首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Copper(II) complexes with the non-steroidal anti-inflammatory drugs (NSAIDs) naproxen and diclofenac have been synthesized and characterized in the presence of nitrogen donor heterocyclic ligands (2,2′-bipyridine, 1,10-phenanthroline or pyridine). Naproxen and diclofenac act as deprotonated ligands coordinated to Cu(II) ion through carboxylato oxygens. The crystal structures of (2,2′-bipyridine)bis(naproxenato)copper(II), , (1,10-phenanthroline)bis(naproxenato)copper(II), and bis(pyridine)bis(diclofenac)copper(II), have been determined by X-ray crystallography. The UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that the complexes can bind to CT DNA with (2,2′-bipyridine)bis(naproxenato)copper(II) exhibiting the highest binding constant to CT DNA. Competitive study with ethidium bromide (EB) indicates that the complexes can displace the DNA-bound EB suggesting strong competition with EB. The cyclic voltammograms of the complexes recorded in the presence of CT DNA have shown that the complexes can bind to CT DNA by the intercalative binding mode which has also been verified by DNA solution viscosity measurements. The NSAID ligands and their complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values. The biological properties of the previously reported complexes [Cu2(naproxenato)4(H2O)2], [Cu2(diclofenac)4(H2O)2] and [Cu(naproxenato)2(pyridine)2(H2O)] have been also evaluated. The dinuclear complexes exhibit similar affinity for CT DNA as the 2,2′-bipyridine or 1,10-phenanthroline containing complexes. The pyridine containing complexes exhibit the lowest affinity for CT DNA and the lowest ability to displace EB from its EB-DNA complex.  相似文献   

2.
The macrocyclic symmetrical and a series of unsymmetrical binuclear copper(II) complexes have been synthesized by using mononuclear complex [CuL] [3,3′-((1E,7E)-3,6-dioxa-2,7-diazaocta-1,7-diene-1,8-diyl)bis(3-formyl-5-methyl-2-diolato)copper(II)]. Another compartment of the [CuL] have been condensed with various diamines like 1,2-bis(aminooxy)ethane (L1), 1,2-diamino ethane(L2a), 1,3-diamino propane(L2b), 1,4-diamino butane(L2c), 1,2-diamino benzene(L2d), 1,8-diamino naphthalene(L2e) and characterized by elemental, spectroscopic, and X-ray crystallographic methods. The influence of the coordination geometry and the ring size of the binucleating ligands on the electronic, redox, magnetic, catecholase activity, DNA binding and cleavage properties have been studied. The molecular structures of the symmetrical binuclear complex [Cu2L1(H2O)2](ClO4)2 (1) and unsymmetrical binuclear complex [Cu2L2b(ClO4)(H2O)]ClO4 (2b) were determined by X-ray crystallography. Both of them were discrete binuclear species in which each Cu(II) ions are in distorted square pyramid. The Cu?Cu distances vary from 3.0308 (2b) to 3.0361 Å (1). Electrochemical studies evidenced that two quasi-reversible one electron-transfer reduction waves −0.91 to −1.01 V, −1.26 to −1.55 V) for binuclear complexes are obtained in the cathodic region. Cryomagnetic investigation of the binuclear complexes reveals a weak antiferromagnetic spin exchange interaction between the Cu(II) ions within the complexes (−2J = 104.4-127.5 cm−1). The initial rate (Vin) for the oxidation of 3,5-di-tert-butylcatechol to o-quinone by the binuclear Cu(II)complexes are in the range 3.6 × 10−5 to 7.3 × 10−5 Ms−1. The binuclear Cu(II) complexes are avid binders to calf thymus DNA. The complexes display significant oxidative cleavage of circular plasmid pBR322 DNA in the presence of mercaptoethanol using the singlet oxygen as a reactive species. The aromatic diamine condensed macrocyclic ligands of copper(II) complexes display better DNA interaction and significant chemical nuclease activity than the aliphatic diamine condensed macrocyclic Cu(II) complexes.  相似文献   

