play a significant role in initial erosion of deciduous enamel. We conclude that drinks, foodstuffs and medications commonly consumed by children can cause erosion of deciduous teeth and erosion is mainly associated with pH, titratable acidity and calcium concentration in the solution.  相似文献   

17.
Calcified human permanent and primary teeth are often split to obtain pulp tissue for histochemical studies as well as unaltered dentin and surfaces for scanning electron microscopy. Various procedures have been used to cleave teeth, with different degrees of consistency. For rapid and fairly consistent splitting, a vise to the jaws of which triangular metal files have been welded has been found useful. The apices of the files were ground by an electric drill to the shape of typical teeth. Teeth to be split were grooved on their opposing external surfaces and were then cracked open between the file blades upon application of pressure by the vise. Teeth usually split lengthwise, exposing the entire pulp organ in one section and an empty pulp chamber-root canal in the other. This facilitated rapid penetration of fixative into pulp, and easier removal of pulp tissue in toto, as well as providing fresh enamel and dentin surfaces suitable for scanning electron microscopy.  相似文献   

18.
Human dental pulp cells (hDPCs) are a promising resource for regenerative medicine and tissue engineering and can be used for derivation of induced pluripotent stem cells (iPSCs). However, current protocols use reagents of animal origin (mainly fetal bovine serum, FBS) that carry the potential risk of infectious diseases and unwanted immunogenicity. Here, we report a chemically defined protocol to isolate and maintain the growth and differentiation potential of hDPCs. hDPCs cultured under these conditions showed significantly less primary colony formation than those with FBS. Cell culture under stringently defined conditions revealed a donor-dependent growth capacity; however, once established, the differentiation capabilities of the hDPCs were comparable to those observed with FBS. DNA array analyses indicated that the culture conditions robustly altered hDPC gene expression patterns but, more importantly, had little effect on neither pluripotent gene expression nor the efficiency of iPSC induction. The chemically defined culture conditions described herein are not perfect serum replacements, but can be used for the safe establishment of iPSCs and will find utility in applications for cell-based regenerative medicine.  相似文献   

19.
20.
The active metabolite of vitamin D such as 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) is a well-known key regulatory factor in bone metabolism. However, little is known about the potential of vitamin D as an odontogenic inducer in human dental pulp cells (HDPCs) in vitro. The purpose of this study was to evaluate the effect of vitamin D3 metabolite, 1α,25(OH)2D3, on odontoblastic differentiation in HDPCs. HDPCs extracted from maxillary supernumerary incisors and third molars were directly cultured with 1α,25(OH)2D3 in the absence of differentiation-inducing factors. Treatment of HDPCs with 1α,25(OH)2D3 at a concentration of 10 nM or 100 nM significantly upregulated the expression of dentin sialophosphoprotein (DSPP) and dentin matrix protein1 (DMP1), the odontogenesis-related genes. Also, 1α,25(OH)2D3 enhanced the alkaline phosphatase (ALP) activity and mineralization in HDPCs. In addition, 1α,25(OH)2D3 induced activation of extracellular signal-regulated kinases (ERKs), whereas the ERK inhibitor U0126 ameliorated the upregulation of DSPP and DMP1 and reduced the mineralization enhanced by 1α,25(OH)2D3. These results demonstrated that 1α,25(OH)2D3 promoted odontoblastic differentiation of HDPCs via modulating ERK activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号