首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative studies of reproductive characteristics were carried out on a colony of Macaca fascicularis and M. arctoides. Seasonal differences were not significant between species, and conceptions occurred throughout the year. The occurrence of short cycles ('luteal phase defect') was found in 2.9% of all M. fascicularis cycles and 1.5% of all M. arctoides cycles. Long cycles (40-50 days) were found in 4.0% of all M. fascicularis cycles and 3.5% of all M. arctoides cycles. Gestation lengths averaged 172.4 and 165.3 days, respectively, for M. arctoides and M. fascicularis. Ovulation in M. fascicularis occurred at a day of ovulation/cycle length ratio of 0.48 +/- 0.08 compared with 0.48 +/- 0.09 for M. mulatta data previously published.  相似文献   

2.
Objectives of the present study were to view the moment of ovulation, determine the postovulatory relationships between the ovary and egg mass, and to characterize ovulation in consecutive cycles of the Macaca fascicularis. Laparoscopic observation of the ovaries of 17 adult regularly cycling Macaca fasicularis was made during their menstrual cycles at the optimal time for detecting follicular development. Preovulatory morphology, follicular rupture and immediate postovulatory morphology were noted and photographed. Data are presented correlating the duration of the follicular phase and the luteal phase with that of the total cycle.  相似文献   

3.
In a study of 4 cyclic dry cows (Trial I) and 6 cyclic puberal heifers (Trial II), unilateral ovariectomy increased the number of ovulatory follicles, did not alter the hormone profile, cycle length or the number of follicular waves. Ovarian follicular development in all 4 cows was monitored daily using transrectal ultrasonography until the day of ovulation, during which period daily blood samples were also taken from the tail vein for determination of plasma FSH, LH and P4 concentrations. Unilateral ovariectomy was performed on the day after ovulation and ovarian activity was again monitored daily (ultrasonography and blood sampling for FSH, LH and P4) for 2 consecutive cycles (8 cycles in all). Estrus in all 6 heifers was synchronized using 2 injections of PGF2 alpha given 12 d apart. Similarly, ovarian activity in the 6 puberal heifers was monitored daily using ultrasonography and blood sampling for 1 complete control cycle. Following estrus and ovulation the left ovary was removed in all the animals, and thereafter 1 complete cycle was followed. Mean cycle length, FSH, LH and P4 concentrations before and after unilateral ovariectomy were compared using paired sample t-test. The results show that unilateral ovariectomy neither altered the cycle length nor the number of follicular waves in the cows, but it increased the number of ovulatory follicles (2 follicles developed and ovulated in 6 of the 8 cycles). The mean diameter of the largest follicle was 16.1 +/- 0.9 mm and the second largest 12.5 +/- 0.9 mm. No significant (P > 0.05) differences were observed in FSH (0.72 +/- 0.09 vs 0.71 +/- 0.07), LH (0.42 +/- 0.1 vs 0.37 +/- 0.07) and P4 (2.8 +/- 0.6 vs 2.6 +/- 0.4) levels before and after unilateral ovariectomy. Of the 6 heifers, 5 had 2 waves and 1 heifer had 3 waves of follicular growth during the control cycle, and this pattern did not change after the procedure. Mean cycle length (20.7 +/- 0.9 vs 21 +/- 0.9) did not differ before and after unilateral ovariectomy, and 4 of the 6 heifers ovulated twin follicles following ovariectomy. The mean diameter of the largest follicle was 14.5 +/- 0.7 mm and second largest measured 12.1 +/- 0.8 mm. No significant (P > 0.05) differences were observed in FSH (0.16 +/- 0.09 vs 0.21 +/- 0.07), LH (0.11 +/- 0.1 vs 0.15 +/- 0.07) and P4 levels (3.6 +/- 0.26 vs 3.8 +/- 0.29) before and after unilateral ovariectomy. Based on these results, we conclude that unilateral ovariectomy is an ideal method for obtaining twin ovulations in cows and heifers.  相似文献   

