首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nuclei from frozen calf thymus suspended in buffer were analyzed for metal content prior to and after repeated washing. After three such extractions about 0.1 micrograms Zn/mg DNA and 0.025 micrograms Cu/mg DNA remained tightly associated with chromatin. This level of metal was essentially unchanged with subsequent washings. Digestion of extracted nuclei with micrococcal nuclease yielded soluble nucleoprotein containing zinc and copper. Metal enriched regions of chromatin appeared to be preferentially solubilized by digestion, and the solubilized metal was only partially dializable either with or without EDTA. Metal profiles generated from gel (A-5m) chromatography analysis of chelated and non-chelated solubilized chromatin were distinctive in that copper was undetectable (by flame AA) while zinc was associated only with low molecular weight products when EDTA was used. In contrast, both metals were detected with higher molecular weight oligonucleosomes in the absence of chelating agents. Additionally, the two metals localized within nucleoprotein peaks and these metal-containing regions were only resolved by gel chromatography when EDTA was omitted throughout the procedure. A discrete Cu-rich species in a region of the profile suggests a subset of Cu-rich nucleoprotein complexes.  相似文献   

2.
Nuclei from calf thymus tissue digested with micrococcal nuclease under nonchelating conditions yielded soluble nucleoprotein enriched in copper. Following limited digestion, the ratio of μg Cu:mg DNA was inversely related either to percent solubility of chromatin or to levels of enzyme maintaining an enzyme:A 260 ratio of 0.059. The enzyme appeared to cleave preferentially regions of chromatin where copper is localized, releasing no additional metal upon further digestion. Moreover, the highest copper: DNA ratio was always associated with the least-digested sample. The distribution between copper and angiotensin II (AII) in chromatin fragments following slight nuclease digestion suggests a possible link between copper and nuclear AII binding. When nuclei are incubated with AII prior to digestion and dialysis, solubilized chromatin contained about three times more copper than buffer control. Metal profiles generated from gel (A-5 M) chromatography for these samples were distinctive: copper peaks appeared near or adjacent to linker DNA regions, and in the case of AII, coincided with fragments containing specific AII receptors; thus, there appears to be an enrichment of copper in these active nucleoprotein fragments.  相似文献   

3.
4.
Some parameters that influence the analysis in situ of DNA sensitivity to digestion with nuclease S1 have been studied in isolated HeLa nuclei with flow cytometry. DNA staining with the intercalating fluorochrome propidium iodide allowed the nucleolytic activity on double-stranded (ds) DNA to be determined by monitoring the relative reduction in nuclear fluorescence intensity. Nuclei isolated in buffer at low ionic strength in order to decondense chromatin fibres, showed a lower fluorescence intensity than nuclei with native chromatin, after digestion with nuclease S1 under identical conditions. Nuclei prepared with dispersed chromatin and digested with increasing amounts of enzyme showed a decrease in fluorescence intensity that reached a limit value at about 50% of the value of undigested control samples. On the other hand, in nuclei with native chromatin, fluorescence intensity decreased only about 18%. The NaCl concentration in the reaction buffer strongly influenced the DNA sensitivity to S1 nuclease. By increasing salt molarity from 5 mM to 200 mM, the digestion of dsDNA was significantly reduced as also shown by the amount of released nucleotides from purified calf thymus DNA. The detection of DNA sensitivity to nuclease S1, as assessed by the cytometric method, was shown to be more sensitive than a biochemical technique involving hydrolysis of purines. These results indicate that both the procedure for nuclei isolation and the digestion conditions have to be carefully controlled when evaluating in situ the presence of S1-sensitive sites.  相似文献   

