首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The [NiFe] centers at the active sites of the Escherichia coli hydrogenase enzymes are assembled by a team of accessory proteins that includes the products of the hyp genes. To determine whether any other proteins are involved in this process, the sequential peptide affinity system was used. The analysis of the proteins in a complex with HypB revealed the peptidyl-prolyl cis/trans-isomerase SlyD, a metal-binding protein that has not been previously linked to the hydrogenase biosynthetic pathway. The association between HypB and SlyD was confirmed by chemical cross-linking of purified proteins. Deletion of the slyD gene resulted in a marked reduction of the hydrogenase activity in cell extracts prepared from anaerobic cultures, and an in-gel assay was used to demonstrate diminished activities of both hydrogenase 1 and 2. Western analysis revealed a decrease in the final proteolytic processing of the hydrogenase 3 HycE protein, indicating that the metal center was not assembled properly. These deficiencies were all rescued by growth in medium containing excess nickel, but zinc did not have any phenotypic effect. Experiments with radioactive nickel demonstrated that less nickel accumulated in DeltaslyD cells compared with wild type, and overexpression of SlyD from an inducible promoter doubled the level of cellular nickel. These experiments demonstrate that SlyD has a role in the nickel insertion step of the hydrogenase maturation pathway, and the possible functions of SlyD are discussed.  相似文献   

2.
Heparan sulphate (HS) is an essential co-receptor for a number of growth factors, morphogens and adhesion proteins. The biosynthetic modifications involved in the generation of a mature HS chain may determine the strength and outcome of HS-ligand interactions. These modifications are catalysed by a complex family of enzymes, some of which occur as multiple gene products. Various mutant mice have now been generated, which lack the function of isolated components of the HS biosynthetic pathway. In this discussion, we outline the key findings of these studies, and use them to put into context our own work concerning the structure of the HS generated by the Hs2st -/- mice.  相似文献   

3.
The enzyme strictosidine synthase (STR1) from the Indian medicinal plant Rauvolfia serpentina is of primary importance for the biosynthetic pathway of the indole alkaloid ajmaline. Moreover, STR1 initiates all biosynthetic pathways leading to the entire monoterpenoid indole alkaloid family representing an enormous structural variety of approximately 2000 compounds in higher plants. The crystal structures of STR1 in complex with its natural substrates tryptamine and secologanin provide structural understanding of the observed substrate preference and identify residues lining the active site surface that contact the substrates. STR1 catalyzes a Pictet-Spengler-type reaction and represents a novel six-bladed beta-propeller fold in plant proteins. Structure-based sequence alignment revealed a common repetitive sequence motif (three hydrophobic residues are followed by a small residue and a hydrophilic residue), indicating a possible evolutionary relationship between STR1 and several sequence-unrelated six-bladed beta-propeller structures. Structural analysis and site-directed mutagenesis experiments demonstrate the essential role of Glu-309 in catalysis. The data will aid in deciphering the details of the reaction mechanism of STR1 as well as other members of this enzyme family.  相似文献   

4.
5.
Symbiosome biogenesis and function are central to the endosymbiotic interaction between symbiotic dinoflagellates and their host cnidarians. To understand these important organelles, we have been conducting studies to identify and characterize symbiosome-associated proteins of the Rab family, key regulatory components of vesicular trafficking and membrane fusion in eukaryotic cells. Our prior studies have implicated three endocytic Rab proteins in the regulation of symbiosome biogenesis. Here, we show that ApRab3 is a new member of the Rab3 subfamily, associating with symbiosomes and accumulating on the maturing phagosomes in the A. pulchella digestive cells. ApRab3 is 78% identical to human Rab3C, and contains all Rab 3-specific signature motifs. EGFP-ApRab3-labeled vesicular structures tended to either align along the cell peripheral, or aggregate at one side of the nucleus. ApRab3 specifically co-distributed with the TGN marker, WGA, but not other organelle-specific markers tested. Immunofluorescence staining with a specific peptide antibody showed similar results. Significantly, an expression of a constitutively active mutant caused the enlargement and random dispersion of EGFP-ApRab3-decorated compartments in PC12 cells. Together, these data suggest that ApRab3 is a new member of the Rab3 subfamily, participating in the biosynthetic trafficking pathway, and symbiosome biogenesis involves an interaction with ApRab3-positive vesicles.  相似文献   