3.
Two new binuclear copper complexes, [Cu2(oxpn)(bpy)(pic)(H2O)](pic) (1) and [Cu2(oxpn)(Me2bpy)(pic)](pic) (2) [H2oxpn = N,N′-bis(3-aminopropyl)oxamide; Hpic = 2,4,6-trinitrophenol; bpy = 2,2′-bipyridine; Me2bpy = 4,4′-dimethyl-2,2′-bipyridine], have been synthesized and characterized by elemental analyses, conductivity measurements, IR, UV-visible spectroscopy and single crystal X-ray analyses. Both complexes have similar molecular structures. In complex 1, the central two Cu(II) atoms are bridged by cis-oxpn2− with the Cu1-Cu2 separation of 5.221 Å and the polyhedron of each copper atom is a square-pyramid. Similarly, complex 2 is a cis-oxpn2−-bridged binuclear complex with the Cu1-Cu2 separation of 5.196 Å. Cu1(II) central atom situated in a tetrahedral geometry is four-coordinated and Cu(II) atom situated in a square-pyramidal geometry is five-coordinated. Hydrogen bonding interactions and π-π stacking interactions link the binuclear copper complex 1 or 2 into a 2D infinite network. The antibacterial assays indicate that the two complexes showed better activities than their ligands. The interactions of the two binuclear complexes with herring sperm DNA (HS-DNA) have been studied by UV absorption titration, fluorescence titration and viscosity measurements. The results suggest that the two binuclear complexes bind to HS-DNA via an intercalative mode.  相似文献   

4.
1‐phenyl‐3‐methyl‐4‐benzoyl‐5‐pyrazolone 4‐ethyl‐thiosemicarbazone (HL) and its copper(II), vanadium(V) and nickel(II) complexes: [Cu(L)(Cl)]·C2H5OH·( 1 ), [Cu(L)2]·H2O ( 2 ), [Cu(L)(Br)]·H2O·CH3OH ( 3 ), [Cu(L)(NO3)]·2C2H5OH ( 4 ), [VO2(L)]·2H2O ( 5 ), [Ni(L)2]·H2O ( 6 ), were synthesized and characterized. The ligand has been characterized by elemental analyses, IR, 1H NMR and 13C NMR spectroscopy. The tridentate nature of the ligand is evident from the IR spectra. The copper(II), vanadium(V) and nickel(II) complexes have been characterized by different physico‐chemical techniques such as molar conductivity, magnetic susceptibility measurements and electronic, infrared and electron paramagnetic resonance spectral studies. The structures of the ligand and its copper(II) ( 2 , 4 ), and vanadium(V) ( 5 ) complexes have been determined by single‐crystal X‐ray diffraction. The composition of the coordination polyhedron of the central atom in 2 , 4 and 5 is different. The tetrahedral coordination geometry of Cu was found in complex 2 while in complex 4 , it is square planar, in complex 5 the coordination polyhedron of the central ion is distorted square pyramid. The in vitro antibacterial activity of the complexes against Escherichia coli, Salmonella abony, Staphylococcus aureus, Bacillus cereus and the antifungal activity against Candida albicans strains was higher for the metal complexes than for free ligand. The effect of the free ligand and its metal complexes on the proliferation of HL‐60 cells was tested.  相似文献   

5.
Two new μ-oxamido-bridged binuclear copper(II) complexes with formulae of [Cu2(heae)(pic)2] (1) and [Cu2(heae)(Me2phen)2](ClO4)2 · H2O (2), where heae and pic stand for the anion of N,N′-bis(N-hydroxyethylaminoethyl)oxamide and 2,4,6-trinitrophenol, respectively, and Me2phen represents 2,9-dimethyl-1,10-phenanthroline; have been synthesized and characterized by elemental analyses, molar conductivity measurements, IR and electronic spectra studies. The crystal structures of the two binuclear copper(II) complexes have been determined by X-ray single-crystal diffraction. In both the two binuclear complexes the central two copper(II) atoms are bridged by trans-heae. In complex 1 the coordination environment around each copper(II) atom can be described as a distorted octahedral geometry, while in complex 2 each copper(II) atom displays a square-pyramid stereochemistry. Hydrogen bonding and π-π stacking interactions link the binuclear copper(II) complex 1 or 2 into a 3D infinite network. The cytotoxicities of the two binuclear copper(II) complexes were tested by Sulforhodamine B (SRB) assays against human hepatocellular carcinoma cell SMMC-7721 and human lung adenocarcinoma cell A549. Both of the two binuclear copper(II) complexes exhibit potent cytotoxic effects against SMMC-7721 and A549 cell lines. The interactions of the two binuclear complexes with herring sperm DNA (HS-DNA) are investigated by using absorption and emission spectra and electrochemical techniques and viscometry. The results suggest that both the two binuclear copper(II) complexes interact with HS-DNA in the mode of intercalation with the intrinsic binding constants of 1.73 × 105 M−1 (1) and 1.92 × 106 M−1 (2). The influence of structural variation of the terminal ligands in the binuclear complexes on DNA-binding properties is preliminarily discussed.  相似文献   

