共查询到20条相似文献,搜索用时 15 毫秒
1.
MR Rivero SL Miras C Feliziani N Zamponi R Quiroga SF Hayes AS Rópolo MC Touz 《PloS one》2012,7(8):e43712
In Giardia, lysosome-like peripheral vacuoles (PVs) need to specifically coordinate their endosomal and lysosomal functions to be able to successfully perform endocytosis, protein degradation and protein delivery, but how cargo, ligands and molecular components generate specific routes to the PVs remains poorly understood. Recently, we found that delivering membrane Cathepsin C and the soluble acid phosphatase (AcPh) to the PVs is adaptin (AP1)-dependent. However, the receptor that links AcPh and AP1 was never described. We have studied protein-binding to AcPh by using H6-tagged AcPh, and found that a membrane protein interacted with AcPh. This protein, named GlVps (for Giardia lamblia Vacuolar protein sorting), mainly localized to the ER-nuclear envelope and in some PVs, probably functioning as the sorting receptor for AcPh. The tyrosine-binding motif found in the C-terminal cytoplasmic tail domain of GlVps was essential for its exit from the endoplasmic reticulum and transport to the vacuoles, with this motif being necessary for the interaction with the medium subunit of AP1. Thus, the mechanism by which soluble proteins, such as AcPh, reach the peripheral vacuoles in Giardia appears to be very similar to the mechanism of lysosomal protein-sorting in more evolved eukaryotic cells. 相似文献
2.
Hyangju Kang Soo Youn Kim Kyungyoung Song Eun Ju Sohn Yongjik Lee Dong Wook Lee Ikuko Hara-Nishimura Inhwan Hwang 《The Plant cell》2012,24(12):5058-5073
The retromer is involved in recycling lysosomal sorting receptors in mammals. A component of the retromer complex in Arabidopsis thaliana, vacuolar protein sorting 29 (VPS29), plays a crucial role in trafficking storage proteins to protein storage vacuoles. However, it is not known whether or how vacuolar sorting receptors (VSRs) are recycled from the prevacuolar compartment (PVC) to the trans-Golgi network (TGN) during trafficking to the lytic vacuole (LV). Here, we report that VPS29 plays an essential role in the trafficking of soluble proteins to the LV from the TGN to the PVC. maigo1-1 (mag1-1) mutants, which harbor a knockdown mutation in VPS29, were defective in trafficking of two soluble proteins, Arabidopsis aleurain-like protein (AALP):green fluorescent protein (GFP) and sporamin:GFP, to the LV but not in trafficking membrane proteins to the LV or plasma membrane or via the secretory pathway. AALP:GFP and sporamin:GFP in mag1-1 protoplasts accumulated in the TGN but were also secreted into the medium. In mag1-1 mutants, VSR1 failed to recycle from the PVC to the TGN; rather, a significant proportion was transported to the LV; VSR1 overexpression rescued this defect. Moreover, endogenous VSRs were expressed at higher levels in mag1-1 plants. Based on these results, we propose that VPS29 plays a crucial role in recycling VSRs from the PVC to the TGN during the trafficking of soluble proteins to the LV. 相似文献
3.
Larissa Kolesnikova Thomas Strecker Eiji Morita Florian Zielecki Eva Mittler Colin Crump Stephan Becker 《Journal of virology》2009,83(5):2327-2337
VP40, the major matrix protein of Marburg virus, is the main driving force for viral budding. Additionally, cellular factors are likely to play an important role in the release of progeny virus. In the present study, we characterized the influence of the vacuolar protein sorting (VPS) pathway on the release of virus-like particles (VLPs), which are induced by Marburg virus VP40. In the supernatants of HEK 293 cells expressing VP40, different populations of VLPs with either a vesicular or a filamentous morphology were detected. While the filaments were almost completely composed of VP40, the vesicular particles additionally contained considerable amounts of cellular proteins. In contrast to that in the vesicles, the VP40 in the filaments was regularly organized, probably inducing the elimination of cellular proteins from the released VLPs. Vesicular particles were observed in the supernatants of cells even in the absence of VP40. Mutation of the late-domain motif in VP40 resulted in reduced release of filamentous particles, and likewise, inhibition of the VPS pathway by expression of a dominant-negative (DN) form of VPS4 inhibited the release of filamentous particles. In contrast, the release of vesicular particles did not respond significantly to the expression of DN VPS4. Like the budding of VLPs, the budding of Marburg virus particles was partially inhibited by the expression of DN VPS4. While the release of VLPs from VP40-expressing cells is a valuable tool with which to investigate the budding of Marburg virus particles, it is important to separate filamentous VLPs from vesicular particles, which contain many cellular proteins and use a different budding mechanism.In recent years, virus-like particles (VLPs), which are formed upon recombinant expression of the viral matrix and/or surface glycoproteins, have been recognized as representing powerful tools for developing novel vaccines and investigating certain aspects of the viral replication cycle (24, 44, 59, 63). Matrix proteins from many enveloped RNA viruses, including retroviruses, rhabdoviruses, filoviruses, paramyxoviruses, orthomyxoviruses, and arenaviruses, are able to induce VLPs (10, 14, 18, 28-30, 48, 49, 52). Increasing evidence also indicates that budding activity, and thus the release of VLPs, is often influenced by a complex interplay with components of the endosomal sorting complexes required for