6.
Autophagy is a catabolic membrane-trafficking mechanism involved in cell maintenance and development. Most components of autophagy also function in the cytoplasm to vacuole targeting (Cvt) pathway, a constitutive biosynthetic pathway required for the transport of aminopeptidase I (Ape1). The protein components of autophagy and the Cvt pathway include a putative complex composed of Apg1 kinase and several interacting proteins that are specific for either the Cvt pathway or autophagy. A second required complex includes a phosphatidylinositol (PtdIns) 3-kinase and associated proteins that are involved in its activation and localization. The majority of proteins required for the Cvt and autophagy pathways localize to a perivacuolar pre-autophagosomal structure. We show that the Cvt13 and Cvt20 proteins are required for transport of precursor Ape1 through the Cvt pathway. Both proteins contain phox homology domains that bind PtdIns(3)P and are necessary for membrane localization to the pre-autophagosomal structure. Functional phox homology domains are required for Cvt pathway function. Cvt13 and Cvt20 interact with each other and with an autophagy-specific protein, Apg17, that interacts with Apg1 kinase. These results provide the first functional connection between the Apg1 and PtdIns 3-kinase complexes. The data suggest a role for PtdIns(3)P in the Cvt pathway and demonstrate that this lipid is required at the pre-autophagosomal structure.  相似文献   

7.
Several forms of congenital muscular dystrophy, referred to as dystroglycanopathies, result from defects in the protein O-mannosylation biosynthetic pathway. In this minireview, I discuss 12 proteins involved in the pathway and how they play a role in the building of glycan structures (most notably on the protein α-dystroglycan) that allow for binding to multiple proteins of the extracellular matrix.  相似文献   

8.
Suzuki M  Tanaka K  Kuwano M  Yoshida KT 《Gene》2007,405(1-2):55-64
Phytic acid, myo-inositol-hexakisphosphate (InsP(6)), is a storage form of phosphorus in plants. Despite many physiological investigations of phytic acid accumulation and storage, little is known at the molecular level about its biosynthetic pathway in plants. Recent work has suggested two pathways. One is an inositol lipid-independent pathway that occurs through the sequential phosphorylation of 1D-myo-inositol 3-phosphate (Ins(3)P). The second is a phospholipase C (PLC)-mediated pathway, in which inositol 1,4,5-tris-phosphate (Ins(1,4,5)P(3)) is sequentially phosphorylated to InsP(6). We identified 12 genes from rice (Oryza sativa L.) that code for the enzymes that may be involved in the metabolism of inositol phosphates. These enzymes include 1D-myo-inositol 3-phosphate synthase (MIPS), inositol monophosphatase (IMP), inositol 1,4,5-tris-phosphate kinase/inositol polyphosphate kinase (IPK2), inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1), and inositol 1,3,4-triskisphosphate 5/6-kinase (ITP5/6K). The quantification of absolute amounts of mRNA by real-time RT-PCR revealed the unique expression patterns of these genes. Outstanding up-regulation of the four genes, a MIPS, an IPK1, and two ITP5/6Ks in embryos, suggested that they play a significant role in phytic acid biosynthesis and that the lipid-independent pathway was mainly active in developing seeds. On the other hand, the up-regulation of a MIPS, an IMP, an IPK2, and an ITP5/6K in anthers suggested that a PLC-mediated pathway was active in addition to a lipid-independent pathway in the anthers.  相似文献   

