共查询到20条相似文献,搜索用时 15 毫秒
1.
Biochemical functioning of single chambered microbial fuel cell (MFC) using glass wool as proton exchange membrane (PEM) operated with selectively enriched acidogenic mixed culture was evaluated in terms of bioelectricity production and wastewater treatment. Performance of MFC was studied at two different organic/substrate loading rates (OLR) (2.64 and 3.54 kg COD/m(3)) and operating pH 6 and 7 using non-coated plain graphite electrodes (mediatorless anode; air cathode). Applied OLR in association with operating pH showed marked influence on the power output and substrate degradation efficiency. Higher current density was observed at acidophilic conditions [pH 6; 98.13 mA/m(2) (2.64 kg COD/m(3)-day; 100 Omega) and 111.29 mA/m(2) (3.54 kg COD/m(3)-day; 100 Omega)] rather than neutral conditions [pH 7; 100.52 mA/m(2) (2.64 kg COD/m(3)-day; 100 Omega) and 98.13 mA/m(2) (3.54 kg COD/m(3)-day; 100 Omega)]. On the contrary, effective substrate degradation was observed at neutral pH. MFC performance was evaluated employing polarization curve, impedance analysis, cell potential, Coulombic efficiency and bioprocess monitoring. Sustainable power yield was calculated at stable cell potential. 相似文献
2.
Hossein Jafari Mansoorian Amir Hossein Mahvi Ahmad Jonidi Jafari Mohammad Mehdi Amin Ahmad Rajabizadeh Narges Khanjani 《Enzyme and microbial technology》2013,52(6-7):352-357
Electricity generation from microbial fuel cells which treat food processing wastewater was investigated in this study. Anaerobic anode and aerobic cathode chambers were separated by a proton exchange membrane in a two-compartment MFC reactor. Buffer solutions and food industry wastewater were used as electrolytes in the anode and cathode chambers, respectively. The produced voltage and current intensity were measured using a digital multimeter. Effluents from the anode compartment were tested for COD, BOD5, NH3, P, TSS, VSS, SO4 and alkalinity. The maximum current density and power production were measured 527 mA/m2 and 230 mW/m2 in the anode area, respectively, at operation organic loading (OLR) of 0.364 g COD/l.d. At OLR of 0.182 g COD/l.d, maximum voltage and columbic efficiency production were recorded 0.475 V and 21%, respectively. Maximum removal efficiency of COD, BOD5, NH3, P, TSS, VSS, SO4 and alkalinity were 86, 79, 73, 18, 68, 62, 30 and 58%, respectively. The results indicated that catalysts and mediator-less microbial fuel cells (CAML-MFC) can be considered as a better choice for simple and complete energy conversion from the wastewater of such industries and also this could be considered as a new method to offset wastewater treatment plant operating costs. 相似文献
3.
Ozkaya B Akoglu B Karadag D Acı G Taskan E Hasar H 《Bioprocess and biosystems engineering》2012,35(7):1219-1227
Electrode materials play a key role in enhancing the electricity generation in the microbial fuel cell (MFC). In this study, a new material (Ti-TiO(2)) was used as an anode electrode and compared with a graphite electrode for electricity generation. Current densities were 476.6 and 31 mA/m(2) for Ti-TiO(2) and graphite electrodes, respectively. The PCR-DGGE analysis of enriched microbial communities from estuary revealed that MFC reactors were dominated by Shewanella haliotis, Enterococcus sp., and Enterobacter sp. Bioelectrochemical kinetic works in the MFC with Ti-TiO(2) electrode revealed that the parameters by non-linear curve fitting with the confidence bounds of 95% gave good fit with the kinetic constants of η (difference between the anode potential and anode potential giving one-half of the maximum current density) = 0.35 V, K (s) (Half-saturation constant) = 2.93 mM and J (max) = 0.39 A/m(2) for T = 298 K and F = 96.485 C/mol-e(-). From the results observed, it is clear that Ti-TiO(2) electrode is a promising candidate for electricity generation in MFC. 相似文献
4.