6.
The synthesis of the open-chain and cyclic polyamines, 1,5,8,12,15,19-hexaazaheptadecane (L1) and 2,6,9,13,16,20-hexaaza[21]-(2,6)-pyridinophane (L2), are described. The protonation constants and interaction constants with Cu(II) have been determined by potentiometric measurements carried out at 298.1 K in 0.15 mol dm−3 NaClO4. The values obtained are discussed as a function of the open-chain or cyclic nature of the ligands and compared with analogous polyamines containing different sets of hydrocarbon chains between the nitrogen donors. Kinetic studies on the acid-promoted dissociation of the Cu(II) complexes indicate that the mono and binuclear complexes of L1 decompose with different kinetics, a behavior unprecedented for open-chain polyamines. In contrast, the dissociation of the first metal ion is accelerated in the binuclear complexes of L2 and so, all the mono and binuclear complexes of L2 decompose with the same kinetics. The voltammetric response of Cu(II)-L1 and Cu(II)-L2 complexes has been studied in order to correlate electrochemical and structural data.  相似文献   

7.
Copper(II) coordination complexes of the neutral ligand, tris(3-tert-butyl-5-methyl-1-pyrazolyl)methane (L2′), i.e. the copper(II) nitrato complexes [Cu(L2′)(NO3)][Cu(NO3)4]1/2 (1) and [Cu(L2′)(NO3)](ClO4) (2) and the copper(II) chloro complex [Cu(L2′)(Cl)](ClO4) (3), and its anionic borate analogue, hydrotris(3-tert-butyl-5-methyl-1-pyrazolyl)borate (L2), i.e. the copper(II) nitrato complex [Cu(L2)(NO3)] (4) and the copper(II) chloro complex [Cu(L2)(Cl)] (5), were synthesized in order to investigate the influence of ligand framework and charge on their structure and physicochemical properties. While X-ray crystallography did not show any definitive trends in terms of copper(II) atom geometry in four-coordinate copper(II) chloro complexes 3 and 5, different structural trends were observed in five-coordinate copper(II) nitrato complexes 1, 2, and 4. These complexes were also characterized by spectroscopic techniques, namely, UV-Vis, ESR, IR/far-IR, and X-ray absorption spectroscopy.  相似文献   

8.
Three binuclear Co(III) complexes with 5,5′-(buta-1,3-diyne-1,4-diyl)bis(3-tert-butylcatechol) (L1), 5,5′-(2,5-dimethoxy-1,4-phenylene)bis(ethyne-2,1-diyl)bis(3-tert-butyl-catechol) (L2) and 5,5′-(4,4′-(buta-1,3-diyne-1,4-diyl)bis(2,5-dimethoxy-4,1-phenylene))bis(ethyne-2,1-diyl)bis(3-tert-butyl-catechol) (L3) have been prepared. The triple bond-containing L1, L2 and L3 ligands were synthesized by a cross-coupling reaction. These complexes were characterized by elemental analyses, electrochemical measurements, 1H NMR and UV-Vis spectra. In [Co2(bpy)4(L1)]2+, electrochemical oxidation of the complexes occurs at the bridges as two closely spaced one-electron couples. UV-Vis spectra reveal that chemical oxidation of [Co2(bpy)4(L1)]2+ using Ag+ occurs as a two-electron process forming [Co2(bpy)4(L1Cat,SQ)]3+ or [Co2(bpy)4(L1SQ,SQ)]4+. On the other hand, [Co2(bpy)4(L2)]2+ and [Co2(bpy)4(L3)]2+ exhibit different oxidation behavior under the same experimental conditions. In this report we discuss the role of the distance between the two metal atoms on the oxidative behavior of binuclear Co(III) complexes.  相似文献   