4.
The growth, selection, regression and ovulation of ovarian follicles was ultrasonically monitored in 30 Murrah buffalo throughout a spontaneous estrous cycle during the breeding season (autumn). Examinations revealed that follicular growth during the estrous cycle occurs in waves; the buffalo showed 1-wave (3.3%, n = 1), 2-wave (63.3%, n = 19) or 3-wave (33.3%, n = 10) follicular growth. The first wave began at 1.00, 1.16 +/-0.50 and 1.10 +/- 0.32 d in buffalo with 1, 2 and 3 waves, respectively (ovulation = Day 0). The second wave appeared at 10.83 +/- 1.09 and 9.30 +/- 1.25 d (P < 0.01) for the 2 and 3 wave cycle animals, respectively. The third wave started at 16.80 +/- 1.22 d. Structural persistence of the first dominant follicle was longer in the 2- than 3-wave cycles (20.67 +/- 1.18 vs 17.90 +/- 3.47 d ; P < 0.05). The duration of the growth and static phases of the first dominant follicle differed between the 2 and 3 wave cycles (P < 0.05), whereas there were no differences in linear growth rates (cm/d). Two and three wave cycles differed (P < 0.05) with respect to the maximum diameter of both the first dominant follicle (1.51 +/- 0.24 vs 1.33 +/- 0.18 cm) and the ovulatory follicles (1.55 +/- 0.16 vs 1.34 +/- 0.13 cm). No relationship was found between dominant follicle development and the presence of either a CL or a previous dominant follicle in either ovary. Two and three wave cycles also differed with respect to the mean length of intervals between ovulation (22.27 +/- 0.89 vs 24.50 +/- 1.88 d; P < 0.01) and the mean length of luteal phases (10.40 +/- 2.11 vs 12.66 +/- 2.91 d; P < 0.05). These results demonstrate that buffalo have estrous cycles with 1, 2 or 3 follicular waves; that 2-wave cycles are the most common; and that the number of waves in a cycle is associated with the luteal phase and with estrous cycle length.  相似文献   

5.
The resumption of ovarian activity after normal calvings was studied in 18 lactating Friesian cows. Since, in 17 cows, first post-partum ovulation occurred without overt oestrous behaviour being detected, the resultant cycles were called 'ovarian cycles'. The mean (+/- s.d.) length of the ovarian cycles was 21.0 +/- 8.7 days. The duration of cycles tended to be normal (18-24 days) or long (greater than or equal to 25 days) when the ovulatory dominant follicles were identified before Day 10 post partum; they were consistently short (9-13 days) when dominant follicles identified after Day 20 post partum ovulated. When such follicles were detected between Days 10 and 20 post partum, long, normal and short ovarian cycles were detected. The number of waves of follicular growth with associated dominant follicles observed during the ovarian cycles tended to be related to cycle length; short cycles had 1 dominant follicle, normal cycles predominantly 2, and long cycles mostly 3 dominant follicles. The mean (+/- s.d.) duration of 13 oestrous cycles studied was 23.1 +/- 2.1 days. Of these cycles, 7 had 3 and 6 had 2 dominant follicles. The oestrous cycles with 3 dominant follicles had a mean (+/- s.d.) duration of 24.0 +/- 1.2 days and the respective dominant non-ovulatory follicles reached maximum sizes on Days 8 and 18, respectively; oestrous cycles with 2 dominant follicles were 22.2 +/- 2.6 days in duration, and the dominant non-ovulatory follicle reached maximum size by Day 8. Ovarian follicular development during the first 45 days of pregnancy was characterized by the growth and regression of successive dominant follicles, each lasting 10-12 days. These results show that the first ovarian cycle was predominantly short when the ovulatory dominant follicle was first detected after Day 20 post partum.  相似文献   

6.
Twenty-two Serrana goats were studied through two successive estrous cycles in order to characterize their follicular dynamics during the breeding season. The ovaries of the goats were scanned daily by real-time ultrasonography and all follicles >or=3mm were measured and classified. The data were classified by the number of follicular waves per goat to test the hypothesis that temporal and morphological differences between the last follicular wave of an ovary, irrespective of ovulation, will affect the selection of the next ovulatory wave. The mean interovulatory interval was 20.7+/-1.0 days (mean+/-S.D.). Three to five waves per estrous cycle were observed and 61.3% (19/31) of cycles had four waves. In estrous cycles with four waves, the day of onset of the first, second, third and fourth wave was 1.4+/-1.0, 6.9+/-1.4, 11.6+/-1.8 and 16.8+/-1.6, respectively. No differences (P>0.05) were found between the day of onset of the first and second waves for estrous cycles with three, four or five waves. However, the day of onset of the third and fourth waves occurred later when the number of waves per estrous cycle increased (P<0.001). The duration of the interwave interval (time between the day of onset of two consecutive waves) was longer when the second wave was ovulatory. The length of the growth phase (2.4+/-0.9 days) and size (5.9+/-0.7 mm) of the dominant follicle in the second wave were lower (P<0.01) than for the first wave (3.3+/-1.2 days and 6.6+/-0.9 mm, respectively) and the fifth wave (4.1+/-1.2 days and 7.5+/-1.0mm, respectively). Within pairs of ovaries, the onset of the last wave occurred later (P<0.05) and was less variable in ovulatory ovaries (day 16.8+/-1.4, n=20) than in anovulatory ovaries (day 15.1+/-3.7, n=20). The length of the growing phase was longer (P<0.001) in the last waves of ovulatory ovaries (3.1+/-0.9 days) than in the last waves of anovulatory ovaries (1.7+/-0.8 days). These results support the hypothesis that the day of onset of the ovulatory wave is related to or, at least, conditioned by the luteolysis and the decrease in plasma progesterone. In summary, the estrous cycle of Serrana goats is characterized by sequential follicular wave growth with a great variability in their onset and duration, with the exception of the ovulatory wave. The temporal and morphological differences observed in the last wave of estrous cycle provide strong evidence for the role of progesterone in their regulation.  相似文献   

