首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Collagen has a stimulatory effect on the differentiation of skeletal muscle cells in culture. Putative collagen-binding proteins were isolated from detergent-solubilized cultures of the L6 rat muscle cell line and primary clonal cultures of human skeletal muscle satellite cells, using gelatin-Sepharose affinity chromatography. In addition to fibronectin, which has been reported by others to be synthesized by cultured muscle cells, we found that muscle cultures synthesized gelatin-binding proteins of lower apparent molecular weight. Only one of these proteins was secreted into the growth medium and bound to type I collagen. Binding of this protein to gelatin and collagen-Sepharose was resistant to repeated washing with 1 M NaCl and nonionic detergent. The secreted gelatin-binding protein had an apparent molecular weight of 63,000-72,000, depending upon the conditions of electrophoresis. The lack of reactivity of the secreted protein with polyclonal antisera against fibronectin, the lack of effect of protease inhibitors on its appearance in the medium, and the rapid de novo production of the protein during pulse labeling with radioactive methionine indicated that it was not a fibronectin fragment. The rate of synthesis of the secreted gelatin-binding protein increased markedly during the myogenesis of rat and human cultures.  相似文献   

2.
Human placental fibronectin was isolated from fresh term placenta by urea extraction and purified by gelatin affinity chromatography. A 44-kDa chymotryptic fragment, also purified by gelatin affinity chromatography, gave a broad, diffuse band on polyacrylamide gel electrophoresis, whereas the analogous 43-kDa fragment from human plasma fibronectin migrated as a defined, narrow band. Upon extended treatment with endo-beta-galactosidase from Escherichia freundii, the 44-kDa chymotryptic gelatin-binding fragment from placental fibronectin changed its behavior on gel electrophoresis and migrated as a narrower, more defined band. The carbohydrates on human placental fibronectin contained a large percentage of polylactosamine structures, part of which occurred on the gelatin-binding fragment, comprising almost twice as much carbohydrate as plasma fibronectin. NH2-terminal amino acid sequence analysis of the chymotryptic gelatin-binding fragments from both fibronectins showed the first 21 residues to be identical. Tryptic and chymotryptic peptide maps of the gelatin-binding fragment from placental fibronectin, however, showed differences including several protease-resistant domains not found in the analogous fragment from plasma fibronectin. Intact placental fibronectin contains 20,000 Da of carbohydrate, whereas plasma fibronectin contains 11,000 Da. Placental fibronectin is more protease-resistant than plasma fibronectin, possibly due to the additional carbohydrate. Polyclonal antibodies against either fibronectin completely cross-react with amniotic fluid fibronectin, placental fibronectin, and plasma fibronectin upon Ouchterlony immunodiffusion. Human fibronectins of putatively the same polypeptide structure are, therefore, glycosylated in a dramatically different fashion, depending on the tissue of expression. If the patterns of glycosylation comprise the only difference in the glycoprotein, this may confer the characteristic protease resistance found for each of the fibronectins.  相似文献   

3.
Several cell-mediated activities for the amino terminus of fibronectin have been documented. In the present study we describe a macrophage surface protein with binding activity directed to the amino terminus of the fibronectin molecule. The binding of a 29-kDa amino-terminal fibronectin fragment to macrophages reached steady state by 30 min and was half-maximal at approximately 2 x 10(-8) M. This binding was specifically inhibited by excess unlabeled 29-kDa fragment or intact fibronectin but not by a 180-kDa fibronectin fragment which lacks the amino terminus. Competitive binding studies of the 70-kDa amino-terminal fibronectin fragment to macrophages revealed a single binding site with KD = 7.14 x 10(-8) M and approximately 8 x 10(4) binding sites/cell. Radiolabeled surface proteins extracted from rat peritoneal macrophages and from the human U937 cell line were applied to an affinity column comprised of the 70-kDa amino-terminal fragment of fibronectin coupled to a solid support. A single trypsin-sensitive radiolabeled protein of 67 kDa, from either cell type, was eluted from this column with urea. This protein showed no immunologic identity with fibronectin, fibrin(ogen), or albumin. The 67-kDa protein exhibited identical apparent molecular weight under reducing and nonreducing conditions, as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. We have localized the fibronectin binding activity of this protein to within the 29-kDa amino-terminal domain of fibronectin. The 67-kDa protein eluted from the 70-kDa column failed to bind to a column comprised of the 45-kDa gelatin-binding fragment of fibronectin. Additionally, the 67-kDa protein was specifically eluted from the 70-kDa column by the 29-kDa amino-terminal fragment but not by the 45-kDa gelatin-binding fragment. These data suggest that this 67-kDa protein is a macrophage cell surface binding protein for the amino terminus of fibronectin.  相似文献   