5.
Summary Some parameters that influence the analysis in situ of DNA sensitivity to digestion with nuclease S1 have been studied in isolated HeLa nuclei with flow cytometry. DNA staining with the intercalating fluorochrome propidium iodide allowed the nucleolytic activity on double-stranded (ds) DNA to be determined by monitoring the relative reduction in nuclear fluorescence intensity. Nuclei isolated in buffer at low ionic strength in order to decondense chromatin fibres, showed a lower fluorescence intensity than nuclei with native chromatin, after digestion with nuclease S1 under identical conditions. Nuclei prepared with dispersed chromatin and digested with increasing amounts of enzyme showed a decrease in fluorescence intensity that reached a limit value at about 50% of the value of undigested control samples. On the other hand, in nuclei with native chromatin, fluorescence intensity decreased only about 18%. The NaCl concentration in the reaction buffer strongly influenced the DNA sensitivity to S1 nuclease. By increasing salt molarity from 5 mM to 200 mM, the digestion of dsDNA was significantly reduced as also shown by the amount of released nucleotides from purified calf thymus DNA. The detection of DNA sensitivity to nuclease S1, as assessed by the cytometric method, was shown to be more sensitive than a biochemical technique involving hydrolysis of purines. These results indicate that both the procedure for nuclei isolation and the digestion conditions have to be carefully controlled when evaluating in situ the presence of S1-sensitive sites.  相似文献   

6.
A chromatin fraction solubilized from mouse myeloma nuclei under near-physiological ionic conditions by very mild micrococcal nuclease digestion at 0°C is enriched at least 7-fold in DNA complementary to total myeloma polyadenylated mRNA, and 15-fold in DNA originating near the replication fork (labeled within 30 s). Newly replicated DNA recovered in solubilized chromatin after brief labeling was incorporated mainly into particles sedimenting with, or faster than, mononucleosomes. A rapid decrease in enrichment of newly replicated DNA in readily released, soluble chromatin with increasing labeling times indicated that newly replicated chromatin matured within 90 s to a form that was partitioned similarly to bulk chromatin by this fractionation method. Previous studies showed that chromatin readily solubilized from myeloma nuclei is enriched in high-mobility-group (HMG) and other non-histone proteins, RNA and single-stranded DNA; and depleted in H1 and 5-methylcytosine, relative to bulk chromatin (Jackson, J.B., Pollock, J.M., Jr., and Rill, R.L. (1979) Biochemistry 18, 3739–3748). Mild digestion of chicken erythrocyte nuclei with micrococcal nuclease yielded a soluble chromatin fraction (1–2% of the total DNA) with similar properties. This fraction was enriched at least 6-fold in DNA complementary to chicken globin mRNA, relative to total erythrocyte DNA.  相似文献   

7.
Mouse liver nuclei were fractionated into (condensed) heterochromatin and (noncondensed) euchromatin by differential centrifugation of sonicated nuclei. The fractions were subsequently characterized as unique nuclear species by thermal denaturation derivative profile analysis, which revealed the heterochromatin fraction enriched in satellite DNA and by endogenous metal content, which displayed partitioning of mercury in euchromatin over heterochromatin by a 10:1 ratio, with a comparatively uniform distribution of copper in both fractions. Fractionation of nuclei following in vivo challenge with copper showed enrichment of copper in heterochromatin, relative to euchromatin, while in vivo exposure to mercury resulted in a 20-fold accumulation of mercury in euchromatin, relative to heterochromatin. Using gel filtration and equilibrium dialysis to measure in vitro binding under relatively physiologic conditions of pH (6.0-7.0) and ionic strength (standard saline citrate or saline), the condensed and noncondensed chromatin fractions exhibited binding specificities toward mercury and copper similar to that observed in the in vivo metal challenge experiments. The level of mercury which binds to euchromatin in vitro, when measured either in physiologic [standard saline citrate (SSC)] or in dilute (1:100 SSC) salt solutions, was comparable (approximately 3 mug of Hg/mg of DNA) to that of in vivo euchromatin-bound mercury after 1 month of challenge with dietary metal. In contrast, copper showed little or no preference for the nuclear fractions in dilute salt solutions and displayed patterns which mimic in vivo binding only at higher ionic strengths (saline). Removal of proteins from the chromatin fractions resulted in a loss of binding specificity toward both metals. Therefore, the binding selectivity of condensed and noncondensed chromatin toward both mercury and copper appears to arise from protein or from protein-DNA associations. The state of chromatin condensation is especially critical in the case of copper.  相似文献   