7.
Direct administration of 0.5 IU of human chorionic gonadotropin (HCG) into the matured ovarian follicles of adult female Saimiri sciureus resulted in ovulation in 45% of the animals treated. When purified ovine luteinizing hormone (LH) was administered, ovulation was observed in 55% of the animals while intrafollicular injection of saline had no effect. Similar injections of HCG into matured follicles of Macaca fascicularis would not cause ovulation but did result in a 55% increase in menstrual cycle length. These results indicate that the necessity of a primate source of LH for inducing ovulation may be due to an extrafollicular mechanism.  相似文献   

8.
The influence of season and exposure to buck on the length of the estrous cycle were determined in 32 normally cycling native goats of different ages and parity. The estrous cycle durations were classified as short, medium and long. Ten goats (31%) exhibited medium length estrous cycles; 22 animals (69%) exhibited a combination of short, medium and long estrous cycles. Of the 155 estrous cycles studied, 15% were short, 72% were medium and 13% were long. Short estrous cycles were significantly shorter (P < 0.01) in estrus duration than medium or long estrous cycles. Significant differences (P < 0.05) for estrous cycle length and estrus duration were found between does but not within does. The presence of a buck for 8 to 16 h showed no significant effect on the length of the estrous cycle or on estrus duration, but a 24-h exposure period to a buck yielded shorter estrous cycles and estrus duration than found in the unexposed control group. Estrous cycles were significantly shorter (P < 0.01) in October, when rainfall is 57.9% of the annual total, and significantly longer (P < 0.01) in February, when rainfall is low at 0.2% of the annual total. A negative linear relationship (r = -0.87) was observed between estrous cycle and rainfall. Twenty-eight (90.3 %) of the short estrous cycles were ovulatory. The short cycles had a relatively lower ovulation rate than medium and long estrous cycles. The results indicate that the short estrous cycle in goats is associated with ovulation, and its occurrence in the tropics is related to rainfall.  相似文献   

9.
Most estrous cycles in cows consist of 2 or 3 waves of follicular activity. Waves of ovarian follicular development comprise the growth of dominant follicles some of which become ovulatory and the others are anovulatory. Ovarian follicular activity in cows during estrous cycle was studied with a special reference to follicular waves and the circulating concentrations of estradiol and progesterone. Transrectal ultrasound examination was carried out during 14 interovulatory intervals in 7 cows. Ovarian follicular activity was recorded together with assessment of serum estradiol and progesterone concentrations. Three-wave versus two-wave interovulatory intervals was observed in 71.4% of cows. The 3-wave interovulatory intervals differed from 2-wave intervals in: 1) earlier emergence of the dominant follicles, 2) longer in length, and 3) shorter interval from emergence to ovulation. There was a progressive increase in follicular size and estradiol production during growth phase of each wave. A drop in estradiol concentration was observed during the static phase of dominant anovulatory follicles. The size of the ovulatory follicle was always greater and produced higher estradiol compared with the anovulatory follicle. In conclusion, there was a predominance of 3-wave follicular activity that was associated with an increase in length of interovulatory intervals. A dominant anovulatory follicle during its static phase may initiate the emergence of a subsequent wave. Follicular size and estradiol concentration may have an important role in controlling follicular development and in determining whether an estrous cycle will have 2 or 3-waves.  相似文献   