4.
Desmin, the main component of intermediate filaments (IFs) in mature skeletal muscle, forms an interlinking scaffold around myofibrils with connections to the sarcolemma and the nuclear membrane. Desmin is enriched in neuromuscular and myotendinous junctions. Mice lacking the desmin gene develop normally and reproduce. However, postnatally they develop a cardiomyopathy and a dystrophy in highly used muscles. We have investigated whether and how neuromuscular and myotendinous junctions are affected and whether nestin compensates for the lack of desmin in the knock-out (K/O) mice. We show that neither neuromuscular nor myotendinous junctions were markedly affected in the desmin K/O mice. In neuromuscular junctions nestin was present between the postjunctional folds and the subneural nuclei and between the nucleus and the myofibrillar cytoskeleton. In myotendinous junctions nestin was present between myofibrils at the Z-disc level and in longitudinal strands close to and at the junction. Nestin expression at these specialized sites, as well as during myogenesis and myofibrillogenesis, is independent of the presence of desmin. In desmin K/O mice nestin was also found in regenerating myofibers. The presence of nestin at neuromuscular and myotendinous junctions might provide enough strength for preservation and organization of the junctional areas, although desmin is lacking.  相似文献   

5.
Tyrosine phosphorylation of cytoskeletal proteins at adhesive junctions has been speculated to play a role in the regulation of cell signaling at these sites. Previously, monoclonal antibodies were generated against phosphotyrosine-containing proteins from Rous sarcoma virus-transformed chick embryo fibroblasts, resulting in two antibodies which recognized antigens of 76 and 215 kDa that localized to focal contacts. We have now localized the 215-kDa antigen to a number of adhesive junctions in vivo, including the zonula adherens, intercalated discs, and myotendinous and neuromuscular junctions. In sections of skeletal muscle and in isolated myofibrils, the 215-kDa protein was localized to the I-band. By immunoprecipitation and immunoblot analysis, we determined that the 215-kDa antigen cross-reacts with a polyclonal anti-tensin antibody.  相似文献   

6.
Calsequestrin, the major calcium storage protein of both cardiac and skeletal muscle, binds and releases large numbers of Ca(2+) ions for each contraction and relaxation cycle. Here we show that two crystal structures for skeletal and cardiac calsequestrin are nearly superimposable not only for their subunits but also their front-to-front-type dimers. Ca(2+) binding curves were measured using atomic absorption spectroscopy. This method enables highly accurate measurements even for Ca(2+) bound to polymerized protein. The binding curves for both skeletal and cardiac calsequestrin were complex, with binding increases that correlated with protein dimerization, tetramerization, and oligomerization. The Ca(2+) binding capacities of skeletal and cardiac calsequestrin are directly compared for the first time, with approximately 80 Ca(2+) ions bound per skeletal calsequestrin and approximately 60 Ca(2+) ions per cardiac calsequestrin, as compared with net charges for these molecules of -80 and -69, respectively. Deleting the negatively charged and disordered C-terminal 27 amino acids of cardiac calsequestrin results in a 50% reduction of its calcium binding capacity and a loss of Ca(2+)-dependent tetramer formation. Based on the crystal structures of rabbit skeletal muscle calsequestrin and canine cardiac calsequestrin, Ca(2+) binding capacity data, and previous light-scattering data, a mechanism of Ca(2+) binding coupled with polymerization is proposed.  相似文献   

7.
A basement membrane-associated glycoprotein from skeletal muscle   总被引:2,自引:0,他引:2  
We have isolated a major glycoprotein that appears to be associated with rat skeletal muscle basement membrane. We determined that the glycoprotein was part of the muscle cell surface complex when we found it to be enriched in preparations of muscle ghosts. We isolate the glycoprotein from homogenized muscle preextracted with 4 M and 8 M urea. It elutes as a major component in the presence of 8 M urea/50 mM 2-mercaptoethanol. Its apparent molecular weight on sodium dodecyl sulfate gels is 130,000. Amino acid analysis indicates that it is not a collagen but that it does contain small amounts of hydroxyproline and hydroxylysine. There may be collagenous domains in the glycoprotein molecule, for it is cleaved into three fragments by purified bacterial collagenase. Immunoperoxidase staining confirms that the 130,000-dalton protein is localized at the surface of adult skeletal muscle cells. It is probably a general basement membrane-associated glycoprotein because we found material immunologically cross-reactive with the muscle glycoprotein in basement membrane regions of kidney, liver, brain, and small intestine. We have shown the glycoprotein to be distinct from fibronectin, laminin, and types I, III, IV, and V collagens in enzyme-linked immunosorbent assays.  相似文献   