8.
The search for proteins involved in maintaining higher order chromatin structures has led to a systematic examination of the non-histone proteins (NHP) of rat liver nuclei in the context of nuclease digestion studies. 40-45% of the 3H-tryptophan labelled NHP originally present could be removed by extensive washing in a "physiological" buffer, incubation at 37 degrees C with or without nuclease and a further wash step. Nuclei at this stage had a remarkably constant NHP content (ca. 0.73 micrograms/micrograms DNA), independent of the degree of digestion with micrococcal nuclease or HaeIII. The solubilized chromatin produced by limited digestion with either nuclease contained 0.3-0.5 microgram NHP/microgram DNA, this value falling to ca. 0.16 after more extensive cleavage. Insoluble chromatin fractions were between 2-fold (very limited digestion) and 16-fold (extensive digestion) richer in NHP than the corresponding soluble fractions. Gel electrophoresis revealed about 12 NHP bands in soluble fractions, the most prominent of M.Wt. 41.400, while the insoluble material had at least 50 components. These properties were independent of whether lysis of nuclei occurred in 0.2 or 50 mM ionic strength. The large disparity in NHP content between complementary soluble and insoluble chromatin fractions is considered in terms of chromatin organization in vivo and the possible role of NHP migration.  相似文献   

9.
In order to investigate the functional organization of the progesterone receptor in chromatin we characterized the physical-chemical properties of the receptor bound chromatin fragments released by micrococcal nuclease and DNase I digestion. The crude nuclear fraction was isolated from T 47 D cells, previously exposed to 0.1 microM [3H]ORG 2058. The parameters determined in low and high salt concentrated buffers were: sedimentation coefficients (S) on a sucrose gradient, Stokes radii (Rs) by gel filtration on a Sephadex G-200 column and the binding abilities to a DNA-cellulose column. The molecular weights (Mr) and frictional ratios (f/fo) were calculated from the S and Rs values. Micrococcal nuclease digestion solubilized a receptor form sedimenting as a single peak at 4.4 S with a Rs = 7.78 nm and an estimated Mr = 144,000. About 53% of the applied receptor bound to a DNA-cellulose column could be eluted by high salt concentrated buffer. 0.4 M KCl dissociated this receptor form into a smaller receptor sedimenting at 3.3 S with Rs = 5.53 nm and a calculated Mr = 76,000. A similar receptor form was extracted by 0.6 M KCl from the undigested crude nuclear fraction. DNase I digestion solubilized a receptor form sedimenting at 3.3 S with a Rs = 6.87 nm and a calculated Mr = 94,000. About 26% of the applied receptor bound to a DNA-cellulose column could be eluted by high salt concentrated buffer. Dissociation of this receptor form by 0.4 M KCl resulted in a receptor sedimenting at 2.8 S with a Rs = 6.53 nm and an estimated Mr = 76,000. These results suggest: The progesterone receptor in chromatin is associated with several molecules probably proteins which complexed it to DNA. Some of these molecules still associated with the progesterone receptor could be released by nucleases digestion. Micrococcal nuclease releases a larger portion of these molecules than those release by DNase I.  相似文献   