9.
A two-dimensional copper(II) polymer with formula of [Cu4(H2O)4(dmapox)2(btc)]n · 10nH2O, where dmapox is the dianion of N,N′-bis[3-(dimethylamino)propyl]oxamide and btc is the tetra-anion of 1,2,4,5-benzenetetracarboxylic acid, was synthesized and characterized by elemental analysis, conductivity measurement, IR and electronic spectral studies. The crystal structure of the complex has been determined by X-ray single-crystal diffraction. The structure consists of crystallized water molecules and neutral two-dimensional copper(II) coordination polymeric networks constructed both by the bis-tridentate μ-trans-dmapox and tetra-monodentate μ4-btc bridging ligands. Each btc ligand links four trans-dmapox-bridged binuclear copper(II) building blocks [Cu2(H2O)2(trans-dmapox)]2+ and each binuclear copper(II) building block attaches to two btc ligands forming an infinite 2D layer which consists of 4+4 grids with dimensions of 13.563(5) × 15.616(5) Å. The environment around the copper(II) atom can be described as a distorted square-pyramid and the Cu?Cu separations through μ-trans-dmapox and μ4-btc bridging ligands are 5.225 Å (Cu1-Cu1i), 5.270 Å (Cu2-Cu2ii), 6.115 Å (Cu1-Cu2), 9.047 Å (Cu1-Cu2iii) and 10.968 Å (Cu1-Cu1iii), respectively. Abundant hydrogen bonds among the crystallized, the coordinated water molecules, and the uncoordinated carboxyl oxygen atoms cross-link the two-dimensional layers into an overall three-dimensional channel-like framework. The interaction of the copper(II) polymer with calf thymus DNA (CT-DNA) has been investigated by using absorption, emission spectral and electrochemical techniques. The results indicate that the copper(II) polymer interacts with DNA strongly (Kb = 4.8 × 105 M−1 and Ksv = 1.1 × 104) and the interaction mode between the copper(II) polymer and DNA may be the groove binding. To the best of our knowledge, this is the first report about the crystal structure and DNA-binding studies of a two-dimensional copper(II) polymer bridged both by the trans-oxamidate and btc ligands.  相似文献   

10.
Novel N-N-N-O-type of tetradentate ligands H3obap (H3obap = oxamido-N-aminopropyl-N′-benzoic acid) and H3maeb (H3maeb = malamido-N-aminoethyl-N′-benzoic acid) and the corresponding square-planar copper(II) complexes have been prepared and characterized. The obap3− and maeb3− ligands coordinate to the copper(II) ion via four ligating atoms (three deprotonated atoms: one carboxylate oxygen and two deprotonated amide nitrogens; one amine nitrogen) with in-plane square chelation. A four coordinate, square-planar geometry has been established crystallographically for the binuclear Na2[Cu(obap)]2 · 2H2O complex. Structural data correlating the square-planar geometry of the [Cu(obap)] unit and an extensive strain analysis are discussed in relation to the information obtained for similar complexes. The infrared and electronic absorption spectra of the complexes are discussed in comparison to the related complexes of known geometries. Antibacterial activity of ligands and copper(II) complexes towards common Gram-negative and Gram-positive bacteria are reported as well.  相似文献   

11.
A new ethyl bis(pyridin-2-ylmethyl)phosphate (2-bis(pm)Ope) ligand has been synthesized and used for synthesis of copper(II) and zinc(II) complexes of the formula [MCl2(2-bis(pm)Ope)] [M = Cu(II), Zn(II)]. Despite having the same general formula, Cu(II) and Zn(II) complexes are not isostructural. The Zn(II) complex is four coordinated (MCl2N2) forming probably tetrahedral structure whereas the Cu(II) complex of distorted square pyramidal geometry is five coordinated (MCl2ON2). The later compound not only coordinates by two nitrogen atoms of pyridine rings but also by the oxygen atom of pyridin-2-ylmethoxyl residue. The compound (2-bis(pm)Ope) has been obtained as the product of diethyl (pyridin-2-ylmethyl)phosphate’s (2-pmOpe) transestrification. The compounds have been identified and characterized by IR, far-IR, 1H NMR, 31P NMR and elemental analyses. The crystal structure of copper(II) complex i.e. [CuCl2(2-bis(pm)Ope)] has been determined by the X-ray diffraction method. The low temperature magnetic study reveals significant antiferromagnetic interaction between copper centers through the H-bond system.  相似文献   