8.
The collagen-binding domain of human fibronectin has been expressed as a cro/beta-galactosidase fusion protein in Escherichia coli. The hybrid polypeptide was recognized by an anti-(human plasma fibronectin) serum and bound specifically to gelatin-Sepharose. The collagen-binding region was subdivided by constructing a series of overlapping bacterial expression plasmids. The fusion proteins produced by these constructs were analysed for gelatin-binding activity. The results indicate that the binding site lies within an approximately 12.5 kd fragment of fibronectin, and show that the following 14 amino acid sequence is critical for gelatin-binding activity: Ala-Ala-His-Glu-Glu-Ile-Cys-Thr-Thr-Asn-Glu-Gly-Val-Met. This sequence links the second type II homology unit with the adjacent type I repeat in the amino-terminal third of the fibronectin molecule.  相似文献   

9.
Distribution of secondary structure along the fibronectin molecule   总被引:1,自引:0,他引:1  
30-kDa, 50-kDa and 70-kDa gelatin-binding, 60-kDa central and 60-65-kDa heparin-binding fragments were produced by trypsin digestion of fibronectin. The secondary structure of the fragments was studied by circular dichroism and quantitative infrared spectroscopy. The structure of the 70-kDa gelatin-binding, 60-kDa central and 60-65-kDa heparin-binding fragments in solution appeared to be very close to that in the intact fibronectin. The content of the antiparallel beta-form, the only element of the secondary structure in all the fragments studied, was shown to be 30-35%.  相似文献   

10.
The presence and distribution of alpha-actinin, an actin-bundling protein, was investigated at sites where frog skeletal muscle forms junctions with tendon collagen fibers. These sites, called myotendinous junctions, are regions where myofibrils terminate and where the force of muscular contraction is transmitted from muscle cells to the substratum. An antibody manufactured to chicken smooth muscle alpha-actinin was used as a probe for alpha-actinin localization in this study. The cross-reactivity of this antibody with frog skeletal muscle alpha-actinin is demonstrated in immunoblots of one-dimensional (1D) electrophoretic separations of muscle proteins. Immunofluorescent localization of anti-alpha-actinin and electron microscopic immunolabelling confirms that the antibody binds to Z-discs with high affinity. However, in sections treated for electron microscopy with affinity-purified anti-alpha-actinin and a ferritin-conjugated, second antibody, there was no significant difference between experimental or control preparations in the number of ferritin grains overlying dense, subsarcolemmal material at junctional or non-junctional regions. Furthermore, Z-discs near myotendinous junctions displayed less binding of anti-alpha-actinin than Z-discs located several micrometers or more from the cells' termini. These findings indicate that thin filaments are not bundled by alpha-actinin near the sarcolemma. The results also provide evidence for molecular heterogeneity between Z-discs at the ends of muscle cells compared with other regions of the cell in that the terminal Z-discs of myofibrils contain very little or no alpha-actinin relative to non-terminal Z-discs.  相似文献   

