首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Knowledge on the structure and composition of the plant communities has enormous significance in conservation and management of forests. The present study aimed to assess the community attributes, viz., structure, composition and diversity in the moist and dry sal (Shorea robusta) forests in the West Bengal province of India and compare them with the other sal forests of India. The phytosociological data from these forests were quantitatively analysed to work out the species richness, diversity, evenness, dominance, importance value, stand density and the basal area. The analysis showed that plant richness and diversity in moist sal forests of northern West Bengal are higher than the dry sal forests of south-west Bengal; a total of 134 tree (cbh ≥30 cm), 113 shrub and 230 herb species were recorded in the moist sal forest compared to 35 tree, 41 shrub and 96 herb species in dry sal forest. Papilionaceae was observed to be the dominant family. Dry sal forests had higher tree dominance (0.81) and stand density (1,006 stems ha−1) but lower basal area (19.62 m2ha−1) while moist sal forest had lower tree dominance (0.18) and stand density (438 stems ha−1) but higher basal area (56.52 m2ha−1). Tree species richness and stem density across girth classes in both the types decreased from the smallest to largest trees, while the occurrence rate of species increased with increase in girth class. A t-test showed significant differences in species richness, basal area and the stand density at 95% confidence level (p = <0.05) in the two forest types. The CCA indicated very low overall match (canonical correlation value = 0.40) between the two sets of variables from moist and dry sal types. The differences in these forests could be attributed to the distinct variations in climatic conditions- mainly the rainfall, disturbance regimes and the management practices.  相似文献   

2.
《农业工程》2021,41(4):259-284
Diversity, stand structure and regeneration potential are the key elements of any forest ecosystem. For the present study, seven sites were selected with the aims of assessing plant diversity, structure and regeneration potential in tropical forests across Kanyakumari Wildlife Sanctuary (KWLS), Western Ghats, India. The sites were classified based on the similarity: tropical dry deciduous sites (TDDs I and II), tropical semi-evergreen sites (TSEs I and II) and tropical evergreen sites (TEFs I-III). The phytosociological survey was done by laying a total of 70 plots (10 plots in each study site). Standard methods were followed for the assessment of diversity, structure and regeneration patterns. A total of 267 species (205 genera, 70 families) were recorded. The tree species richness ranged 24 (TDD II) – 76 (TEF III). Of the vegetation spectrum, trees, vines and understorey accounted 56.5, 15.3 and 28.2% respectively to the total flora documented. A total of 66 species were endemic. The total tree density and tree basal area (seedlings, saplings, juveniles and adults) were 18,790 individuals (mean 2684) and 137.6 m2 (mean 19.7 m2) in 70 plots respectively. The mean tree adult density and basal area ranged 370 (TDD I) – 900 (TEF I) individuals/ha and 24.2 (TDD I) – 75.3 (TEF III) m2/ha respectively. The overall species richness was highest in TDD I, but TEF III had the highest tree species richness. The diameter class-wise distribution showed the characteristic ‘reverse J-shaped’ curve. Most tree species were ‘newly recruited’. The dominant species had ‘fair’ to ‘good’ regeneration potential. However, 12 tree species showed ‘no’ regeneration. The overall regeneration pattern of trees was ‘good’, but ‘no’ or ‘poor’ regeneration patterns in some tree species, especially endemics is a point of concern. Since a majority of tree species were ‘new recruits’, species composition may likely change in the future. The results obtained would help in understanding diversity patterns, structural attributes and regeneration potential in tropical forests of protected areas for better forest management and conservation.  相似文献   