transport (ESCRTs), which mainly constitute the vacuolar protein sorting (VPS) pathway (16, 38, 42, 54). ESCRTs trigger the formation and budding of vesicles into the lumina of multivesicular bodies (MVBs), and the constituents of the ESCRTs are recycled by the activity of VPS4, an AAA-type ATPase. Expression of dominant-negative (DN) VPS4 mutants, which lack the ability to bind or hydrolyze ATP, blocks recycling of the ESCRTs and induces the formation of enlarged endosomes lacking internal vesicle accumulation (2, 3, 7). The inward budding of vesicles into the MVBs is topologically similar to the budding of viruses, since the vesicles bud away from the cytosol and into the lumen (reviewed in references 1, 20, and 26). Therefore, it is not entirely surprising that viruses use the cellular ESCRT machinery to organize the budding of viral progeny. Interactions between viral matrix proteins and ESCRTs occur through tetrapeptide motifs, known as late domains, which were first identified in retroviruses. Known late domains consist of the amino acid sequence P(T/S)AP, PPxY, or YxxL, where “x” represents any amino acid (19, 25, 62). The P(T/S)AP motif, for example, mediates interaction with tumor susceptibility gene 101 (Tsg101) (16, 36, 57); the PPxY motif mediates binding to WW domains of Nedd4-like ubiquitin ligases (9, 22); and the YxxL motif mediates interaction with AIP1/Alix (35, 47, 58). Recently, a novel late-domain motif, FPIV, has been identified in paramyxoviruses (46), and it is thought that additional late-domain motifs remain to be discovered (for a review, see reference 5).Inhibition of the VPS pathway has been shown to inhibit the budding of various viruses that are released with the help of ESCRTs. However, the budding of viruses and VLPs depends on the activity of ESCRTs to different degrees. Downregulation of Tsg101, a member of the ESCRT-I complex, inhibited the release of VLPs mediated by lymphocytic choriomeningitis virus Z protein and Marburg virus (MARV) VP40 (42, 54) but did not substantially inhibit the release of Gag-induced VLPs of Moloney murine leukemia virus and Rous sarcoma virus or that of matrix protein-induced VLPs of rabies virus (16, 27, 38). Expression of DN VPS4 inhibited the release of VLPs induced by the Gag proteins of Rous sarcoma virus and Moloney murine leukemia virus (16, 38) as well as that of VLPs induced by Lassa virus Z protein (55) but had no effect on the budding of rabies virus and cytomegalovirus (13, 27). These data indicate that in spite of the presence of late-domain motifs, a block in the VPS pathway may not always be critical for the budding of VLPs. In addition, the lack of known late domains in many enveloped viruses raises the question of whether they use other entry points into the VPS pathway or whether they exploit entirely different mechanisms of budding (60). To date, knowledge of how viral matrix proteins engage cellular machineries, such as the VPS pathway, to induce viral budding at the plasma membrane is very limited (8).The matrix protein VP40 of MARV contains only one known late-domain motif, PPPY, and a recent study showed that mutation of this late domain inhibited the release of VP40-induced VLPs. In addition, depletion of Tsg101 reduced the release of VP40-induced VLPs, suggesting that ESCRT-I is involved in this process (54). Whether a functional VPS pathway is important for the release of MARV VP40-induced VLPs or MARV particles remains unknown.VLPs induced by many viral matrix proteins have a morphology similar to that of cellular vesicles, which makes it difficult to separate the spherical VLPs from released cellular vesicles (4, 17, 53). In contrast, VLPs induced by the filovirus matrix protein VP40 are elongated and similar in morphology to viral particles (30, 49). Nevertheless, we observed that the supernatants of cells expressing VP40 contained various populations of particles with different morphologies. This raised the questions of whether the different particles are released by the same mechanism, whether they are all induced by VP40, and whether they are dependent on the same cellular pathways.The aim of the present study was to analyze the populations of particles released from cells expressing the MARV matrix protein VP40 and to gain further insights into the interaction between MARV and the cellular machinery involved in the budding of VLPs and MARV particles.We found that cells expressing VP40 released vesicular and filamentous particles, which could be separated by gradient centrifugation. Fractions with mainly vesicular particles represented a mixture of vesicles containing exclusively cellular proteins and vesicles also containing VP40 and few short filamentous particles. Longer filamentous particles, whose morphology resembled that of MARV particles but which displayed a much higher variability in length (400 nm to 5 μm), were found in denser gradient fractions. Filamentous VP40-induced VLPs were able to sort out cellular proteins efficiently. Release of VP40-induced filamentous VLPs was supported by the late-domain motif present in VP40, and inhibition of the cellular ESCRT machinery reduced the amount of these VLPs in the supernatant. Interestingly, the release of VLPs induced by a mutant of VP40 lacking the late domain was also reduced by inhibition of the cellular ESCRT machinery. Expression of a DN mutant of VPS4 diminished the budding of infectious MARV particles by 50%, a finding consistent with the idea that the activity of the ESCRT machinery supports viral budding but is not essential. 相似文献
4.