10.
The physical-chemical properties of the nuclear estrogen receptor from MCF-7 cells were determined. The receptor was solubilized by micrococcal nuclease. Nuclei were isolated from cells previously exposed to 10 nM [3H]estradiol. The amount of receptor released was parallel to the extent of chromatin solubilized, which suggested that the receptor is homogeneously distributed on the chromatin. Following mild nuclease digestion the excised receptor sedimented as an abundant 6-7 S form and as a less abundant approximately 12 S species. The 6-7 S form represented the receptor excised in association with linker DNA, while the approximately 12 S may represent receptor bound to linker DNA which remained associated with the nucleosome. Increasing the extensiveness of digestion resulted in one receptor form sedimenting at 5.6 S. Additional digestion with DNase I did not affect the sedimentation coefficient of the receptor. Sedimentation of the micrococcal nuclease hydrolysate in a 0.4 M KCl sucrose gradient resulted in a 4.2 S receptor form. The same receptor form was extracted from undigested nuclei with 0.4 M KCl. Using Sephadex G-200 column chromatography we have determined the Stokes radii (Rs), molecular weight (Mr) and frictional ratio (f/fo) for the 5.6 S and 4.2 S receptor forms. For the 5.6 S form: Rs = 7.04 nm, Mr = 163,000 and (f/fo) = 1.80. For the 4.2 S receptor, Rs = 4.45 nm, Mr = 77,000 and (f/fo) = 1.46. The ability of the nuclease solubilized 5.6 S receptor to bind DNA was tested using DNA-cellulose column and highly polymerized DNA. About 40% of the applied receptor bound to the column and could be eluted by high salt concentrated buffer. The 5.6 S receptor form was sedimented on sucrose gradient by the highly polymerized DNA. These results suggested that the receptor is bound in chromatin as a dimer or as a monomer in association with other protein(s) which complexed it with DNA.  相似文献   

11.
The chromatin structures of a variety of plasmids and plasmid constructions, transiently transfected into mouse Ltk- cells using the DEAE-dextran procedure, were studied by micrococcal nuclease digestion of nuclei and Southern hybridization. Although regularly arranged nucleosome-like particles clearly were formed on the transfected DNA, the nucleosome ladders, in some cases with 13-14 bands, were anomalous. Most often, a ladder of DNA fragments with lengths of approximately 300, 500, 700, 900 bp, etc. was generated. In contrast, typical 180-190 bp multiples were generated from bulk cellular or endogenous beta-actin gene chromatin. Very similar results were obtained with all DNA's transfected, and in a variety of cell lines, provided that plasmid replication did not occur. Additionally, after digestion of nuclei, about 90% of the chromatin fragments that contained transfected DNA sequences could not be solubilized at low ionic strength, in contrast with bulk cellular chromatin, suggesting association with nuclear structures or nuclear matrix. The remaining 10% of transfected DNA sequences, arising from soluble chromatin fragments, generated a typical nucleosome ladder. These results are consistent with the idea that assembly of atypical chromatin structures might be induced by proximity to elements of the nuclear pore complex or by nuclear compartmentalization.  相似文献   

12.
Properties of condensed residual chromatin of mouse spleen, a component of residual nuclear structures, were studied. Extraction of the structures with buffers of different NaCl concentrations showed that the condensed chromatin consists of condensed nucleosomal chains. On increasing the ionic strength the complexes gradually fell apart into separate nucleosomal chains. DNA of condensed chromatin was accessible to staphylococcal nuclease and DNAase I, but digestion of this DNA was not accompanied by solubilization of the residual chromatin. Besides the essentially decreased total content of nonhistone chromosomal proteins the condensed chromatin practically did not contain HMG proteins. The nucleosome repeat length of this chromatin was shorter than that of chromatin solubilized by staphylococcal nuclease.  相似文献   