3.
Abstract The soil seed bank and its relation to the extant vegetation in a Eucalyptus regnans F. Muell. forest in the Central Highlands of Victoria were examined. The average seed density was 430 germinable seeds m?2 to a depth of 2 cm. There was a polynomial regression relationship between the density and species richness of seeds in soil and forest age (0. 6–54 years). Species richness was not significantly different among soil depths (0- 2 , 2- 5 , 5–10 and 10–20 cm) in the forest stand of 54 years old. More seeds germinated from the 5–10 cm depth than from the other depths. Forbs accounted for 73% of the total germinable seeds and there was no germination of E. regnans. The number of species, particularly woody plant species, germinating from the soil seed bank were significantly lower than in the extant vegetation. However, almost all species present in the soil seed bank were present in the vegetation. The soil seed bank provides an important source for the rapid regeneration of understorey vegetation following clear-cutting and slash-burning in the E. regnans forest. The rapid understorey establishment may play an important role in protecting soil from erosion, in nutrient conservation, replacement and redistribution. The soil seed bank may also be a necessary source of maintaining genetic diversity in the forest over the long term.  相似文献   

4.
采用典型样地法,以川西周公山柳杉人工林5种不同大小的林窗为研究对象,以林下非林窗为对照,研究了不同大小的林窗对柳杉人工林物种多样性的影响,同时分析了不同梯度林窗下林窗中心、林窗边缘、及林下群落的物种组成、物种多样性的变化情况。结果表明:(1)在所调查的18个样地231个样方中共记录到维管束植物141种,隶属于76科113属;随着林窗面积的增大,群落各层次的物种数呈现出先升高后降低的趋势,灌木层物种数在各林窗梯度上表现为林缘林下林窗中心,草本层物种数在各林窗梯度上表现为林缘林窗中心林下。(2)不同林窗优势种及其重要值不同,即在小林窗内,优势种为柳杉和野桐,其重要值之和高达0.292 3;在大林窗内,杉木及亮叶桦为群落优势物种,群落内出现大量其更新幼苗。(3)不同大小的林窗表现为灌木层物种丰富度指数(D)、Shannon-Wienner指数(H)、和Pielou均匀度指数(Jsw)值在400~450 m2面积的大林窗内达到一个均优水平,草本层物种的多样性在面积为100~150m2的小林窗内达到较高水平;不同梯度的林窗各层次群落D、H值整体表现为林缘林窗中心林下。研究认为:林窗的存在会改变群落物种组成,提高群落物种多样性水平,并且大林窗(400~450m2)更利于柳杉人工林林下树种更新及物种多样性的提高。  相似文献   

5.
Eight forest types varying in disturbance frequencies were identified along an elevational gradient in Uttaranchal, central Himalaya. Low elevation forests were close to human habitation and had high disturbance frequency, while high elevation forests were situated far from the human habitation and had low disturbance. The dominant tree species at low elevation were Pinus roxburghii and Quercus leucotrichophora, while Q. floribunda and Q. semecarpifolia dominated the high elevation forests. Pyracantha crenulata was the shrub present in all the forests except in Q. semecarpifolia forest and Anaphalis contorta, a herb species, was present in all the forests. Disturbance decreased the dominance of single species and increased the plant biodiversity by mixing species of different successional status. Species richness and diversity for all the vegetation layers were higher in low elevation–high disturbance forests. Mean tree density decreased from high to moderate and increased in low disturbance. The shrub density decreased from high to low disturbance while the reverse occured for herbs. High proportion of early successional species in disturbed forests indicated that disturbance induces succession. The mean number of young individuals increasing from high to low disturbance indicates that disturbance adversely affects regeneration. But, however, the high number of young individuals of Coriaria nepalensis, a small non-leguminous nitrogen fixing tree, in disturbed forests shows that the forest is regenerating. This species could be helpful in the re-establishment of original vegetation through triggering the regeneration of these forests. High elevation–low disturbed forests separated from low elevation–high disturbed forests. Forest type and elevation may have more influence on tree richness while shrub and herb richness may be more sensitive to disturbance and forest types.  相似文献   