Xiao Min Li Ka Yu Cheng Ammaiyappan Selvam Jonathan W.C. Wong 《Process Biochemistry》2013,48(2):283-288
The effects of three different inocula (domestic wastewater, activated sludge, and anaerobic sludge) on the treatment of acidic food waste leachate in microbial fuel cells (MFCs) were evaluated. A food waste leachate (pH 4.76; 1000 mg chemical oxygen demand (COD)/L) was used as the substrate. The results indicate that the leachate itself can enable electricity production in an MFC, but the co-addition of different inocula significantly reduces the start-up time (approximately 7 days). High COD and volatile fatty acids removal (>87%) were obtained in all MFCs but with only low coulombic efficiencies (CEs) (14–20%). The highest power (432 mW/m3) and CE (20%) were obtained with anaerobic sludge as the co-inoculum. Microbial community analysis (PCR-DGGE) of the established biofilms suggested that the superior performance of the anaerobic sludge-MFC was associated with the enrichment of both fermentative (Clostridium sp. and Bacteroides sp.) and electrogenic bacteria (Magnetospirillum sp. and Geobacter sp.) at the anode. 相似文献
5.
The effect of anodic biofilm growth and extent of its coverage on the anodic surface of a single chambered mediatorless microbial fuel cell (MFC) was evaluated for bioelectricity generation using designed synthetic wastewater (DSW) and chemical wastewater (CW) as substrates and anaerobic mixed consortia as biocatalyst. Three MFCs (plain graphite electrodes, air cathode, Nafion membrane) were operated separately with variable biofilm coverage [control; anode surface coverage (ASC), 0%], partially developed biofilm [PDB; ASC approximately 44%; 90 days] and fully developed biofilm [FDB; ASC approximately 96%; 180 days] under acidophilic conditions (pH 6) at room temperature. The study depicted the effectiveness of anodic biofilm formation in enhancing the extracellular electron transfer in the absence of mediators. Higher specific power production [29mW/kg COD(R) (CW and DSW)], specific energy yield [100.46J/kg VSS (CW)], specific power yield [0.245W/kg VSS (DSW); 0.282W/kg VSS (CW)] and substrate removal efficiency of 66.07% (substrate degradation rate, 0.903kgCOD/m(3)-day) along with effective functioning fuel cell at relatively higher resistance [4.5kOmega (DSW); 14.9kOmega (CW)] correspond to sustainable power [0.008mW (DSW); 0.021mW (CW)] and effective electron discharge (at higher resistance) and recovery (Coulomb efficiency; 27.03%) were observed especially with FDB operation. Cyclic voltammetry analysis documented six-fold increment in energy output from control (1.812mJ) to PDB (10.666mJ) operations and about eight-fold increment in energy from PDB to FDB (86.856mJ). Biofilm configured MFC was shown to have the potential to selectively support the growth of electrogenic bacteria with robust characteristics, capable of generating higher power yields along with substrate degradation especially operated with characteristically complex wastewaters as substrates. 相似文献
6.
Sukkasem C Laehlah S Hniman A O'thong S Boonsawang P Rarngnarong A Nisoa M Kirdtongmee P 《Bioresource technology》2011,102(22):10363-10370
A biodiesel wastewater treatment technology was investigated for neutral alkalinity and COD removal by microbial fuel cell. An upflow bio-filter circuit (UBFC), a kind of biocatalyst MFC was renovated and reinvented. The developed system was combined with a pre-fermented (PF) and an influent adjusted (IA) procedure. The optimal conditions were operated with an organic loading rate (OLR) of 30.0 g COD/L-day, hydraulic retention time (HRT) of 1.04 day, maintained at pH level 6.5-7.5 and aerated at 2.0 L/min. An external resistance of circuit was set at 10 k?. The purposed process could improve the quality of the raw wastewater and obtained high efficiency of COD removal of 15.0 g COD/L-day. Moreover, the cost of UBFC system was only US$1775.7/m3 and the total power consumption was 0.152 kW/kg treated COD. The overall advantages of this invention are suitable for biodiesel wastewater treatment. 相似文献
7.
The paper introduces the concept of the microbial electrochemical snorkel (MES), a simplified design of a "short-circuited" microbial fuel cell (MFC). The MES cannot provide current but it is optimized for wastewater treatment. An electrochemically active biofilm (EAB) was grown on graphite felt under constant polarization in an urban wastewater. Controlling the electrode potential and inoculating the bioreactor with a suspension of an established EAB improved the performance and the reproducibility of the anodes. Anodes, colonized by an EAB were tested for the chemical oxygen demand (COD) removal from urban wastewater using a variety of bio-electrochemical processes (microbial electrolysis, MFC, MES). The MES technology, as well as a short-circuited MFC, led to a COD removal 57% higher than a 1000 Ω-connected MFC, confirming the potential for wastewater treatment. 相似文献
8.