11.
A protein doublet (M(r) = 68,000) that copurifies with chicken cardiac collagen types I and III is purified and characterized in the present study. Peptide mapping and amino terminus sequencing for both 68-kDa polypeptides show they have similar structures. This is supported by amino terminus sequencing of a 39-kDa proteolytic fragment of each polypeptide. The 68-kDa polypeptides appear at pI 6.7-6.8 in two-dimensional gels. Under nonreducing, electrophoretic conditions, the doublet appears as a large multimer or aggregate. Amino acid sequencing of the protein shows that its amino terminus contains a heptapeptide (VCLXXGK) that appears in the heparin/fibrin-binding domain of fibronectin and the collagen-binding domain of laminin. Cardiac myocytes synthesize and secrete the protein in vitro onto cell surfaces and onto the substratum. Indirect immunofluorescence shows the protein first appears in the chicken subepicardium at approximately 10 days following fertilization. As collagen accumulates in the subepicardium and the volume of the subepicardial space increases, the 68-kDa protein is found predominantly at the interface between myocardial cells and the connective tissue and between epicardial cells and the connective tissue. In adult hearts, the protein is also present at lower concentrations in endomysial connective tissue. The 68-kDa protein is also present in the skeletal muscle endomysium of embryonic chickens. Electron microscopic immunocytochemistry shows the 68-kDa protein is located at the surface of subepicardial collagen fibers. In addition, a direct interaction between the 68-kDa protein and collagen are indicated by: 1) equilibrium gel filtration of the 68-kDa protein in the presence of gelatin, 2) gelatin affinity chromatography of the 68-kDa protein, and 3) comigration of type I collagen and the 68-kDa protein during gel filtration under reducing conditions. The 68-kDa protein exhibits no collagenase activity under native conditions or in zymograms. Together, the data indicate that the 68-kDa protein is a novel collagen-associated protein appearing in late epicardial development.  相似文献   

12.
Here we describe a novel specific component of tissue junctions, collagen XXII. It was first identified by screening an EST data base and subsequently expressed as a recombinant protein and characterized as an authentic tissue component. The COL22A1 gene on human chromosome 8q24.2 encodes a collagen that structurally belongs to the FACIT protein family (fibril-associated collagens with interrupted triple helices). Collagen XXII exhibits a striking restricted localization at tissue junctions such as the myotendinous junction in skeletal and heart muscle, the articular cartilage-synovial fluid junction, or the border between the anagen hair follicle and the dermis in the skin. It is deposited in the basement membrane zone of the myotendinous junction and the hair follicle and associated with the extrafibrillar matrix in cartilage. In situ hybridization of myotendinous junctions revealed that muscle cells produce collagen XXII, and functional tests demonstrated that collagen XXII acts as a cell adhesion ligand for skin epithelial cells and fibroblasts. This novel gene product, collagen XXII, is the first specific extracellular matrix protein present only at tissue junctions.  相似文献   

13.
Talin at myotendinous junctions   总被引:11,自引:8,他引:3       下载免费PDF全文
Junctions formed by skeletal muscles where they adhere to tendons, called myotendinous junctions, are sites of tight adhesion and where forces generated by the cell are placed on the substratum. In this regard, myotendinous junctions and focal contacts of fibroblasts in vitro are analogues. Talin is a protein located at focal contacts that may be involved in force transmission from actin filaments to the plasma membrane. This study investigates whether talin is also found at myotendinous junctions. Protein separations on SDS polyacrylamide gels and immunolabeling procedures show that talin is present in skeletal muscle. Immunofluorescence microscopy using anti-talin indicates that talin is found concentrated at myotendinous junctions and in lesser amounts in periodic bands over nonjunctional regions. Electron microscopic immunolabeling shows talin is a component of the digitlike processes of muscle cells that extend into tendons at myotendinous junctions. These findings indicate that there may be similarities in the molecular composition of focal contacts and myotendinous junctions in addition to functional analogies.  相似文献   

14.
We report the effect of Fab' (anti-60k) to a 60,000 mol wt gelatin binding domain of fibronectin (1981, J. Biol. Chem. 256:5583) on diploid fibroblast (IMR-90) extracellular fibronectin and collagen organization. Anti-60k Fab' did not inhibit IMR-90 attachment or proliferation in fibronectin-depleted medium. Fibroblasts cultured with preimmune Fab' deposited a dense extracellular network of fibronectin and collagen detectable by immunofluorescence, while anti-60k Fab' prevented extracellular collagen and fibronectin fibril deposition. Matrix fibronectin and collagen deposition remained decreased in cultures containing anti-60k Fab' until cells became bilayered or more dense, when fibronectin and collagen began to appear in lower cell layers. Anti-60k Fab' added to confluent cultures 24 h before fixation and staining had no effect on matrix fibronectin or collagen, so anti- 60k Fab' did not simply block immunostaining. Confluent cultures grown in anti-60k Fab' and labeled for 24 h with [3H]proline incorporated identical amounts of [3H]proline and [3H]hydroxyproline, but [3H]hydroxyproline deposition in the cell layer was significantly decreased by anti-60k Fab' (P less than 0.01). Extracellular matrix collagen does not appear to form a scaffold for fibronectin deposition, as neither gelatin nor a gelatin-binding fragment of plasma fibronectin inhibited deposition of matrix fibronectin. Our results suggest that interstitial collagens and fibronectin interact to form a fibrillar component of the extracellular matrix, and that fibronectin is required for normal collagen organization and deposition by fibroblasts in vitro. Domain-specific antibodies to fibronectin are powerful tools to study the biological role of fibronectin in extracellular matrix organization and other processes.  相似文献   