David G. Robinson 《Plant physiology》2014,165(4):1417-1423
Vacuolar sorting receptors bind cargo ligands early in the secretory pathway and show that multivesicular body-vacuole fusion requires a Rab5/Rab7 GTPase conversion with consequences for retromer binding.To serve the purposes of controlled protein turnover, eukaryotic cells compartmentalize the required acid hydrolases in specialized digestive organelles: lysosomes in animals and vacuoles in yeasts and plants. Therefore, a reliable system must be in operation to prevent such proteolytic enzymes being released at the cell surface. Such a mechanism requires that acid hydrolases be identified and diverted away from the secretory flow to the plasma membrane (PM). This process is facilitated by receptors that recognize specific motifs in the hydrolases that are absent in secretory proteins. The most well-known example of this is the mannosyl 6-phosphate receptor (MPR), which is responsible for the sorting of lysosomal enzymes; indeed, it has become a paradigm for protein sorting in most cell biology textbooks. It entails the recognition of phosphomannan cargo ligands by MPRs in the trans-Golgi network (TGN) followed by the sequestration of the MPR-ligand complexes into specific transport vectors (clathrin-coated vesicles [CCVs]). These are then transported to an endosomal compartment (the early endosome [EE]) having a more acidic pH than the TGN, thereby causing the ligands to separate from the MPRs. The MPRs are subsequently recycled back to the TGN via retromer-coated carriers for another round of trafficking (for review, see Braulke and Bonifacino, 2009; Seaman, 2012).Many plant scientists support a scenario for the sorting of soluble vacuolar proteins and the trafficking of their receptors (vacuolar sorting receptors [VSRs]) that closely resembles that of the MPR system of mammalian cells (Hwang, 2008; De Marcos Lousa et al., 2012; Kang et al., 2012; Sauer et al., 2013; Xiang et al., 2013). This working model is based on three key observations: (1) VSRs were first identified in detergent-solubilized CCV fractions isolated from developing pea (Pisum sativum) cotyledons; (2) CCVs are regularly seen budding off the TGN in thin-sectioned plant cells; and (3) depending on the organism, VSRs and VSR-reporter constructs are found concentrated either in the TGN or in multivesicular prevacuolar compartments (PVCs) under steady-state conditions (Robinson and Pimpl, 2014a, 2014b, and refs. therein). Unfortunately, information on VSRs has not been obtained from a single experimental system. Although much work on Arabidopsis (Arabidopsis thaliana) VSR mutants has been published (for review, see De Marcos Lousa et al., 2012) and the majority of immunogold electron microscopic localization experiments have been performed in Arabidopsis, the majority of the fluorescence localizations, particularly with regard to VSR trafficking, have been carried out by transient expression in tobacco (Nicotiana tabacum; agroinfiltration for leaves and electroporation for protoplasts). Nevertheless, it should be stressed that sorting motifs for acid hydrolases and their corresponding receptors in the three major eukaryotic organismal groups differ considerably (Robinson et al., 2012). In addition, the secretory and endocytic pathways of plant cells contrast significantly with mammalian cells, the most important distinctions being (1) the lack of an intermediate compartment between the endoplasmic reticulum (ER) and the Golgi apparatus in plants, (2) that plants have motile Golgi stacks rather than a perinuclear Golgi complex, and (3) the absence of an independent EE in plants, the function of which is assumed by the TGN (Contento and Bassham, 2012). While these differences do not automatically negate the validity of the above working model for VSR trafficking, they at least legitimize a more thorough analysis of the supporting data than has previously been the case (Robinson and Pimpl, 2014a, 2014b).The principal issues at stake are as follows. Where do VSRs bind and release their cargo ligands? What is the actual mechanism resulting in the separation of secretory from vacuolar cargo molecules? What is/are the precise role(s) of TGN-derived CCVs? And where does retromer pick up VSRs and where are they delivered to? The impact of several new publications on these points of dispute is the subject of this article. 相似文献
5.
A Pumpkin 72-kDa Membrane Protein of Precursor-Accumulating Vesicles Has Characteristics of a Vacuolar Sorting Receptor 总被引:12,自引:0,他引:12
Shimada Tomoo; Kuroyanagi Miwa; Nishimura Mikio; Hara-Nishimura Ikuko 《Plant & cell physiology》1997,38(12):1414-1420
Precursor-accumulating (PAC) vesicles were previously shownto mediate the transport of the precursor of a major storageprotein (pro2S albumin) to protein-storage vacu-oles in developingpumpkin cotyledons. In this study, we characterized two homologousproteins from PAC vesicles, a 72 kDa protein (PV72) and an 82kDa protein (PV82). PV72 and PV82 showed an ability to bindto peptides derived from both an internal propeptide and a C-terminalpeptide of pro2S albumin. PV72 was predicted to be a type Iintegral membrane protein with epidermal growth factor (EGF)-likemotifs. These results suggest that PV72 and PV82 are potentialsorting receptors for 2S albumin to protein-storage vacuoles. (Received August 25, 1997; Accepted October 17, 1997) 相似文献
6.