10.
The aim was to define precisely the FSH secretion pattern in mares during the two ovulatory cycles before, and for 24 days after, the last ovulation of the season and to compare this with the profiles of other reproductive hormones and follicular growth to identify changes which may lead to the termination of follicular cycles. Jugular blood was collected every 6 h from ten light horse mares for 6 weeks in autumn. Samples were assayed for FSH, LH, prolactin, inhibin, oestrone conjugates and progesterone. Luteolysis occurred earlier and periovulatory oestrone, but not inhibin, concentrations were significantly lower in the last than in the second to last cycles. In ovulatory and anovulatory cycles, daily mean FSH concentrations were low at the expected time of ovulation and high between days 9 and 11 (day 0 = ovulation), which were usually after luteolysis. However, the periovulatory FSH nadir was prolonged in the last compared with the second to last cycles, and the difference between peak and trough values was not significant in anovulatory cycles. Between day 5 and day 8, the FSH interpulse interval was approximately 2 days, and did not vary in successive cycles. The LH profile also showed progressive changes as mares entered acyclicity; the surge terminated sooner in the last than in the second to last cycles, and failed to occur when expected in acyclicity. Sporadic prolactin pulses occurred at luteolysis in a similar proportion of ovulatory and anovulatory cycles. These results indicate that inadequate gonadotrophin stimulation in early dioestrus may be a critical event leading to suboptimal follicular and luteal development, and eventually acyclicity. Moreover, the time relationships amongst changes in pituitary and ovarian hormones and follicular growth become increasingly disrupted during the autumn transition, which may contribute to the cessation of cyclicity.  相似文献   

11.
The mechanisms of ovulatory compensation following unilateral ovariectomy (ULO) are still not understood. In the present study, we investigated the short- and long-term effects of ULO in sheep using transrectal ovarian ultrasonography and hormone estimations made during the estrous cycle in which surgery was done, the estrous cycle 2 mo after surgery, and the 17-day period during the subsequent anestrus. The ULOs were done when a follicle in the first follicular wave of the cycle reached a diameter > or =5 mm, leaving at least one corpus luteum and one ovulatory-sized follicle in the remaining ovary. Ovulation rate per ewe was 50% higher in the ULO ewes compared with the control ewes at the end of the cycle during which surgery was performed, but it did not differ between groups at the end of the cycle, 2 mo later. This compensation of ovulation rate in ULO ewes was due to ovulation of follicles from the penultimate follicular wave in addition to those from the final wave of the cycle. Ovulation from multiple follicular waves appeared to be due to a prolongation of the static phase of the largest follicle of the penultimate wave of the cycle. Interestingly, the length of the static phase of waves was prolonged in ULO ewes compared with control ewes in every instance where the length of the static phase could be determined. Changes in follicular dynamics due to ULO were not associated with alterations in FSH and LH secretion. In conclusion, ovulatory compensation in ULO sheep involves ovulation from multiple follicular waves due to the lengthened static phase of ovulatory-sized follicles. These altered antral follicular dynamics do not appear to be FSH or LH dependent. Further studies are required to examine the potential role of the nervous system in the enhancement of the life span of the ovulatory-sized follicles leading to ovulatory compensation by the unpaired ovary in ULO sheep.  相似文献   

12.
Follicular diameter is used as a guiding tool to predict ovulation in the mare. However, the great range in preovulatory follicular diameter makes prediction of optimal breeding time based on follicular diameter unreliable. Uterine edema pattern is also useful to determine the best time to breed, since intensity of edema tends to dissipate as ovulation approaches, however, not every mare follows this pattern. The aims of this study were to assess the repeatability of preovulatory follicular diameter and uterine edema pattern in two consecutive spontaneous cycles and to determine how induction treatments (hCG, PGF(2)alpha and GnRH analogues) influence them. Fifty-three mares were followed during two consecutive cycles and scanned three times a day from 2 to 3 days before ovulation. During the first cycle, mares had a spontaneous ovulation and in the consecutive cycle mares received either: (a) no hormonal treatment; (b) 1500 IU hCG; (c) 125-250 microg Cloprostenol or (d) 2.1 mg Deslorelin implant. Mares ovulated consistently from similar follicular diameters in two consecutive spontaneous cycles (r=0.89; P<0.000). All three induction treatments had a significant effect on reducing the preovulatory follicular diameter (P<0.005). Mares showed fair correlation in uterine edema patterns in both consecutive non-induced cycles (r=0.71; P<0.005). In conclusion mares in consecutive cycles ovulated from consistent follicular diameters. Follicular diameters recorded from previous ovulations can be relied on to predict the optimal breeding time in successive cycles especially in mares that ovulate from unusually small follicles.  相似文献   