6.
Large wild ungulates are a major biotic factor shaping plant communities. They influence species abundance and occurrence directly by herbivory and plant dispersal, or indirectly by modifying plant‐plant interactions and through soil disturbance. In forest ecosystems, researchers’ attention has been mainly focused on deer overabundance. Far less is known about the effects on understory plant dynamics and diversity of wild ungulates where their abundance is maintained at lower levels to mitigate impacts on tree regeneration. We used vegetation data collected over 10 years on 82 pairs of exclosure (excluding ungulates) and control plots located in a nation‐wide forest monitoring network (Renecofor). We report the effects of ungulate exclusion on (i) plant species richness and ecological characteristics, (ii) and cover percentage of herbaceous and shrub layers. We also analyzed the response of these variables along gradients of ungulate abundance, based on hunting statistics, for wild boar (Sus scrofa), red deer (Cervus elaphus) and roe deer (Capreolus capreolus). Outside the exclosures, forest ungulates maintained higher species richness in the herbaceous layer (+15%), while the shrub layer was 17% less rich, and the plant communities became more light‐demanding. Inside the exclosures, shrub cover increased, often to the benefit of bramble (Rubus fruticosus agg.). Ungulates tend to favour ruderal, hemerobic, epizoochorous and non‐forest species. Among plots, the magnitude of vegetation changes was proportional to deer abundance. We conclude that ungulates, through the control of the shrub layer, indirectly increase herbaceous plant species richness by increasing light reaching the ground. However, this increase is detrimental to the peculiarity of forest plant communities and contributes to a landscape‐level biotic homogenization. Even at population density levels considered to be harmless for overall plant species richness, ungulates remain a conservation issue for plant community composition.  相似文献   

7.
We provide total vascular plant species counts for three 1-ha plots in deciduous, semi-deciduous and evergreen forests in central Bolivia. Species richness ranged from 297 species and 22,360 individuals/ha in the dry deciduous forest to 382 species and 31,670 individuals/ha in the evergreen forest. Orchidaceae, Pteridophyta and Leguminosae were among the most species-rich major plant groups in each plot, and Peperomia (Piperaceae), Pleurothallis (Orchidaceae) and Tillandsia (Bromeliaceae), all epiphytes, were the most species-rich genera. This dominance of a few but very diverse and/or widespread taxa contrasted with the low compositional similarity between plots. In a neotropical context, these Central Bolivian forest plots are similar in total species richness to other dry deciduous and humid montane forests, but less rich than most Amazonian forests. Nevertheless, lianas, terrestrial herbs and especially epiphytes proved to be of equal or higher species richness than most other neotropical forest inventories from which data are available. We therefore highlight the importance of non-woody life-forms (especially epiphytes and terrestrial herbs) in Andean foothill forest ecosystems in terms of species richness and numbers of individuals, representing in some cases nearly 50% of the species and more than 75% of the individuals. These figures stress the need for an increased inventory effort on non-woody plant groups in order to accurately direct conservation actions. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
The mechanisms affecting forest regeneration in human-modified landscapes are attracting increasing attention as tropical forests have been recognized as key habitats for biodiversity conservation, provision of ecosystem services, and human well-being. Here we investigate the effect of the leaf-cutting ants (LCA) Atta opaciceps on regenerating plant assemblages in Caatinga dry forest. Our study encompassed 15 Atta opaciceps colonies located in landscape patches with a gradient of forest cover from 8.7% to 87.8%, where we monitored regenerating individuals (seedlings and saplings of woody and herbaceous plants) in different habitats (nests, foraging areas, and control areas) over one year. We recorded 2,977 regenerating plant individuals, distributed among 55 species from 23 families. Herbaceous plants represented 82.1% and 58.2% of the total number of individuals and species, respectively. Species richness of both the whole and herbaceous plant assemblages increased along the forest cover gradient, but without difference between the habitats. Total plant abundance was highest in control areas followed by foraging areas and nests and this pattern held for both woody and herbaceous plants. Although forest cover did not influence the abundance of herbaceous plants and the whole plant assemblage, it positively affects woody plant abundance across control areas. Forest cover and habitat changed species composition of both the entire regenerating and the herbaceous assemblages. These results together indicate that LCA negatively impact regenerating plant assemblages, particularly in those sites with increased forest cover. As LCA proliferate in human-modified landscapes, they may prevent plant regeneration of disturbed areas.  相似文献   