12.
Four new symmetric mixed-chelate dinuclear complexes type [Cu2(L)2(TAE)]X2, where TAE = tetraacetylethane; L = N,N-dimethyl-N′-benzylethylenediamine (L1) or N,N′-dibenylethylenediamine (L2); X = ClO4 or BPh4 have been synthesized and characterized on the bases of elemental analysis, spectroscopic and conductance measurements. The X-ray crystal analysis of [Cu2(L1)2(TAE)](ClO4)2 demonstrated that the two copper(II) ions are not equivalent. The axial position of the first copper is occupied by a ClO4 ion with a square pyramidal geometry whereas; the second copper ion resides in an octahedral environment determined by two perchlorate anions. However, in solution, the perchlorate ions are driven out by solvent molecules leading to their solvatochromism. The solvatochromism of the complexes were investigated in various organic solvents and also were compared with those of the corresponding mononuclear complexes [Cu(L)(acac)]ClO4. Their solvatochromism were also investigated with different solvent parameters models using stepwise multiple linear regression (SMLR) method. The results suggested that the DN parameter of the solvent has the dominate contribution to the shift of the d-d absorption band of the complexes. The results demonstrated that the complexes with counter ions of BPh4 are more solvatochromic in very weak donor solvents owing to their disinclination in ion-pair formation.  相似文献   

13.
Two novel bolaamphiphile based dicarboxylic ligands L1H2 and L2H2 are synthesized by desymmetrizing aromatic anhydrides. The corresponding Cu(II) complexes [Cu(L1) · EtOH]2 (1), [Cu(L2) · (CH3CN)]2 (2) are synthesized and characterized. The crystal structure obtained for (1) and (2) indicates that they are new class of tetralactone type macrocyclic Cu(II) chelate complexes with paddle wheel Cu2-acetate cage structure. The 1:1, Cu(II) and ligand ratio leads into formation of a novel binuclear Cu(II) tetracarboxylate complexes. The macrocyclic chelate ring size in compounds 1 and 2 was altered from [15] membered to [19] membered by introducing phthalyl and diphenyl head groups as discussed in detail. The single crystal X-ray structure shows the Cu(II)?Cu(II) distance 2.613(13) Å for 1 and 2.626(13) Å for 2, the corresponding room temperature EPR spectra recorded for powdered polycrystalline samples indicate the existence of Cu(II)?Cu(II) dimeric system.  相似文献   

14.
Two dinuclear copper(II) thioether-oxime complexes ([Cu(DtdoH)]2(ClO4)2 and [Cu(DtudH)]2(ClO4)2 · 2CH3OH) have been synthesized. [Cu(DtdoH)]2(ClO4)2 reacted with excess BF3 · OEt2 to yield [Cu(Thyclops)]ClO4, a -macrocyclized di-oxime. [Cu(DtdoH)]2(ClO4)2 and [Cu(DtudH)]2(ClO4)2 · 2CH3OH are the first representatives of copper(II) thioether oximes which exhibit the classical out-of-plane oximate oxygen-metal dimer structure. [Cu(DtdoH)]2(ClO4)2 and [Cu(Thyclops)]ClO4 have been structurally characterized by single-crystal X-ray diffraction. The geometry about each copper(II) in [Cu(DtdoH)]2(ClO4)2 is a distorted square pyramid (τ = 0.14). The average copper-nitrogen(oxime) bond length is 1.984 Å longer (∼0.03 Å) than the average copper-nitrogen(oxime) bonds in copper(II) bis-glyoximates. The geometry of [Cu(Thyclops)]ClO4 reveals an almost perfect square pyramid (τ = 0.03) of N2S2O donors. Solution, cryogenic glass, and powder ESR spectra show a typical axial pattern, except for the powder spectrum of [Cu(DtudH)]2(ClO4)2 · 2CH3OH which displays a small rhombic distortion. Variable-temperature magnetic susceptibility measurements indicate very weak ferromagnetic interactions in [Cu(DtdoH)]2(ClO4)2, where J = +0.52 cm−1 and very weak antiferromagnetic interactions in [Cu(DtudH)]2(ClO4)2 · 2CH3OH, where J = −0.59 cm−1. Electrochemical measurements reveal that the mixed thioether-oxime coordination environment tends to stabilize Cu(II), as all electrochemical reductions were quasi-reversible or irreversible. [Cu(Thyclops)]ClO4 is more oxidizing than [Cu(DtdoH)]2(ClO4)2 by 0.14 V.  相似文献   