13.
Ehrlich ascites tumor (EAT) cells propagated in mass suspension culture were used as a starting material for the simultaneous isolation and purification of large quantities of the intermediate filament protein vimentin and the nuclear lamins A/C and B. Triton cytoskeletons, obtained by repeated washing of cells with a low ionic strength buffer containing Triton X-100 and 4 mM Mg2+, were extracted with 6 M urea at low salt concentration and in the presence of EDTA. Separation of solubilized proteins from unfolded chromatin (DNA) was accomplished by recondensation of the chromatin (DNA) in the presence of Mg2+ before centrifugation. To achieve separation of vimentin from nuclear lamins, the urea extract was subjected to DEAE-Sepharose CL-6B chromatography. Single-stranded DNA-cellulose chromatography was employed for the final purification of vimentin and for the separation of lamin B from lamins A/C. Further purification of lamin B was carried out by CM-Sepharose CL-6B chromatography and of lamins A/C by chromatography on hydroxylapatite. All chromatographies were performed in the presence of 6 M urea. 500 g of pelleted EAT cells yielded approximately 700 mg of vimentin, 225 mg of lamins A/C and 21 mg of lamin B. 2D-polyacrylamide gel electrophoresis revealed great microheterogeneity of lamins A/C, which to a high extent was due to phosphorylation, whereas lamin B was much less heterogeneous. In the absence of urea and at low salt concentration, lamins A/C required pH 5 to stay in solution whereas lamin B required pH 7.5. Increasing the salt concentration to 150 or 250 mM NaCl resulted in the formation of paracrystals from a urea-free mixture of lamins A/C and B. Although the lamins could not be assembled into intermediate filaments under a variety of ionic conditions, the preparations obtained will be useful for further biochemical characterization of these nuclear proteins.  相似文献   

14.
A hyperthermic shift in the hyperchromicity curve of thermally denatured swine aortic-smooth-muscle-cell chromatin solubilized by digestion of nuclei with micrococcal nuclease was observed after the chromatin was incubated under conditions to allow poly-(ADP-ribose) synthesis by the endogenous poly(ADP-ribose) polymerase. When the order of solubilization and poly(ADP-ribosyl)ation was reversed, a smaller proportion of the solubilized chromatin exhibited greater thermal stability. Nuclease digestion of nuclei preincubated for poly(ADP-ribose) synthesis revealed no difference in kinetics of digestion or fragment size distribution compared to that of control nuclei. Poly(ADP-ribose) synthesis in these nuclei was proportionately greater in the chromatin fraction most resistant to solubilization by micrococcal nuclease treatment.  相似文献   

15.
Chromatin fractions from rat liver nuclei digested by nucleases were separated by differential solubility into several fractions. Material solubilized during digestion (predominantly monomer nucleosomes and polynucleosomes) had the highest HMG14 + 17/DNA ratios but were not enriched in active gene sequences (albumin and c-Ha-ras1 genes). Material soluble in a low ionic strength buffer containing 0.2 mM MgCl2 (monomer nucleosomes and polynucleosomes) contained in addition to the histones, HMG14 and 17 plus a 41K non-histone protein. This fraction was depleted in active gene sequences and enriched in inactive sequences. The insoluble material was highly enriched in active sequences and had the lowest HMG14 + 17/DNA ratio. This fraction could be further fractionated into a histone-containing 2 M NaCl-soluble fraction and a 2 M NaCl-insoluble matrix-bound fraction, both of which were enriched in active sequences. The results show that the HMG proteins do not partition with active sequences during fractionation of chromatin. The 41K protein may be associated with inactive chromatin fraction.  相似文献   

16.
Nucleic prepared from mouse submandibular salivary gland show marked fragility during isolation. Hwever, intact nuclei relatively free from cytoplasmic contamination were obtained by homogenization in buffers containing 0.88 M-sucrose, Ca2+, spermine, spermidine and the proteinase inhibitor aprotinin, followed by centrifugation through 2.2 M-sucrose. The kinetics of digestion by the micrococcal nuclease of chromatin in these nuclei are similar to those of chromatin from mouse liver nuclei. Base-pair size analysis of the solubilized DNA from both organs shows a stable high-molecular weight species of chromatin, which is further digested to mononucleosome and subnucleosome species. With extensive digestion the chromatin becomes insoluble. The mononucleosomes produced from salivary-gland chromatin after the inhibition of endogenous proteinase activity exhibit an s20,w value of 11S and contain histones H1, H2A, H2B, H3 and H4.  相似文献   