9.
Patterns of plant diversity along the altitudinal gradient of Tianshan in central Xinjiang, China were examined. Plant and environment characteristics were surveyed from higher, south of Bogeda peak, to lower, north of Guerbantonggute desert. There were a total of 341 vascular plant, 295 herbage, 41 shrub, and seven tree species in the sampled plots. The plant richness of vegetation types generally showed a unimodal pattern along altitude, with a bimodal change of plant species number at 100-m intervals of altitudinal samples. The two belts of higher plant richness were in transient areas between vegetation types, the first in areas from dry grass to forest, and the second from forest to sub-alpine grass and bush. The beta diversity varied with altitudinal changes, with herbaceous species accounting for most species, and thus had similar species turnover patterns to total species. Matching the change of richness of plant species to environmental factors along altitude and correlating these by redundancy analysis revealed that the environmental factors controlling species richness and its pattern were the combined effects of temperature, precipitation, soil water, and nutrition. Water was more important at low altitude, and temperature at high altitude, and soil chemical and physical characters at middle altitudes. This study provides insights into plant diversity conservation of Bogeda Natural Reserve Areas in Tianshan Mountain. Nomenclatures: the scientific name for plants follows Flora of China (Compiling Committee of Flora of China).  相似文献   

10.
Riparian forests are increasingly threatened by urban expansion and land use change worldwide. This study examined the relationships between landscape characteristics and woody plant diversity, structure, and composition of small order riparian corridors along an urban-rural land use gradient in the Georgia Piedmont, US. Riparian plant diversity, structure, and composition were related to landscape metrics and land use. Species richness was negatively associated with impervious surfaces and landscape diversity, and positively associated with forest cover and largest forest patch index. Shannon species diversity was strongly related to the biomass of non-native species, especially for the regeneration layer. Urban sites were characterized by high richness of non-native and pioneer species. Developing sites were dominated by the non-native shrub, Ligustrum sinense Lour., and several native overstory trees, mainly Acer negundo L. While agricultural and managed forest sites were composed of ubiquitous species, unmanaged forest sites had a structurally distinct midstory indicative of reduced disturbance. Urban and agricultural land uses showed decreased native stem densities and signs of overstory tree regeneration failure. Results from this study highlight the impact of the surrounding landscape matrix upon riparian forest plant diversity and structure.  相似文献   

11.
Aim The objective of this study was to document succession from grassland thickets to rain forest, and to provide evidence for their potential as restoration tools. Location The Linganamakki region (State of Karnataka) of the Central Western Ghats of India. Method We selected thirty vegetation thickets ranging from 4 to 439 m2 in area in the vicinity of rain forest. The area of each small thicket was estimated as an oval using its maximum length and its maximum width. When the shape was irregular (mostly in large thickets) the limits of the thicket were mapped and the area calculated from the map. Plant species were identified, the number of individuals was estimated and their heights measured. Results There was a progression in the thickets from early to late successional species. Small thickets were characterized by ecotone species and savanna trees such as Catunaregam dumetorum. Savanna trees served as a nucleus for thicket formation. Colonizing species were mostly bird‐dispersed. As succession proceeded in larger thickets, the proportion of evergreen, late‐successional rain forest trees increased. The species composition of the large thickets differed depending on the species composition of reproductive adults in the nearby forested areas. The species within small thickets were also found in the large thickets. The nestedness in species composition suggested that species turnover was deterministic based on thicket size. Human disturbance (leaf and wood collection by the local populations) affected the species composition and the species–area relationship of thickets. Main conclusions Vegetation thickets are nodal centres for rain forest colonization within grasslands. They expand and replace savanna. Early successional bird‐dispersed species established around savanna trees followed by late‐successional rain forest trees dispersed from the nearby forest by birds. Restoration programmes that reproduce natural successional processes such as those observed in thickets will be more successful and less expensive than the methods currently being employed, where trees are individually planted in grassland. Wood harvesting is the only factor that prevents thicket growth and coalescence and hampers forest expansion.  相似文献   