The paper introduces the concept of the microbial electrochemical snorkel (MES), a simplified design of a “short-circuited” microbial fuel cell (MFC). The MES cannot provide current but it is optimized for wastewater treatment. An electrochemically active biofilm (EAB) was grown on graphite felt under constant polarization in an urban wastewater. Controlling the electrode potential and inoculating the bioreactor with a suspension of an established EAB improved the performance and the reproducibility of the anodes. Anodes, colonized by an EAB were tested for the chemical oxygen demand (COD) removal from urban wastewater using a variety of bio-electrochemical processes (microbial electrolysis, MFC, MES). The MES technology, as well as a short-circuited MFC, led to a COD removal 57% higher than a 1000 Ω-connected MFC, confirming the potential for wastewater treatment. 相似文献
9.
Nien PC Lee CY Ho KC Adav SS Liu L Wang A Ren N Lee DJ 《Bioresource technology》2011,102(7):4742-4746
A two-chamber microbial fuel cell was started using iron-reducing strains as inoculum and acetate as carbon sources. The tested microbial fuel cell had an open-circuit voltage of 0.67 V, and reached 1045 mA m−2 and a power density of 486 mW m−2 at 0.46 V before power overshoot occurred. Anodic reactions were identified as the rate-determining steps. Stirring the anolyte insignificantly increased cell performance, suggesting a minimal external mass transfer resistance from the anolyte to the anodic biofilm. Data regression analysis indicates that charge transfer resistance at the biofilm-anode junction was negligible. The order of magnitude estimation of electrical conductance indicates that electron transfer resistance had an insignificant effect on microbial fuel cell performance. Resistance in electrogens for substrate utilization is proposed to induce microbial fuel cell power overshoot. 相似文献
10.
Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell 总被引:13,自引:0,他引:13
A microbial fuel cell (MFC) was optimized in terms of MFC design factors and operational parameters for continuous electricity production using artificial wastewater (AW). The performance of MFC was analyzed through the polarization curve method under different conditions using a mediator-less MFC. The highest power density of 0.56 W/m2 was achieved with AW of 300 mg/l fed at the rate of 0.53 ml/min at 35 degrees C. The power per unit cell working volume was 102 mW/l, which was over 60 times higher than those reported in the previous mediator-less MFCs which did not use a cathode or an anode mediator. The power could be stably generated over 2 years. 相似文献
11.
微生物燃料电池(Microbial fuel cell,MFC)是一种近几年快速发展的废物处理与能源化技术,可以与污水处理、污染物降解、脱盐等环境技术结合。微生物燃料电池与堆肥技术结合可以在处理日益增长的固体废弃物的同时回收能量,具有很好的发展前景。文中分析了堆肥微生物燃料电池系统的微生物特征,探讨了堆肥过程中影响微生物燃料电池产电性能的因素,包括电极,隔膜,供氧和构型。最后归纳说明了堆肥微生物电池作为一种新的废弃物处理技术的特点:较高的微生物量并可产生较高的电流密度;对不同环境的适应性强;可以自身调节温度,能源利用效率高;质子从阳极向阴极的移动会受到不同堆肥原料的影响。 相似文献
12.
A microbial fuel cell (MFC) was explored as a pretreatment method to remove dissolved organic matter (DOM) from polluted lake water and simultaneously generate electricity. After the MFC treatment, the total organic carbon concentration in the raw lake water was reduced by 50%, the physicochemical nature of DOMs was substantially altered. Protein-like substances in lake water were utilized as a major substrate for the MFC, while humic-like substances were refractory to the biodegradation. A further investigation into the bovine serum albumin utilization in an MFC confirms that the electricity generation was closely associated with the removal of protein-like substrates. Toxicity assessment by Salmonella typhimurium Sal94 indicates that the genotoxic agents in the polluted lake water were almost completely removed after the MFC treatment. This approach of coupling microbially-catalyzed electricity generation with DOM removal may offer a potential avenue for energy-efficient bioremediation of lake water. 相似文献
13.