7.
Yamazaki Misako; Shimada Tomoo; Takahashi Hideyuki; Tamura Kentaro; Kondo Maki; Nishimura Mikio; Hara-Nishimura Ikuko 《Plant & cell physiology》2008,49(4):678
The above article 相似文献
8.
Kentaro Fuji Makoto Shirakawa Yuki Shimono Tadashi Kunieda Yoichiro Fukao Yasuko Koumoto Hideyuki Takahashi Ikuko Hara-Nishimura Tomoo Shimada 《Plant physiology》2016,170(1):211-219
Adaptor protein (AP) complexes play critical roles in protein sorting among different post-Golgi pathways by recognizing specific cargo protein motifs. Among the five AP complexes (AP-1–AP-5) in plants, AP-4 is one of the most poorly understood; the AP-4 components, AP-4 cargo motifs, and AP-4 functional mechanism are not known. Here, we identify the AP-4 components and show that the AP-4 complex regulates receptor-mediated vacuolar protein sorting by recognizing VACUOLAR SORTING RECEPTOR1 (VSR1), which was originally identified as a sorting receptor for seed storage proteins to target protein storage vacuoles in Arabidopsis (Arabidopsis thaliana). From the vacuolar sorting mutant library GREEN FLUORESCENT SEED (GFS), we isolated three gfs mutants that accumulate abnormally high levels of VSR1 in seeds and designated them as gfs4, gfs5, and gfs6. Their responsible genes encode three (AP4B, AP4M, and AP4S) of the four subunits of the AP-4 complex, respectively, and an Arabidopsis mutant (ap4e) lacking the fourth subunit, AP4E, also had the same phenotype. Mass spectrometry demonstrated that these four proteins form a complex in vivo. The four mutants showed defects in the vacuolar sorting of the major storage protein 12S globulins, indicating a role for the AP-4 complex in vacuolar protein transport. AP4M bound to the tyrosine-based motif of VSR1. AP4M localized at the trans-Golgi network (TGN) subdomain that is distinct from the AP-1-localized TGN subdomain. This study provides a novel function for the AP-4 complex in VSR1-mediated vacuolar protein sorting at the specialized domain of the TGN.Membrane trafficking in plants shares many fundamental features with those in yeast and animals (Bassham et al., 2008). In general, vacuolar proteins are synthesized on the rough endoplasmic reticulum and then transported to vacuoles via the Golgi apparatus (Xiang et al., 2013; Robinson and Pimpl, 2014). The vacuolar trafficking in plants has been studied by monitoring the transport of reporter proteins to lytic vacuoles in vegetative cells and tissues (Jin et al., 2001; Pimpl et al., 2003; Miao et al., 2008; Niemes et al., 2010). Recently, seed storage proteins became a model cargo for monitoring the transport of endogenous vacuolar proteins in plants (Shimada et al., 2003a; Sanmartín et al., 2007; Isono et al., 2010; Pourcher et al., 2010; Uemura et al., 2012; Shirakawa et al., 2014). During seed maturation, a large amount of storage proteins are synthesized and sorted to specialized vacuoles, the protein storage vacuoles (PSVs). To properly deliver vacuolar proteins, sorting receptors play a critical role in recognizing the vacuole-targeting signal of the proteins. VACUOLAR PROTEIN SORTING10 and Man-6-P receptor function as sorting receptors for vacuolar/lysosomal proteins in the trans-Golgi network (TGN) of yeast and mammals, respectively. The best-characterized sorting receptors in plants are VACUOLAR SORTING RECEPTOR (VSR) family proteins (De Marcos Lousa et al., 2012). VSRs have been shown to function in sorting both storage proteins to PSVs (Shimada et al., 2003a; Fuji et al., 2007) and lytic cargos to lytic vacuoles (Zouhar et al., 2010).To sort the receptors in the TGN into vacuoles/lysosomes, the adaptor protein (AP) complex binds the cytosolic domain of the receptors. The AP complexes form evolutionarily conserved machinery that mediates the post-Golgi trafficking in eukaryotic cells (Robinson, 2004). There are five types of AP complexes, AP-1 to AP-5. The functions of AP-1, AP-2, and AP-3 have been established. AP-1 appears to be involved in trafficking between the TGN and endosomes (Hirst et al., 2012), AP-2 is involved in clathrin-mediated endocytosis (McMahon and Boucrot, 2011), and AP-3 is involved in protein trafficking from the TGN/endosomes to the vacuole/lysosomes (Dell’Angelica, 2009). However, little is known about AP-4 and AP-5. Mammalian AP-4 may be involved in basolateral sorting in polarized cells and in the transport of specific cargo proteins, such as the amyloid precursor protein APP, from the TGN to endosomes (Burgos et al., 2010). The fifth AP complex, AP-5, was recently identified, and its orthologs are widely conserved in the eukaryotic genomes (Hirst et al., 2011). The AP complexes exist as heterotetrameric proteins that consist of two large subunits (β1-5 and one each of ɣ/α/δ/ε/ζ), one medium subunit (µ1-5), and one small subunit (σ1-5). The sorting mechanism is best characterized for the medium (µ) subunit, which is known to recognize the Tyr-based YXXФ motif (where Ф represents Leu, Ile, Phe, Met, or Val) that is present in the cytosolic domains of cargo proteins (Ohno et al., 1995). Mutations of the YXXФ motif abolish the interaction with µ and alter the subcellular localization of the cargo proteins.The genome of Arabidopsis (Arabidopsis thaliana) contains all five sets of putative AP genes (Bassham et al., 2008; Hirst et al., 2011). The function of AP-4 in membrane trafficking and its physiological roles in plants are largely unknown. In this study, we identified and characterized the AP-4 complex in Arabidopsis. Mutants lacking the AP-4 subunits exhibited defects in VSR1-mediated vacuolar sorting of storage proteins in seeds. Our results provide new insights into the receptor-mediated vacuolar trafficking in post-Golgi pathways. 相似文献
9.