12.
Exotic woody plants are often used by native organisms, but may also be targets of expensive control justified by nature conservation. We determine the use of a weed of national significance, Gorse (Ulex europaeus L.), by native mammals, birds, reptiles and vascular plants in pastoral areas in an Australian biodiversity hotspot. Large numbers of fauna species were observed using Gorse within our 43 × 1 ha sample sites in riparian, woodland and pasture vegetation. Gorse cover and/or height positively influenced: the detection of mammals as a whole in an interaction with visibility at 50–75 cm above ground, but not their species richness or individual species abundances; bird abundance, but not richness; and, reptile richness but not abundance. In terms of flora, Gorse cover and/or height positively affected: non‐native plant species richness and the height and fecundity, but not the richness, of native grasses and forbs—but Gorse cover negatively influenced the height of native herbs. The only species of conservation significance using Gorse were three mammals, only one of which, the Tasmanian Pademelon (Thylogale billardieri), was sufficiently common to analyse. Its abundance had no relationship with Gorse cover or height. Even in the wider context of complementary work, there is no strong threatened species conservation justification for retaining Gorse thickets in the Northern Midlands pastoral landscape. Equally, expending scarce conservation resources to remove Gorse, as is taking place, is unlikely to achieve any threatened species conservation outcome but may help reduce long‐term loss of native animal and plant species.  相似文献   

13.
Originally from Asia, Rubus niveus has become one of the most widespread invasive plant species in the Galapagos Islands. It has invaded open vegetation, shrubland and forest alike. It forms dense thickets up to 4 m high, appearing to displace native vegetation, and threaten the integrity of several native communities. This study used correlation analysis between a R. niveus cover gradient and a number of biotic (vascular plant species richness, cover and vegetation structure) and abiotic (light and soil properties) parameters to help understand possible impacts in one of the last remaining fragments of the Scalesia forest in Santa Cruz Island, Galapagos. Higher cover of R. niveus was associated with significantly lower native species richness and cover, and a different forest structure. Results illustrated that 60% R. niveus cover could be considered a threshold for these impacts. We suggest that a maximum of 40% R. niveus cover could be a suitable management target.  相似文献   

14.
A survey of the population of the black howler monkey (Alouatta pigra) present at the Mayan site of Palenque was conducted during 2000. A total of 911 man/hours, spread over 112 days were spent surveying the 600 ha area of pristine forest at the site for howler troops. We detected the presence of 136 individuals of which 131 were members of 20 troops, the rest were 3 solitary adult males and 2 adult males travelling as a pair. Ecological density was estimated at 23 individuals/km2. Mean troop size was 7.0 individuals and it ranged from 2–12 individuals; 60% of the troops were multimale. All sighting of howler monkeys were in evergreen rain forest and 75% were in trees ≥20 m in height. The reported densities and mean troop size are higher than those reported for the species in Guatemala and in central Quintana Roo, Mexico. The vegetation of the forest contains tree species reported to be used by species ofAlouatta in the Moraceae, Sapotaceae, Leguminosae, and Lauraceae plant families. Protection of a large perimeter area (ca 1700 ha) around the archeological site by the Mexican government ensures the conservation of the forest and of the black howler monkey population present at the site.  相似文献   