15.
Tetranuclear Cu(II) complexes of N-(2-hydroxymethylphenyl)salicylideneimine (H2L1-H) and its homologues (5-CH3: H2L1-Me, 5-Cl: H2L1-Cl), [Cu(L1-H)]4 · 3H2O (1), [Cu(L1-Me)]4 · 2CH2Cl2 (2), and [Cu(L1-Cl)]4 · 2CH2Cl2 (3), have been characterized by X-ray crystal structure analyses and magnetic measurements. The structure analyses revealed that the complexes 1-3 have a defective double-cubane tetra copper(II) core connected by μ3-alkoxo bridges. The intramolecular Cu?Cu distances are in the range from 5.251(2)-5.256(3) Å for the longest to 3.0518(9)-3.092(2) Å for the shortest. Each Cu(II) ion has a square-pyramidal geometry and the dihedral angles between adjacent Cu(II) basal planes are almost right angles. Magnetic measurements of the present complexes indicate that weak antiferromagnetic interactions (J=−15 to −19 cm−1) between neighboring copper(II) ions are dominant in these tetracopper cores.  相似文献   

16.
Copper(II) cations coordinated with PMDTA (pentamethyldiethylenetriamine) and TMEDA (tetramethylethylenediamine) possess a high synthetic potential. The synthesis of these cations was carried out by metathesis reactions with silver salts. The cationic copper(II) complexes, [Cu(PMDTA)(Me2CO)Cl]+, [Cu(PMDTA)(H2O)Cl]+, [Cu(PMDTA)(DMF)]+, [Cu(PMDTA)Cl]+, [Cu(PMDTA)OAc]+, [Cu(PMDTA)(MeCN)2]2+, [Cu2(TMEDA)2Cl3]+ and [Cu(TMEDA)(MeCN)3]2+ were synthesised as PF6 salts, crystallised and characterised by single-crystal X-ray diffraction.  相似文献   

17.
Cobalt, nickel, copper and zinc coordination compounds of two thiosemicarbazones with general composition ML2 (L: monodeprotonated ligand corresponding to 2-acetyl-γ-butyrolactone thiosemicarbazone, HL1, and 2-furancarbaldehyde thiosemicarbazone, HL2) and also complexes with general composition MCl2(HL2) were synthesized (except [NiCl2(HL2)] and [Co(L2)2]). The interaction of CuCl2 with HL2 gave [CuCl(HL2)], a copper(I) complex. The ligands and metal complexes were characterized by IR, 1H and 13C NMR spectroscopy, and magnetic susceptibility measurements. The crystal structure of [Ni(L2)2] · 2dmso was determined and a trans-square planar coordination of the two κ2-N,S chelate rings forming polymeric strips through H-bonds with dmso was observed. Actually, in all the reported complexes both ligands behaved as κ2-N,S chelates, except in the case of [Co(L1)2] in which HL1 is tridentate κ3-N,S,O. The antimicrobial properties of all compounds were studied using a wide spectrum of bacterial and fungal strains. The copper complexes of HL2 were the most active against all strains, including dermatophytes and phytopathogenic fungi. Most of the studied compounds, especially [Cu(L1)2], presented good activity against Haemophilus influenzae, a very harmful bacterium to humans.  相似文献   