10.
An Integrated Approach for Experimental Target Identification of Hypoxia-induced miR-210 总被引:1,自引:0,他引:1
Pasquale Fasanaro Simona Greco Maria Lorenzi Mario Pescatori Maura Brioschi Ritu Kulshreshtha Cristina Banfi Andrew Stubbs George A. Calin Mircea Ivan Maurizio C. Capogrossi Fabio Martelli 《The Journal of biological chemistry》2009,284(50):35134-35143
11.
鉴定能与活性RhoB分子结合的靶蛋白。制备GST融合的活性RhoB蛋白(GST-RhoB),与LPS刺激的DC2.4细胞裂解物混合后实施pull-down实验,沉降复合物通过SDS-PAGE分析、金染色后,对与GST-RhoB结合的蛋白条带进行基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)分析。然后制备小鼠的树突状细胞,LPS刺激12 h后,进行荧光标记的抗体染色。激光共聚焦显微镜下观察RhoB与MYH9的细胞内定位。通过MALDI-TOF质谱分析,鉴定到一个新的可以与RhoB的活性形式结合的马达分子MYH9。激光共聚焦显微镜的结果表明,RhoB在LPS刺激前后均与MYH9在树突状细胞内共定位。该研究首次发现MYH9可与活性RhoB结合,可能是RhoB下游的一个靶蛋白。 相似文献
12.
Intracellular membrane fusion requires the regulated assembly of SNARE (soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor) proteins anchored in the apposed membranes. To exert the force required to drive fusion between lipid bilayers, juxtamembrane SNARE motifs zipper into four-helix bundles. Importantly, SNARE function is regulated by additional factors, none more extensively studied than the SM (Sec1/Munc18-like) proteins. SM proteins interact with both individual SNAREs and SNARE complexes, likely chaperoning SNARE complex formation and protecting assembly intermediates from premature disassembly by NSF. Four families of SM proteins have been identified, and representative members of two of these families (Sec1/Munc18 and Sly1) have been structurally characterized. We report here the 2.6 Å resolution crystal structure of an SM protein from the third family, Vps33. Although Vps33 shares with the first two families the same basic three-domain architecture, domain 1 is displaced by 15 Å, accompanied by a 40° rotation. A unique feature of the Vps33 family of SM proteins is that its members function as stable subunits within a multi-subunit tethering complex called HOPS (homotypic fusion and vacuolar protein sorting). Integration into the HOPS complex depends on the interaction between Vps33 and a second HOPS subunit, Vps16. The crystal structure of Vps33 bound to a C-terminal portion of Vps16, also at 2.6 Å resolution, reveals the structural basis for this interaction. Despite the extensive interface between the two HOPS subunits, the conformation of Vps33 is only subtly affected by binding to Vps16. 相似文献
13.
Paola Fabrizio Shawn Hoon Mehrnaz Shamalnasab Abdulaye Galbani Min Wei Guri Giaever Corey Nislow Valter D. Longo 《PLoS genetics》2010,6(7)
The study of the chronological life span of Saccharomyces cerevisiae, which measures the survival of populations of non-dividing yeast, has resulted in the identification of homologous genes and pathways that promote aging in organisms ranging from yeast to mammals. Using a competitive genome-wide approach, we performed a screen of a complete set of approximately 4,800 viable deletion mutants to identify genes that either increase or decrease chronological life span. Half of the putative short-/long-lived mutants retested from the primary screen were confirmed, demonstrating the utility of our approach. Deletion of genes involved in vacuolar protein sorting, autophagy, and mitochondrial function shortened life span, confirming that respiration and degradation processes are essential for long-term survival. Among the genes whose deletion significantly extended life span are ACB1, CKA2, and TRM9, implicated in fatty acid transport and biosynthesis, cell signaling, and tRNA methylation, respectively. Deletion of these genes conferred heat-shock resistance, supporting the link between life span extension and cellular protection observed in several model organisms. The high degree of conservation of these novel yeast longevity determinants in other species raises the possibility that their role in senescence might be conserved. 相似文献
14.