Bioelectricity generation enhancement in a dual chamber microbial fuel cell under cathodic enzyme catalyzed dye decolorization 总被引:1,自引:0,他引:1
Enzymatic decolorization of reactive blue 221 (RB221) using laccase was investigated in a dual-chamber microbial fuel cell (MFC). Suspended laccase was used in the cathode chamber in the absence of any mediators in order to decolorize RB221 and also improve oxygen reduction reaction in the cathode. Molasses was utilized as low cost and high strength energy source in the anode chamber. The capability of MFC for simultaneous molasses and dye removal was investigated. A decolorization efficiency of 87% was achieved in the cathode chamber and 84% COD removal for molasses was observed in the anode chamber. Laccase could catalyze the removal of RB221 and had positive effect on MFC performance as well. Maximum power density increased about 30% when enzymatic decolorization was performed in the cathode chamber. 相似文献
14.
Removal efficiency of gold from a solution of pure tetrachloroaurate ions was investigated using microbial fuel cell (MFC) technology. The effects of type of catholyte solution and initial gold concentration on the removal efficiency were considered. Due to its presence at high levels in the gold wastewater, the effect of copper ions on the removal efficiency of the gold ions was also studied. The effects of pH and initial biomass concentration on the gold removal efficiency was also determined. The results showed that after 5 h contact time, 95% of gold removal efficiency from a wastewater containing 250 ppm of initial gold ions at ambient temperature using 80 g/L yeast concentration was achieved. After 48 h of the cell''s operation under the same condition, 98.86% of AuCl4 – ions were successfully removed from the solution. At initial gold concentration in the waste solution of 250 ppm, pH 2, and initial yeast concentration of 80 g/L, 100% removal efficiency of the gold was achieved. On the other hand, the most suitable condition for copper removal was found at a pH of 5.2, where 53% removal efficiency from the waste solution was accomplished. 相似文献
15.
Ming Li Minghua Zhou Xiaoyu Tian Chaolin Tan Cameron T. McDaniel Daniel J. Hassett Tingyue Gu 《Biotechnology advances》2018,36(4):1316-1327
Within the past 5?years, tremendous advances have been made to maximize the performance of microbial fuel cells (MFCs) for both “clean” bioenergy production and bioremediation. Most research efforts have focused on parameters including (i) optimizing reactor configuration, (ii) electrode construction, (iii) addition of redox-active, electron donating mediators, (iv) biofilm acclimation and feed nutrient adjustment, as well as (v) other parameters that contribute to enhanced MFC performance. To date, tremendous advances have been made, but further improvements are needed for MFCs to be economically practical. In this review, the diversity of electrogenic microorganisms and microbial community changes in mixed cultures are discussed. More importantly, different approaches including chemical/genetic modifications and gene regulation of exoelectrogens, synthetic biology approaches and bacterial community cooperation are reviewed. Advances in recent years in metagenomics and microbiomes have allowed researchers to improve bacterial electrogenicity of robust biofilms in MFCs using novel, unconventional approaches. Taken together, this review provides some important and timely information to researchers who are examining additional means to enhance power production of MFCs. 相似文献
16.
The performance of the cathodic electron acceptors (CEA) used in the two-chambered microbial fuel cell (MFC) was in the following order: potassium permanganate (1.11 V; 116.2 mW/m2) > potassium persulfate (1.10 V; 101.7 mW/m2) > potassium dichromate, K2Cr2O7 (0.76 V; 45.9 mW/m2) > potassium ferricyanide (0.78 V; 40.6 mW/m2). Different operational parameters were considered to find out the performance of the MFC like initial pH in aqueous solutions, concentrations of the electron acceptors, phosphate buffer and aeration. Potassium persulfate was found to be more suitable out of the four electron acceptors which had a higher open circuit potential (OCP) but sustained the voltage for a much longer period than permanganate. Chemical oxygen demand (COD) reduction of 59% was achieved using 10 mM persulfate in a batch process. RALEX™ AEM-PES, an anion exchange membrane (AEM), performed better in terms of power density and OCP in comparison to Nafion®117 Cation Exchange Membrane (CEM). 相似文献
17.