9.
Biosynthetic pathways of brassinolide in Arabidopsis   总被引:5,自引:0,他引:5       下载免费PDF全文
Our previous studies on the endogenous brassinosteroids (BRs) in Arabidopsis have provided suggestive evidence for the operation of the early C6-oxidation and the late C6-oxidation pathways, leading to brassinolide (BL) in Arabidopsis. However, to date the in vivo operation of these pathways has not been fully confirmed in this species. This paper describes metabolic studies using deuterium-labeled BRs in wild-type and BR-insensitive mutant (bri1) seedlings to establish the intermediates of the biosynthetic pathway of BL in Arabidopsis. The first evidence for the conversion of campestanol to 6-deoxocathasterone and the conversion of 6-deoxocathasterone to 6-deoxoteasterone is provided. The later biosynthetic steps (6-deoxoteasterone --> 3-dehydro-6-deoxoteasterone --> 6-deoxotyphasterol --> 6-deoxocastasterone --> 6alpha-hydroxycastasterone --> castasterone --> BL) were demonstrated by stepwise metabolic experiments. Therefore, these studies complete the documentation of the late C6-oxidation pathway. The biosynthetic sequence involved in the early C6-oxidation pathway (teasterone --> 3-dehydroteasterone --> typhasterol --> castasterone --> BL) was also demonstrated. These results show that both the early and late C6-oxidation pathways are functional in Arabidopsis. In addition we report two new observations: the presence of a new branch in the pathway, C6 oxidation of 6-deoxotyphasterol to typhasterol, and increased metabolic flow in BR-insensitive mutants.  相似文献   

10.
PR1 is a pathogenesis-related protein encoded in the parsley genome by a family of three genes (PR1-1, PR1-2 and PR1-3). Loss- and gain-of-function experiments in a transient expression system demonstrated the presence of two fungal elicitor responsive elements in each of the PR1-1 and PR1-2 promoters. These elements, W1, W2 and W3, contain the sequence (T)TGAC(C) and mutations that disrupt this sequence abolish function. Gel shift experiments demonstrated that W1, W2 and W3 are bound specifically by similar nuclear proteins. Three cDNA clones encoding sequence-specific DNA-binding proteins were isolated by South-Western screening and these proteins, designated WRKY1, 2 and 3, also bind specifically to W1, W2 and W3. WRKY1, 2 and 3 are members of the family of sequence-specific DNA-binding proteins, which we call the WRKY family. Treatment of parsley cells with the specific oligopeptide elicitor Pep25 induced a transient and extremely rapid increase in mRNA levels of WRKY1 and 3. WRKY2 mRNA levels in contrast showed a concomitant transient decrease. These rapid changes in WRKY mRNA levels in response to a defined signal molecule suggest that WRKY1, 2 and 3 play a key role in a signal transduction pathway that leads from elicitor perception to PR1 gene activation.  相似文献   

11.
Chemotaxonomy of the Rubiaceae family based on leaf fatty acid composition   总被引:1,自引:0,他引:1  
With 10,700 species distributed in 637 genera, the Rubiaceae family is one of the largest of the angiosperms. Since it was previously evidenced that the fatty acid composition of photosynthetic tissues can be a tool for chemotaxonomic studies, the fatty acid composition of leaves from 107 Rubiaceae species highly representative of the diversity of the family was determined. Principal component analysis allowed a clear-cut separation of Coffeae, Psychotrieae and Rubieae. The occurrence of C16:3 fatty acid, a marker of the prokaryotic plastidial lipid biosynthetic pathway, concerned at least two branches: Theligoneae/Rubieae and Anthospermeae-Anthosperminae which appeared to be in close relationship. Additional experiments were carried out to ensure the correlation between the presence of C16:3 fatty acid and the prokaryotic biosynthetic pathway.  相似文献   

12.
Helicobacter pylori flagellin is heavily glycosylated with the novel sialic acid-like nonulosonate, pseudaminic acid (Pse). The glycosylation process is essential for assembly of functional flagellar filaments and consequent bacterial motility. Because motility is a key virulence factor for this and other important pathogens, the Pse biosynthetic pathway offers potential for novel therapeutic targets. From recent NMR analyses, we determined that the conversion of UDP-alpha-D-Glc-NAc to the central intermediate in the pathway, UDP-4-amino-4,6-dideoxy-beta-L-AltNAc, proceeds by formation of UDP-2-acetamido-2,6-dideoxy-beta-L-arabino-4-hexulose by the dehydratase/epimerase PseB (HP0840) followed with amino transfer by the aminotransferase, PseC (HP0366). The central role of PseC in the H. pylori Pse biosynthetic pathway prompted us to determine crystal structures of the native protein, its complexes with pyridoxal phosphate alone and in combination with the UDP-4-amino-4,6-dideoxy-beta-L-AltNAc product, the latter being converted to the external aldimine form in the active site of the enzyme. In the binding site, the AltNAc sugar ring adopts a 4C1 chair conformation, which is different from the predominant 1C4 form found in solution. The enzyme forms a homodimer where each monomer contributes to the active site, and these structures have permitted the identification of key residues involved in stabilization, and possibly catalysis, of the beta-L-arabino intermediate during the amino transfer reaction. The essential role of Lys183 in the catalytic event was confirmed by site-directed mutagenesis. This work presents for the first time a nucleotide-sugar aminotransferase co-crystallized with its natural ligand, and, in conjunction with the recent functional characterization of this enzyme, these results will assist in elucidating the aminotransferase reaction mechanism within the Pse biosynthetic pathway.  相似文献   