15.
Muscular dysgenesis is a lethal mutation in mice that results in a complete absence of skeletal muscle contraction due to the failure of depolarization of the transverse tubular membrane to trigger calcium release from the sarcoplasmic reticulum. In order to determine whether the defect in muscular dysgenesis leads to a specific loss of one of the components of excitation-contraction coupling or to a generalized loss of all components of excitation-contraction coupling, we have analyzed skeletal muscle from control and dysgenic mice for the sarcoplasmic reticulum and transverse tubular proteins which are believe to function in excitation-contraction coupling. We report that the proteins involved in sarcoplasmic reticulum calcium transport, storage, and release [Ca2+ + Mg2+)-ATPase, calsequestrin, and calcium release channel) are present in dysgenic muscle. Also present in dysgenic muscle is the 175/150-kDa glycoprotein subunit (alpha 2) of the dihydropyridine receptor. However, the 170-kDa dihydropyridine binding subunit (alpha 1) of the dihydropyridine receptor is absent in dysgenic muscle. These results suggest that the specific absence of the alpha 1 subunit of the dihydropyridine receptor is responsible for the defects in muscular dysgenesis and that the alpha 1 subunit of the dihydropyridine receptor is essential for excitation-contraction coupling in skeletal muscle.  相似文献   

16.
Mice lacking the gene encoding for the intermediate filament protein desmin have a surprisingly normal myofibrillar organization in skeletal muscle fibers, although myopathy develops in highly used muscles. In the present study we examined how synemin, paranemin, and plectin, three key cytoskeletal proteins related to desmin, are organized in normal and desmin knock-out (K/O) mice. We show that in wild-type mice, synemin, paranemin, and plectin were colocalized with desmin in Z-disc-associated striations and at the sarcolemma. All three proteins were also present at the myotendinous junctions and in the postsynaptic area of motor endplates. In the desmin K/O mice the distribution of plectin was unaffected, whereas synemin and paranemin were partly affected. The Z-disc-associated striations were in general no longer present in between the myofibrils. In contrast, at the myotendinous and neuromuscular junctions synemin and paranemin were still present. Our study shows that plectin differs from synemin and paranemin in its binding properties to the myofibrillar Z-discs and that the cytoskeleton in junctional areas is particularly complex in its organization.  相似文献   

17.
Apically secreted 80-kDa glycoprotein (gp 80) from Madin-Darby canine kidney cells was found to be immunoprecipitated by the polyclonal antiserum against fibronectin or a monoclonal antibody specific for the fibronectin C-terminal fibrin binding domain. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), gp 80 migrated as a doublet band under nonreducing conditions. Under reducing conditions, gp 80 was resolved into three distinct bands, respectively of 45-, 40-, and 35-kDa molecular mass. Analysis by two-dimensional SDS-PAGE revealed that gp 80 exists in two molecular forms: one consisting of a 45-kDa subunit and a 40-kDa subunit, and one consisting of a 45-kDa subunit and a 35-kDa subunit. V-8 protease mapping indicated the 40 and 35-kDa subunits as being of the same homologous group and also as bearing partial homology to the 45-kDa subunit. Radioactive labeling revealed that labeled gp 80 was subjected to covalent modifications by sulfation and phosphorylation. Sulfate analysis showed that [35S]sulfate-labeled gp 80 contained ca. 2.45 +/- 0.07% tyrosine-bound [35S]sulfate with the rest being presumably carbohydrate-bound. [32P]-Phosphate-labeled gp 80, on the other hand, was found to contain serine-O-phosphate as the predominant phosphorylated amino acid residue. Employing the affinity gel fractionation technique, it was shown that gp 80 exhibited binding affinities toward heparin and fibrin. Binding of gp 80 to heparin-agarose or fibrin-Sepharose, however, was inhibited in the presence of added fibronectin or the monoclonal antibody. Tryptic peptide mapping revealed common peptide spots between fibronectin and the three subunits of gp 80. Furthermore, Western blot analysis showed that fibronectin could be recognized and bound by anti-gp 80 antibodies. These results indicate that gp 80 bears both structural and functional similarities to the C-terminal portion of the fibronectin molecule.  相似文献   