15.
Coastal barrens in Nova Scotia are heathlands characterised by short, predominantly ericaceous vegetation, sparse tree cover, exposed bedrock, pockets of Sphagnum bog, and stressful climatic conditions. Although coastal barrens are prominent in the physical and cultural landscape, they are largely unprotected. We selected six barrens along the Atlantic coast, and surveyed 20 1-m2 plots at each barren for vascular plants, macrolichens, mosses and environmental factors. We recorded 173 species (105 vascular, 41 macrolichen, 27 moss), including six provincially rare vascular species found predominantly in nearshore areas with high levels of substrate salt and nutrients, variable substrate depth, and short vegetation. Although vascular plant and moss richness were similarly correlated with vegetation height, substrate depth, organic matter content, and rock exposure, there were no clear correlations between vascular plant, macrolichen and moss richness across all sites. Vascular plant rarity and species richness were not correlated, but had inverse relationships with key environmental gradients. Tailoring conservation efforts to protect areas of high richness may thus mean that rare species are missed, and vice versa. Ordination and ANOSIM show that barrens vegetation differs widely among sites; therefore, protecting any singular coastal barren will not protect the entire range of vegetation communities and species in this heathland type. Conservation planning should emphasize protecting environmental gradients correlated with richness, rarity and plant community structure, including substrate depth and moisture, and vegetation height. Additionally, protected areas should include a coastal-inland gradient and a diversity of substrate types, including exposed rock and trees.  相似文献   

16.
Vegetation structure and species composition of tropical ecosystems were studied through nine transects at Veerapuli and Kalamalai reserve forests in the Western Ghats of Tamil Nadu, India. Species diversity, dominance, species richness and evenness indices of plant communities and also population structure of woody plants were enumerated. A total of 244 species (183 genera and 76 families) were recorded. Species richness (number of species) were 82,142 and 96 species per 0.3 ha respectively for the study areas of low-elevation forest (LEF), mid-elevation forest (MEF) and high elevation forest (HEF). Species diversity indices were greater in MEF compared to the other two forests except juveniles. In contrast, greater dominance value indices were recorded in LEF than other forests. Density and basal area of the MEF were twice greater than the LEF, while HEF showed greater tree density and low basal area when compared to LEF. The stem density and species richness (number of species) decreased with increased size classes of trees observed in the present study indicated good regeneration status. Population structure of juveniles and seedlings also reflects good regeneration status. Terminalia paniculata (IVI of 99.9) and Hopea parviflora (IVI of 103.8) were dominant tree species respectively in LEF and MEF whereas in HEF Agrostistachys meeboldii (63.65), Cullenia excelsa (63.67) and Drypetes oblongifolia (39.67) share the dominance. Past damage (anthropogenic perturbation) may be one of the reasons for single species dominance in LEF and MEF. Occurrence of alien species such as Eupatorium odoratum and Ageratum conyzoides also indicated the past disturbance in LEF. The variations in plant diversity and population structure are largely due to anthropogenic perturbation and other abiotic factors.  相似文献   

17.
Conservation strategies of forested landscapes must consider biodiversity of the included site types, i.e. timber-quality forests and associated non-timber-quality stands. The objectives were to characterize forest overstory structure in timber-quality versus associated non-timber-quality stands; and to compare their understory communities. Six forest types were sampled in Nothofagus forests of Tierra del Fuego (Argentina): two timber-quality N. pumilio forests, and four associated non-timber-quality stands (edge, N. antarctica, wetlands and streamside forests). Overstory structure and understory vegetation (species richness, frequencies, cover and biomass) were characterized during spring and summer seasons. Analysis of variance and multivariates were carried out. Overstory structure differed across the site types, with higher tree size, canopy closure and tree volume in timber-quality stands. Fifty-one understory plant species were observed, but understory variables varied with site types, especially wetlands (highest native and exotic richness, cover and biomass, and 25% of exclusive species). Site types were grouped in three: N. antarctica stands, streamside stands and the other N. pumilio forests according to multivariate analysis. Forty three percent of plants were distributed in all site types, and all timber-quality forest understory species were present in some associated non-timber-quality stands. Timber-quality N. pumilio forests have a marginal value for understory conservation compared to associated non-timber-quality stands, because these last include all the plants observed in timber-quality forests and also possess many exclusive species. Therefore, protection of associated non-timber-quality stands during forest management planning could increase understory conservation at landscape level, and these could be better reserves of understory diversity than retentions of timber-quality stands.  相似文献   