The Phosphatidylinositol 3-Phosphate Binding Protein Vac1p Interacts with a Rab GTPase and a Sec1p Homologue to Facilitate Vesicle-mediated Vacuolar Protein Sorting
下载免费PDF全文

Gregory G. Tall Hiroko Hama Daryll B. DeWald Bruce F. Horazdovsky 《Molecular biology of the cell》1999,10(6):1873-1889
Activated GTP-bound Rab proteins are thought to interact with effectors to elicit vesicle targeting and fusion events. Vesicle-associated v-SNARE and target membrane t-SNARE proteins are also involved in vesicular transport. Little is known about the functional relationship between Rabs and SNARE protein complexes. We have constructed an activated allele of VPS21, a yeast Rab protein involved in vacuolar protein sorting, and demonstrated an allele-specific interaction between Vps21p and Vac1p. Vac1p was found to bind the Sec1p homologue Vps45p. Although no association between Vps21p and Vps45p was seen, a genetic interaction between VPS21 and VPS45 was observed. Vac1p contains a zinc-binding FYVE finger that may bind phosphatidylinositol 3-phosphate [PtdIns(3)P]. In other FYVE domain proteins, this motif and PtdIns(3)P are necessary for membrane association. Vac1 proteins with mutant FYVE fingers still associated with membranes but showed vacuolar protein sorting defects and reduced interactions with Vps45p and activated Vps21p. Vac1p membrane association was not dependent on PtdIns(3)P, Pep12p, Vps21p, Vps45p, or the PtdIns 3-kinase, Vps34p. Vac1p FYVE finger mutant missorting phenotypes were suppressed by a defective allele of VPS34. These data indicate that PtdIns(3)P may perform a regulatory role, possibly involved in mediating Vac1p protein-protein interactions. We propose that activated-Vps21p interacts with its effector, Vac1p, which interacts with Vps45p to regulate the Golgi to endosome SNARE complex. 相似文献
15.
16.
Gang Cui Yunfeng Wang Shanshan Yu Lixiang Yang Bing Li Wei Wang Peng Zhou Jiang Wu Ting Lu Dongjian Chen 《Cellular and molecular neurobiology》2014,34(1):83-94
Vacuolar protein sorting 4 (VPS4), is a member of ATPases associated with diverse cellular activities protein family. VPS4 is composed of VPS4A and VPS4B, VPS4B plays an important role in the lysosomal degradation pathway, intracellular protein trafficking, virus budding and abscission of cytokinesis. However, information regarding its distribution and possible function in the central nervous system is limited. Therefore, we performed a middle cerebral artery occlusion (MCAO) in adult rats and detected the dynamic changes of VPS4B in hippocampus CA1 subregion. We found that the VPS4B expression was increased strongly after MCAO and reached the peak after 3 days. VPS4B mainly located in the cytoplasm of neurons, but not astrocytes and microglia. Moreover, there was a concomitant up-regulation of active caspase-3. In vitro studies indicated that the up-regulation of VPS4B may be involved in oxygen-glucose deprivation-induced PC12 cell death. And knock-down of VPS4B in cultured differentiated PC12 cells by siRNA showed that VPS4B promoted the expression of active caspase-3. Collectively, all these results and MTT assay suggested that the up-regulation of VPS4B played an important role in the pathophysiology after MCAO, and further research is needed to have a good understanding of its function and mechanism. 相似文献
17.