18.
Novel adhesion junctions have been characterized that are formed at the interface between pillar cells and collagen columns, both of which are essential constituents of the gill lamellae in fish. We termed these junctions the "column junction" and "autocellular junction" and determined their molecular compositions by immunofluorescence microscopy using pufferfish. We visualized collagen columns by concanavalin A staining and found that the components of integrin-mediated cell-matrix adhesion, such as talin, vinculin, paxillin, and fibronectin, were concentrated on plasma membranes surrounding collagen columns (column membranes). This connection is analogous to the focal adhesion of cultured mammalian cells, dense plaque of smooth muscle cells, and myotendinous junction of skeletal muscle cells. We named this connection the "column junction." In the cytoplasm near the column, actin fibers, actinin, and a phosphorylated myosin light chain of 20 kDa are densely located, suggesting the contractile nature of pillar cells. The membrane infoldings surrounding the collagen columns were found to be connected by the autocellular junction, whose components are highly tyrosine-phosphorylated and contain the tight junction protein ZO-1. This study represents the first molecular characterization and fluorescence visualization of the column and autocellular junctions involved in both maintaining structural integrity and the hemodynamics of the branchial lamellae.  相似文献   

19.
Calsequestrin (CAL) is a calcium-binding protein whose primary function is thought to involve sequestration of calcium in the muscle sarcoplasmic reticulum (SR). Little is known about the mechanisms regulating CAL expression, or about the role of this protein in muscle development. In addition, CAL may regulate calcium localization in some nonmuscle cells. We have identified an avian calsequestrin homolog. The predicted amino acid sequence of the avian CAL, first described as a laminin binding protein, and named aspartactin, is 70-80% identical to mammalian CAL sequences. We have used affinity-purified antibodies and cDNA probes to investigate expression in developing and adult chicken tissues. In adult chickens, the avian CAL homolog was expressed in slow and fast twitch skeletal muscle as well as in cardiac muscle. Surprisingly high levels of CAL protein were also detected in cerebellum. During development, CAL mRNA and protein were detected in Embryonic Day 5 (E-5) limb primordia, well before the initiation of myoblast fusion. In leg skeletal muscle, CAL protein and mRNA increase approximately 10-fold from E-8 to E-18 with a time course that just precedes myoblast fusion. This early expression pattern was also observed in cultured chicken pectoral myoblasts, and appears to be regulated at the level of mRNA abundance. The developmental profile of CAL expression is compared to that of other muscle proteins and possible additional functions of CAL are discussed.  相似文献   

20.
The ecto-enzyme 5'-nucleotidase isolated from chicken gizzard has previously been shown to be a potent ligand of two glycoproteins of the extracellular matrix, namely fibronectin and laminin. Using immunofluorescent labeling techniques we observed that 5'-nucleotidase codistributed with laminin during the development of chicken striated muscle. In contrast, ecto-5'-nucleotidase was only faintly detectable on cells surrounded by a matrix expressing high levels of fibronectin. This distribution pattern distinguished 5'-nucleotidase from the pluripotent extracellular matrix receptors, chicken beta 1-integrins, which are expressed equally well in muscle and connective tissue. In addition, the specific activity of striated muscle ecto-5'-nucleotidase was stable during development and increased markedly posthatching. At each age considered, this specific activity corresponded to an 80-kDa enzyme which was inhibited by alpha,beta-methyleneadenosine diphosphate or by a monoclonal antibody directed against the smooth muscle isoform of the enzyme. Previous in vitro studies have revealed that 5'-nucleotidase is involved in the spreading of various mesenchyme-derived cells, such as chicken embryonic fibroblasts and myoblasts, on a laminin substrate. A prerequisite to examining a potential in vivo role for 5'-nucleotidase as an extracellular matrix ligand was to study its distribution. In adult muscle, 5'-nucleotidase displayed a more restricted distribution than in embryo. Results show that, in vivo, 5'-nucleotidase is revealed by immunofluorescent labeling using poly- and monoclonal antibodies to chicken gizzard 5'-nucleotidase in two structures, the costameres and myotendinous junctions, which are closely related to the focal adhesion sites observed in cell culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号