18.
T. Ohkubo 《Plant Ecology》1992,101(1):65-80
Structure and spatial distribution of stools and root-collar sprouts of Japanese beech (Fagus japonica) were studied to clarify the regeneration processes of the stool and the population, and the ecological importance of this stool formation in five quadrats of the natural forests with different forest floor vegetation on the Pacific side of Japan. F. japonica dominates in the canopy of each quadrat. Most of sprouts formed a circle around the root-collar and lowest parts of the parent stems of the stool with the youngest sprouts at the periphery. The regeneration by seedlings was slight especially on the forest floor vegetation of the dwarf bamboo Sasa. The variety of size structure of stems and the existence of dead traces and/or dead center in each stool, the apparent difference in stool size, and the aggregations of stools in the forests suggest that stool expansion and long persistence of the stool at a given location may contribute to compensate for the scarcity of regeneration by seedlings inhibited by dwarf bamboo, and by the other shrubs and herbs.  相似文献   

19.
Abstract. We document post‐fire succession on xeric sites in the southern Appalachian Mountains, USA and assess effects of 20th century reduction in fire frequency on vegetation structure and composition. Successional studies over 18 yr on permanent plots that had burned in 1976–1977 indicate that tree mortality and vegetation response varied with fuel load and fire season. In the first three years after fire, hardwood sprouts dominated tree regeneration. On sites where summer and autumn fires reduced litter depth to less than 1 cm, densities of shade‐intolerant Pinus seedlings increased steadily over this period. 4 to 8 yr after fire, large numbers of newly established seedlings and sprouts had grown to 1 – 10 cm DBH. By year 18 growth of these saplings led to canopy closure on most sites. Herbaceous cover and richness peaked in the first decade after fire, then declined. On similar sites that had not burned in more than 50 yr, regeneration of shade‐intolerant Pinus spp. and mean cover and richness of herbs were considerably lower than those observed on recently burned plots. Reconstructions of landscape conditions based on observed post‐fire succession and 20th century changes in fire regime suggest that reductions in fire frequency circa 1940 led to substantial changes in forest structure and decreases in cover and richness of herbaceous species.  相似文献   

20.
《农业工程》2021,41(6):597-610
Understanding the regeneration potential of tree species in natural forest ecosystems is crucial to deliver suitable management practices for conservation of biodiversity. We studied the variation in structural diversity and regeneration potential of tree species in three different tropical forest types, namely: Dry Deciduous forest (DDF), Moist Deciduous forest (MDF) and Semi-evergreen forest (SEF) of Similipal Biosphere Reserve (SBR), Eastern India. Random sample plots were laid for studying the diversity and distribution pattern of tree, sapling, and seedling stages of the tree species. A total of 84 species belong to 73 genera and 35 families were recorded from the study area. The highest species richness was reported for tree (54 species) in DDF, sapling (24 species) in MDF and seedling (22 species each) in SEF and DDF. The overall density of trees with GBH (Girth at Breast Height) ≥ 10 cm was 881 individuals/ha. The regeneration potential of tree species was poor in DDF (39%) where as it was fair in SEF (43%) and MDF (49%). Most of the dominant tree species at each forest type performed good regeneration. The species such as Ehretia laevis Roxb., Bridelia retusa (L.)A.Juss., Mitragyna parviflora (Roxb.) Korth., Terminalia tomentosa Wight & Arn., Terminalia chebula Retz., Terminalia bellirica (Gaertn.) Roxb.etc. had either no regeneration or poor regeneration potential need immediate attention for conservation measures. The diversity of standing trees did not correlate with seedling or sapling diversity in all the cases but there was significant correlation among seedling and sapling diversity found in DDF (r = 0.67, p ≤ 0.05) and SEF (r = 0.83, p ≤ 0.05). Further, the diversity of tree species increased with their age (trees > saplings > seedlings) and the stem density decreased with their age (trees < saplings < seedlings) in all three forest types. The results of our study would be helpful in understanding the structural attributes, diversity and regeneration potential of different tropical forest types of India for their better conservation and management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号