13.
Jasmonic acid (JA) is a lipid-derived signal that regulates a wide variety of developmental and defense-related processes in higher plants. JA is synthesized from linolenic acid via an enzymatic pathway that initiates in the plastid and terminates in peroxisomes. The C18 JA precursor 12-oxo-phytodienoic acid (OPDA) is converted in the peroxisome to 3-oxo-2-(2'-[Z]-pentenyl)cyclopentane-1-octanoic acid (OPC-8:0), which subsequently undergoes three rounds of beta-oxidation to yield JA. Although most JA biosynthetic enzymes have been identified, several key steps in the pathway remain to be elucidated. To address this knowledge gap, we employed co-expression analysis to identify genes that are coordinately regulated with known JA biosynthetic components in Arabidopsis. Among the candidate genes uncovered by this approach was a 4-coumarate-CoA ligase-like member of the acyl-activating enzyme (AAE) gene family, which we have named OPC-8:0 CoA Ligase1 (OPCL1). In response to wounding, opcl1 null mutants exhibited reduced levels of JA and hyperaccumulation of OPC-8:0. Recombinant OPCL1 was active against both OPDA and OPC-8:0, as well as medium-to-long straight-chain fatty acids. Subcellular localization studies with green fluorescent protein-tagged OPCL1 showed that the protein is targeted to peroxisomes. These findings establish a physiological role for OPCL1 in the activation of JA biosynthetic precursors in leaf peroxisomes, and further indicate that OPC-8:0 is a physiological substrate for the activation step. The results also demonstrate the utility of co-expression analysis for identification of factors that contribute to jasmonate homeostasis.  相似文献   

14.
In genetic screens for ribosomal export mutants, we identified CFD1, NBP35 and NAR1 as factors involved in ribosome biogenesis. Notably, these components were recently reported to function in extramitochondrial iron-sulfur (Fe-S) cluster biosynthesis. In particular, Nar1 was implicated to generate the Fe-S clusters within Rli1, a potential substrate protein of unknown function. We tested whether the Fe-S protein Rli1 functions in ribosome formation. We report that rli1 mutants are impaired in pre-rRNA processing and defective in the export of both ribosomal subunits. In addition, Rli1p is associated with both pre-40S particles and mature 40S subunits, and with the eIF3 translation initiation factor complex. Our data reveal an unexpected link between ribosome biogenesis and the biosynthetic pathway of cytoplasmic Fe-S proteins.  相似文献   

15.
Many vitally important functions in living systems are carried out by metal ions held as complexes within organic ligands, the organic part of the molecule being a tetrapyrrolic macrocycle. Chlorophyll, haemoglobin, the cytochromes and vitamin B12 all fall into this family of 'pigments of life', a list that emphasizes their central importance in living systems. Research on the biosynthesis of these pigments has involved the synergistic combination of synthesis, structure determination, carbon nuclear magnetic resonance and isotopic labelling with radioactive and stable isotopes in conjunction with enzymology and kinetics. The lecture describes the logical series of experiments based on these approaches which have led to a step-by-step knowledge of the biosynthesis of the parent macrocycle (uroporphyrinogen-III) from which the other pigments are derived. One main pathway from the parent macrocycle involves oxidative transformations and leads eventually to protohaem required inter alia for haemoglobin and myoglobin. The second important pathway makes use of C-methylation to convert the parent macrocycle through many stages finally into vitamin B12. The biosynthetic studies on vitamin B12 are outlined with particular emphasis on the use of isotopic labelling with both radioactive and stable isotopes of carbon and hydrogen. Roughly two-thirds of the entire biosynthetic pathway to vitamin B12 has now been elucidated. The scarcity of several of the known intermediates on the pathway severely hampers future researches and progress towards the total synthesis of these key materials is reviewed. Finally, the lecture brings out the evolutionary interest of what has been discovered about the biosynthesis of the pigments of life.  相似文献   