Electricity generation integrated with xylose degradation was investigated in a two-chamber mediator-less microbial fuel cell (MFC). Voltage output followed saturation kinetics as a function of xylose concentration for concentration below 9.7 mM, with a predicted maximum of 86 mV (6.3 mW m(-2) or 116 mW m(-3)) and half-saturation constant (K(s)) of 0.29 mM. Xylose concentrations from 0.5 mM to 1.5 mM resulted in coulombic efficiencies and maximum voltage ranging from 41+/-1.6% to 36+/-1.2% and 55+/-2.0 mV to 70+/-3.0 mV respectively. Xylose degradation rate increased with increasing xylose concentration up to 9.7 mM and the predicted maximum degradation rate was 0.13 mM h(-1) and K(s) of 3.0 mM. Stirring by nitrogen in the anode chamber led to 99+/-2.3 mV maximum voltage (8.4+/-0.4 mW m(-2) or 153+/-7.1 mW m(-3)) and 5.9+/-0.3% coulombic efficiency at MFC running time 180 h, which were respectively 17+/-1.2% and 37+/-1.8%, higher than those without stirring. The COD removal under stirring was 22.1+/-0.3%, which was slightly lower than that of 23.7+/-0.4% under no stirring. However, stirring resulted in 59% lower xylose degradation rate. This work demonstrates that xylose can be used in the MFC for electricity production. Comparatively higher electricity generation and coulombic efficiency can be obtained by adjusting initial xylose concentration and applying stirring in the anode chamber. 相似文献
18.
Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell 总被引:3,自引:0,他引:3
Increased interest in sustainable agriculture and bio-based industries requires that we find more energy-efficient methods for treating cellulose-containing wastewaters. We examined the effectiveness of simultaneous electricity production and treatment of a paper recycling plant wastewater using microbial fuel cells. Treatment efficiency was limited by wastewater conductivity. When a 50 mM phosphate buffer solution (PBS, 5.9 mS/cm) was added to the wastewater, power densities reached 501 +/- 20 mW/m(2), with a coulombic efficiency of 16 +/- 2%. There was efficient removal of soluble organic matter, with 73 +/- 1% removed based on soluble chemical oxygen demand (SCOD) and only slightly greater total removal (76 +/- 4%) based on total COD (TCOD) over a 500-h batch cycle. Cellulose was nearly completely removed (96 +/- 1%) during treatment. Further increasing the conductivity (100 mM PBS) increased power to 672 +/- 27 mW/m(2). In contrast, only 144 +/- 7 mW/m(2) was produced using an unamended wastewater (0.8 mS/cm) with TCOD, SCOD, and cellulose removals of 29 +/- 1%, 51 +/- 2%, and 16 +/- 1% (350-h batch cycle). These results demonstrate limitations to treatment efficiencies with actual wastewaters caused by solution conductivity compared to laboratory experiments under more optimal conditions. 相似文献
19.
The effect of a magnetic field (MF) on electricity production and wastewater treatment in two-chamber microbial fuel cells (MFCs) has been investigated. Electricity production capacity could be improved by the application of a low-intensity static MF. When a MF of 50 mT was applied to MFCs, the maximum voltage, total phosphorus (TP) removal efficiency, and chemical oxygen demand (COD) removal efficiency increased from 523?±?2 to 553?±?2 mV, ~93 to ~96 %, and ~80 to >90 %, respectively, while the start-up time and coulombic efficiency decreased from 16 to 10 days and ~50 to ~43 %, respectively. The MF effects were immediate, reversible, and not long lasting, and negative effects on electricity generation and COD removal seemed to occur after the MF was removed. The start-up and voltage output were less affected by the MF direction. Nitrogen compounds in magnetic MFCs were nitrified more thoroughly; furthermore, a higher proportion of electrochemically inactive microorganisms were found in magnetic systems. TP was effectively removed by the co-effects of microbe absorption and chemical precipitation. Chemical precipitates were analyzed by a scanning electron microscope capable of energy-dispersive spectroscopy (SEM-EDS) to be a mixture of phosphate, carbonate, and hydroxyl compounds. 相似文献
20.
Microbial fuel cells (MFCs) were successfully enriched using sludge contaminated with Cr(VI) and their characteristics were investigated. After enrichment, the charge of the final 10 peaks was 0.51 C +/- 1.16%, and the anodic electrode was found to be covered with a biofilm. The enriched MFCs removed 93% of 5 mg/l Cr(VI) and 61% of 25 mg/l Cr(VI). 16S rDNA DGGE profiles from the anodic electrode indicated that beta-Proteobacteria, Actinobacteria, and Acinetobacter sp. dominated. This study is the first to report that electrochemically active and Cr(VI)-reducing bacteria could be enriched in the anode compartment of MFCs using Cr(VI)-containing sludge and demonstrates the Cr(VI) removal capability of such MFCs. 相似文献