Yongjik Lee Mihue Jang Kyungyoung Song Hyangju Kang Myoung Hui Lee Dong Wook Lee Jan Zouhar Enrique Rojo Eun Ju Sohn Inhwan Hwang 《Plant physiology》2013,161(1):121-133
In eukaryotic cells, protein trafficking plays an essential role in biogenesis of proteins that belong to the endomembrane compartments. In this process, an important step is the sorting of organellar proteins depending on their final destinations. For vacuolar proteins, vacuolar sorting receptors (VSRs) and receptor homology-transmembrane-RING H2 domain proteins (RMRs) are thought to be responsible. Arabidopsis (Arabidopsis thaliana) contains seven VSRs. Among them, VSR1, VSR3, and VSR4 are involved in sorting storage proteins targeted to the protein storage vacuole (PSV) in seeds. However, the identity of VSRs for soluble proteins of the lytic vacuole in vegetative cells remains controversial. Here, we provide evidence that VSR1, VSR3, and VSR4 are involved in sorting soluble lytic vacuolar and PSV proteins in vegetative cells. In protoplasts from leaf tissues of vsr1vsr3 and vsr1vsr4 but not vsr5vsr6, and rmr1rmr2 and rmr3rmr4 double mutants, soluble lytic vacuolar (Arabidopsis aleurain-like protein:green fluorescent protein [GFP] and carboxypeptidase Y:GFP and PSV (phaseolin) proteins, but not the vacuolar membrane protein Arabidopsis βFructosidase4:GFP, exhibited defects in their trafficking; they accumulated to the endoplasmic reticulum with an increased secretion into medium. The trafficking defects in vsr1vsr4 protoplasts were rescued by VSR1 or VSR4 but not VSR5 or AtRMR1. Furthermore, of the luminal domain swapping mutants between VSR1 and VSR5, the mutant with the luminal domain of VSR1, but not that of VSR5, rescued the trafficking defects of Arabidopsis aleurain-like protein:GFP and phaseolin in vsr1vsr4 protoplasts. Based on these results, we propose that VSR1, VSR3, and VSR4, but not other VSRs, are involved in sorting soluble lytic vacuolar and PSV proteins for their trafficking to the vacuoles in vegetative cells.Two different types of vacuoles have been identified in plant cells. One of them is the lytic vacuole (LV) that is present in vegetative cells, and the other is the protein storage vacuole (PSV) that is present in seed cells (Frigerio et al., 2008; Zouhar and Rojo, 2009; De Marcos Lousa et al., 2012). These two types of vacuoles have different functions. The LV carries out various functions such as osmotic pressure regulation, various hydrolytic activities, detoxification, and homeostasis of calcium and sodium ions. For some of these aspects LV is analogous to the vacuole in yeast (Saccharomyces cerevisiae) or lysosomes in animal cells. In contrast, the PSV is unique in plants and stores a large amount of proteins and minerals that are necessary for seed germination. To perform these functions, vacuoles need a large number of proteins.The organellar proteins destined for vacuoles have to be transported from the endoplasmic reticulum (ER) via a process called protein trafficking. This has been extensively studied in many different eukaryotic cell types, including plant cells. In general, proteins that belong to various endomembrane compartments are cotranslationally translocated into the ER and then transported through the Golgi apparatus and other intermediate compartments depending on their final destinations (Jurgens, 2004; Jolliffe et al., 2005; Sato and Nakano, 2007; Hwang and Robinson, 2009; Reyes et al., 2011). Vesicles are used to transport proteins from one compartment to another. Another important aspect is the specific targeting of organellar proteins. For this, organellar proteins carry a specific sorting or targeting signal that can be a sequence motif generated intrinsically or added posttranslationally (Hadlington and Denecke, 2000; Robinson et al., 2005; Hwang, 2008). The sequence motifs are recognized specifically by sorting receptors localized at the organelles that serve as donor compartments in trafficking pathways (Bassham and Raikhel, 2000; De Marcos Lousa et al., 2012).Two different types of sorting receptors, receptor homology-transmembrane-RING H2 domain proteins (RMRs) and vacuolar sorting receptors (VSRs), have been shown to be involved in the trafficking of vacuolar proteins. It has been proposed that RMRs function as a sorting receptor for storage proteins (Park et al., 2005; Hinz et al., 2007; Wang et al., 2011a). RMRs are type I membrane proteins and those in the luminal domain specifically interact with the C-terminal vacuolar sorting sequence (ctVSS) of storage proteins (Park et al., 2005; Shen et al., 2011). In addition, overexpression of an AtRMR1 deletion mutant inhibits the trafficking of phaseolin to the PSV, but not the protein trafficking to the LV, in protoplasts from leaf cells (Park et al., 2005). VSRs have been identified from various plant species and shown to specifically interact with the sorting motif of vacuolar proteins, which is known as the sequence-specific vacuolar sorting signal (ssVSS) or N-terminal propeptide (Ahmed et al., 1997; Hadlington and Denecke, 2000; Masclaux et al., 2005; Robinson et al., 2005; Hwang, 2008). In plant cells, the majority of VSRs localize to the prevacuolar compartment (PVC), which is the intermediate organelle between the trans-Golgi network (TGN) and vacuole (Tse et al., 2004; daSilva et al., 2005; Miao et al., 2006). In addition, a minor portion of VSR1 localizes to the TGN in plant cells, which supports the notion that VSRs recycle to the TGN from the PVC for sorting of their cargo proteins (Kim et al., 2010). Recent studies in plant cells questioned this concept and proposed other mechanisms for sorting vacuolar proteins. In the alternative proposal, sorting of vacuolar proteins may occur at the ER, and the VSRs may recycle from the TGN to the ER (Castelli and Vitale, 2005; Niemes et al., 2010). VSRs that were once thought to function as sorting receptors at the TGN for the LV proteins (daSilva et al., 2005; Foresti et al., 2010; Kim et al., 2010) have an additional function in the protein trafficking to the PSV in seed cells (Shimada et al., 2003; Zouhar et al., 2010). By using a genetic approach, it has been shown that among seven Arabidopsis (Arabidopsis thaliana) VSRs, VSR1, VSR3, and VSR4 play a role in trafficking of 12S globulins and 2S albumins in seed cells.The VSR isoforms involved in the protein trafficking to the PSV also exist in vegetative tissues (Laval et al., 1999; Kim et al., 2010; Zouhar et al., 2010). Mutations in both VSR1 and VSR4 cause secretion of AtAleurain, but not other LV proteins, into the apoplasts. Thus, it is not clearly understood what is the physiological role of AtVSRs in vegetative tissues (except for their role in vacuolar trafficking of AtAleurain), and what are the VSRs of other vacuolar proteins. In previous studies, it was demonstrated that overexpression of mutant forms of VSR1, VSR2, or BP80 of pea (Pisum sativum), a close homolog of VSR3 and VSR4, in protoplasts from wild-type plants affects trafficking of proteins to the LV (daSilva et al., 2005; Foresti et al., 2010; Kim et al., 2010). In this study, we utilized various VSR and RMR mutant plants and examined the effect of these mutations on the trafficking of LV and PSV proteins in protoplasts. These studies demonstrated that VSR1, VSR3, and VSR4, but not other VSRs and RMRs, are involved in trafficking of soluble LV and PSV proteins in vegetative cells. Further, the luminal domain but not the cytosolic tail of VSRs contains the determinant for the sorting specificity. 相似文献
18.