16.
Darchen F  Goud B 《Biochimie》2000,82(4):375-384
Rab proteins form the largest branch of the Ras superfamily of GTPases. They are localized to the cytoplasmic face of organelles and vesicles involved in the biosynthetic/secretory and endocytic pathways in eukaryotic cells. It is now well established that Rab proteins play an essential role in the processes that underlie the targeting and fusion of transport vesicles with their appropriate acceptor membranes. They perform this task through interactions with a wide variety of effector molecules. In this review, we illustrate recent advances in the field of Rab GTPases, taking as examples two proteins involved in the biosynthetic pathway, Rab3 and Rab6.  相似文献   

17.
The isoprenoid biosynthetic pathway is a very complex route that entails multiple steps and generates a high number of end-products that are essential for cell viability such as sterols, dolichols, coenzyme Q, heme and prenylated proteins. In parasites from the Trypanosomatidae family this pathway provides new potential drug targets for exploitation in the search for improved therapies, and indeed compounds such as ketoconazole, aminobisphosphonates or terbinafine have been shown to have antiprotozoal activity both in vitro and in vivo. However, despite the high therapeutic importance of the pathway, the subcellular compartmentalization of the different steps of isoprenoid biosynthesis is not known in detail. Here we have analysed the intracellular location of the enzymes 3-hydroxy-3-methyl-glutaryl Coenzyme A (HMG-CoA) synthase (HMGS) and mevalonate kinase (MVAK) in Leishmania major promastigotes as well as in Trypanosoma brucei procyclic and bloodstream forms. For this purpose we generated specific polyclonal antibodies against both highly purified recombinant proteins and used those in indirect immunofluorescence and digitonin titration experiments. Results show that sterol biosynthesis is distributed in multiple intracellular compartments and provide evidence indicating that in trypanosomatids the production of HMG-CoA from acetyl Coenzyme A and generation of mevalonate occur mainly in the mitochondrion while further mevalonate phosphorylation is almost exclusively located in glycosomes. Furthermore, we have determined that peroxin 2 (PEX2) is involved in efficient targeting of MVAK and that the enzyme is relocated to the cytosol upon depletion of this peroxin involved in glycosomal matrix protein import.  相似文献   

18.
19.
Wsc family proteins are plasma membrane spanning sensor proteins conserved from yeasts to mammalian cells. We studied the functional roles of Wsc family proteins in the methylotrophic yeast Pichia pastoris, and found that PpWsc1 and PpWsc3 function as methanol‐sensors during growth on methanol. PpWsc1 responds to a lower range of methanol concentrations than PpWsc3. PpWsc1, but not PpWsc3, also functions during high temperature stress, but PpWsc1 senses methanol as a signal that is distinct from high‐temperature stress. We also found that PpRom2, which is known to function downstream of the Wsc family proteins in the cell wall integrity pathway, was also involved in sensing methanol. Based on these results, these PpWsc family proteins were demonstrated to be involved in sensing methanol and transmitting the signal via their cytoplasmic tail to the nucleus via PpRom2, which plays a critical role in regulating expression of a subset of methanol‐inducible genes to coordinate well‐balanced methanol metabolism.  相似文献   

20.
In polarized epithelial cells, newly synthesized membrane proteins are delivered on specific pathways to either the apical or basolateral domains, depending on the sorting motifs present in these proteins. Because myosin VI has been shown to facilitate secretory traffic in nonpolarized cells, we investigated its role in biosynthetic trafficking pathways in polarized MDCK cells. We observed that a specific splice isoform of myosin VI with no insert in the tail domain is required for the polarized transport of tyrosine motif containing basolateral membrane proteins. Sorting of other basolateral or apical cargo, however, does not involve myosin VI. Site-directed mutagenesis indicates that a functional complex consisting of myosin VI, optineurin, and probably the GTPase Rab8 plays a role in the basolateral delivery of membrane proteins, whose sorting is mediated by the clathrin adaptor protein complex (AP) AP-1B. Our results suggest that myosin VI is a crucial component in the AP-1B-dependent biosynthetic sorting pathway to the basolateral surface in polarized epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号