17.
18.
To examine the distribution of 5-methylcytosine in chromatin DNA, DNA of HeLa cells was labeled with [3H-methyl]methionine and [14C] thymidine and analyzed after extensive digestion of the nuclei with micrococcal nuclease. When the chromatin solubilized with the nuclease was fractionated on a sucrose density gradient, DNA in mononucleosomes was considerably depleted in 5-methylcytosine, as compared with polynucleosomes. Electrophoretic separation of DNA from the chromatin also revealed the depletion of 5-methylcytosine in the mononucleosomal size of DNA. This was confirmed by the chromatographic analysis of 5-methyldeoxycytidine after enzymatic digestion of the DNA to nucleosides. Thus the DNA in mononucleosomes solubilized by extensive micrococcal nuclease digestion is depleted in 5-methylcytosine, suggesting that 5-methylcytosine is preferentially missing from the DNA in the nucleosome core particles.  相似文献   

19.
The higher-order organisation of chromatin in chicken erythrocyte nuclei as a function of the ionic strength of the nuclear suspension buffer and also of the time of incubation in this buffer prior to nuclease digestion has been investigated. This organisation is described in terms of a physical parameter called the domain length. The 45-kbp-long domains of control nuclei were unravelled to give rise to domains of length 150 kbp on overnight equilibration at 0 degree C of the nuclei in standard isolation buffer containing 0.135 M NaCl prior to nuclease digestion. However, transition to the equilibrium state was preceded by a metastable and irregular domain architecture when the nuclei were incubated for only 1 h. In contrast, the domain length remained unchanged when nuclei were incubated in the isolation buffer alone for identical periods of time. The proteins dissociated at the higher ionic strength were characterised and their role in stabilising the domain structure is discussed.  相似文献   

20.
Exposure of bovine estrogen receptor to the metal chelators EDTA and 1,10-phenanthroline results in a loss of nonspecific DNA binding, presumably because of the removal of "zinc finger" zinc. Nonspecific DNA binding, as measured by a DNA-cellulose binding assay, can be restored by dialysis of the aporeceptor against buffer containing zinc, cadmium, and cobalt but not with buffer containing copper or nickel. More detailed studies were carried out using a bacterially expressed polypeptide encompassing the DNA binding domain of the human estrogen receptor. Apopolypeptide fails to bind DNA specifically, as measured by mobility shift assay using a consensus estrogen response element hexamer containing oligonucleotide, but DNA binding was restored by dialysis of the apopolypeptide against buffer containing zinc, cadmium, and cobalt but not with buffer containing copper or nickel. Dissociation constants of zinc- and cadmium-reconstituted polypeptide for the estrogen response element hexamer (66 and 48 nM, respectively) are virtually indistinguishable from native polypeptide (Kd = 48 nM) whereas cobalt-reconstituted polypeptide has a lower affinity (Kd = 720 nM). However, native, zinc-, cadmium-, and cobalt-reconstituted polypeptides gave identical results in a methylation interference assay. Competition experiments with zinc and copper or nickel suggest that copper and nickel are able to bind to zinc finger residues but do so nonproductively. The relative affinities copper greater than cadmium greater than zinc greater than cobalt greater than nickel for the polypeptide were determined by a zinc blot competition assay. The ability of cadmium and cobalt to substitute for zinc in the zinc fingers demonstrates a structural "flexibility" in the DNA binding domain as each of these metals has slightly different ionic radii. On the other hand, subtle differences in DNA binding affinity and/or specificity could exist, which may not be detectable here. Also, the ability of metals to substitute for zinc in the DNA binding domain suggests that metal substitution in these zinc fingers in vivo may be of relevance to the toxicity and/or carcinogenicity of some of these metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号