18.
Two new mixed ligand complexes of copper(II) with N,N,N,N″,N″-pentamethyldiethylenetriamine and polypyridine ligands have been prepared and characterized by means of spectroscopic, magnetic and single-crystal X-ray diffraction methods. These two complexes are isomorph and isostructure in which the coordination polyhedron about the copper(II) ion is distorted square pyramidal. [Cu(PMDT)(bipy)]2+ and [Cu(PMDT)(phen)]2+ show an absorption wavelength maximum at 625 and 678 nm, respectively, assigned to the d-d transition. Antibacterial, antifungal and superoxide dismutase activities of these complexes have also been measured. It was observed that [Cu(PMDT)(bipy)](ClO4)2 was more effective against P. Pyocyanea and Klebsiella sp. than S. aureus. Similarly, Fusarium sp. was highly susceptible against [Cu(PMDT)(bipy)](ClO4)2 but less susceptible against [Cu(PMDT)(phen)](ClO4)2.  相似文献   

19.
A series of copper(II) complexes of the type [Cu(L)]2+, where L = N,N'-dialkyl-1,10-phenanthroline-2,9-dimethanamine and R = methyl (L1), n-propyl (L2), isopropyl (L3), sec-butyl (L4), or tert-butyl (L5) group, have been synthesized. The interaction of the complexes with DNA has been studied by DNA fiber electron paramagnetic resonance (EPR) spectroscopy, emission, viscosity and electrochemical measurements and agarose gel electrophoresis. In the X-ray crystal structure of [Cu(HL2)Cl2]NO3, copper(II) is coordinated to two ring nitrogens and one of the two secondary amine nitrogens of the side chains and two chloride ions as well and the coordination geometry is best described as trigonal bipyramidal distorted square based pyramidal (TBDSBP). Electronic and EPR spectral studies reveal that all the complexes in aqueous solution around pH 7 possess CuN3O2 rather than CuN4O chromophore with one of the alkylamino side chain not involved in coordination. The structures of the complexes in aqueous solution around pH 7 change from distorted tetragonal to trigonal bipyramidal as the size of the alkyl group is increased. The observed changes in the physicochemical features of the complexes on binding to DNA suggest that the complexes, except [Cu(L5)]2+, bind to DNA with partial intercalation of the derivatised phen ring in between the DNA base pairs. Electrochemical studies reveal that the complexes prefer to bind to DNA in Cu(II) rather than Cu(I) oxidation state. Interestingly, [Cu(L5)]2+ shows the highest DNA cleavage activity among all the present copper(II) complexes suggesting that the bulky N-tert-butyl group plays an important role in modifying the coordination environment around the copper(II) center, the Cu(II)/Cu(I) redox potential and hence the formation of activated oxidant responsible for the cleavage. These results were compared with those for bis(1,10-phenanthroline)copper(II), [Cu(phen)2]2+.  相似文献   

20.
Copper(II) complexes of fluoroquinolone antibacterial agents levofloxacin (LEV) and sparfloxacin (SPAR), containing or not a nitrogen donor heterocyclic ligand, 2,2'-bipyridine (bipy) or 1,10-phenathroline (phen), were prepared and characterized. The complexes are of the type [CuCl(2)(H(2)O)(L)], [CuCl(bipy)(L)]Cl and [CuCl(2)(phen)(L)], where L?=?LEV or SPAR. The data suggest that LEV and SPAR act as zwitterionic bidentade ligands coordinated to Cu(II) through the carboxylate and ketone oxygen atoms. The electron paramagnetic resonance spectra of the [CuCl(bipy)(L)]Cl and [CuCl(2)(phen)(L)] complexes (L?=?LEV and SPAR) in aqueous and DMSO solutions indicate mixture of mononuclear and binuclear forms. The Cu(II) complexes, together with the corresponding ligands, were evaluated for their trypanocidal activity in vitro against Trypanosoma cruzi, the causative agent of Chagas disease. The assays performed against bloodstream trypomastigotes showed that all complexes were more active than their corresponding ligands. Complexes [CuCl(2)(phen)(LEV)] and [CuCl(2)(phen)(SPAR)] were revealed, among all studied compounds, to be the most active with IC(50)?=?1.6 and 4.7?μM, respectively, both presenting a superior effect than benznidazole. The interactions of fluoroquinolones and their Cu(II) complexes with calf-thymus DNA were investigated. These compounds showed binding properties towards DNA, with moderated binding constants values, suggesting that this structure may represent a parasite target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号