Structural Requirements for Function of Yeast GGAs in Vacuolar Protein Sorting, α-Factor Maturation, and Interactions with Clathrin
下载免费PDF全文

The GGAs (Golgi-localized, gamma-ear-containing, ARF-binding proteins) are a family of multidomain adaptor proteins involved in protein sorting at the trans-Golgi network of eukaryotic cells. Here we present results from a functional characterization of the two Saccharomyces cerevisiae GGAs, Gga1p and Gga2p. We show that deletion of both GGA genes causes defects in sorting of carboxypeptidase Y (CPY) and proteinase A to the vacuole, vacuolar morphology, and maturation of alpha-factor. A structure-function analysis reveals a requirement of the VHS, GAT, and hinge for function, while the GAE domain is less important. We identify putative clathrin-binding motifs in the hinge domain of both yeast GGAs. These motifs are shown to mediate clathrin binding in vitro. While mutation of these motifs alone does not block function of the GGAs in vivo, combining these mutations with truncations of the hinge and GAE domains diminishes function, suggesting functional cooperation between different clathrin-binding elements. Thus, these observations demonstrate that the yeast GGAs play important roles in the CPY pathway, vacuole biogenesis, and alpha-factor maturation and identify structural determinants that are critical for these functions. 相似文献
19.
Lal A Kim HH Abdelmohsen K Kuwano Y Pullmann R Srikantan S Subrahmanyam R Martindale JL Yang X Ahmed F Navarro F Dykxhoorn D Lieberman J Gorospe M 《PloS one》2008,3(3):e1864
Background
Expression of the tumor suppressor p16INK4a increases during aging and replicative senescence.Methodology/Principal Findings
Here, we report that the microRNA miR-24 suppresses p16 expression in human diploid fibroblasts and cervical carcinoma cells. Increased p16 expression with replicative senescence was associated with decreased levels of miR-24, a microRNA that was predicted to associate with the p16 mRNA coding and 3′-untranslated regions. Ectopic miR-24 overexpression reduced p16 protein but not p16 mRNA levels. Conversely, introduction of antisense (AS)-miR-24 blocked miR-24 expression and markedly enhanced p16 protein levels, p16 translation, and the production of EGFP-p16 reporter bearing the miR-24 target recognition sites.Conclusions/Significance
Together, our results suggest that miR-24 represses the initiation and elongation phases of p16 translation. 相似文献20.
A Vacuolar-Type H+-ATPase in a Nonvacuolar Organelle Is Required for the Sorting of Soluble Vacuolar Protein Precursors in Tobacco Cells 总被引:6,自引:2,他引:6
下载免费PDF全文

In plant cells, vacuolar matrix proteins are separated from the secretory proteins at the Golgi complex for transport to the vacuoles. To investigate the involvement of vacuolar-type ATPase (V-ATPase) in the vacuolar targeting of soluble proteins, we analyzed the effects of bafilomycin A1 and concanamycin A on the transport of vacuolar protein precursors in tobacco cells. Low concentrations of these inhibitors caused the missorting of several vacuolar protein precursors; sorting was more sensitive to concanamycin A than to bafilomycin A1. Secretion of soluble proteins from tobacco cells was also inhibited by bafilomycin A1 and concanamycin A. We next analyzed the subcellular localization of V-ATPase. V-ATPase was found in a wide variety of endomembrane organelles. Both ATPase activity and ATP-dependent proton-pumping activity in the Golgi-enriched fraction were more sensitive to concanamycin A than to bafilomycin A1, whereas these activities in the tonoplast fraction were almost equally sensitive to both reagents. Our observations indicate that the V-ATPase in the organelle that was recovered in the Golgi-enriched fraction is required for the transport of vacuolar protein precursors and that this V-ATPase is distinguishable from the tonoplast-associated V-ATPase. 相似文献