13.
This is the first paper to describe ovarian changes associated with follicular growth, ovulation, and corpus luteum (CL) formation as monitored by ultrasonography in a multiovular primate, the marmoset monkey (Callithrix jacchus). Examinations were carried out transabdominally on unsedated females using a 10 MHz probe. Cycles were monitored by plasma progesterone and controlled by administration of prostaglandin F2α (PGF). The reliability of ultrasound was validated by comparing findings with direct observation of the ovaries at laparotomy. In eight females, 25 follicles were counted, of which 92% were depicted correctly by ultrasound. Of 14 CLs in five females, number and position were confirmed at laparotomy for 78%. Ultrasound examinations of ovaries throughout the follicular and luteal phase were performed in eight cycles and related to plasma profiles of luteinizing hormone (LH) and progesterone. One of these cycles was anovulatory. In the remaining seven cycles, 19 follicles were considered ovulatory follicles since they were seen on consecutive days and found again as CLs. Growth of individual follicles was monitored by measurements of follicle diameter from day 7 onward. Disappearance of follicles or changes in echogenicity were noted between days 9 and 11, preventing further measurements. Mean follicle size increased from 2.1 mm (range 1.6 mm–2.7 mm) on day 7 to 3.2 mm (range 2.7 mm–4.0 mm) on the day last seen. With one exception, the day follicles were last seen by ultrasound was consistent with the day of the preovulatory LH surge (day 9–11). The postovulatory rise in progesterone occurred 1–2 days later (day 11–13). These findings suggest that the day of ovulation as observed by ultrasound was characterized by either disappearance of follicles or increased follicular echogenicity. In conclusion, ultrasonography provides a reliable, noninvasive method for examinations of the ovarian cycle in the marmoset monkey. © 1996 Wiley-Liss, Inc.  相似文献   

14.
The current study characterized the timing of emergence of ovulatory follicles during the follicular phase of the estrous cycle in polyovulatory does and assessed whether selection may influence ovulation rate through differences in ovarian follicular dynamics, by characterizing preovulatory follicular emergence and growth in two ecotypes of Neuquen-Criollo Argentinean goats (Short-Hair, n=11 and Long-Hair, n=9). During the breeding season, the time of estrus was synchronized in all does with two doses of a prostaglandin analogue. Ovarian laparoscopies were performed on days 17 and 19 after the induced estrus (day 0) and 7-15 h after the beginning of the subsequent estrus. Results indicate that both ecotypes of goats have common features in the ovarian follicular population and in the patterns of preovulatory follicular enlargement. In all the goats, most of the preovulatory follicles arose from the pool of follicles present in the ovary between days 17 and 19 of the estrous cycle. These follicles were all larger than 2mm at emergence, being the largest growing follicle present in the ovaries on days 17 and 19 in 56.5 and 78.6% of the does, respectively. The appearance of new follicles remained unaffected, while the mean number of small growing follicles decreased (P<0.05) during the follicular phase, indicating that preovulatory follicles do not suppress the emergence of new follicles but inhibit the growth of small follicles. A separate analysis of single and double ovulating does showed that 75% of the second ovulatory follicles in polyovulatory goats was present on the ovarian surface between days 17 and 19 of the estrous cycle, but appeared later in the other 25% of the estrous cycles. These findings support the hypothesis that follicular dominance effects are exerted during the preovulatory period, when the growth of follicles other than the ovulatory is inhibited, and that increases in ovulation rate in small ruminants are related to a reduced incidence of follicular atresia and an extended period of ovulatory follicle recruitment.  相似文献   

15.
Physical activity is an important physiological variable impacting on a number of systems in the body. In rodents and several species of domestic animals, levels of physical activity have been reported to vary across the estrous cycle; however, it is unclear whether such changes in activity occur in women and other primates across the menstrual cycle. To determine whether significant changes in activity occur over the menstrual cycle, we continuously measured physical activity in seven adult female rhesus monkeys by accelerometry over the course of one menstrual cycle. Monkeys were checked daily for menses, and daily blood samples were collected for measurement of reproductive hormones. All monkeys displayed ovulatory menstrual cycles, ranging from 23 to 31 days in length. There was a significant increase in estradiol from the early follicular phase to the day of ovulation (F(1.005,5.023) = 40.060, P = 0.001). However, there was no significant change in physical activity across the menstrual cycle (F(2,12) = 0.225, P = 0.802), with activity levels being similar in the early follicular phase, on the day of the preovulatory rise in estradiol and during the midluteal phase. Moreover, the physical activity of these monkeys was not outside the range of physical activity that we measured in 15 ovariectomized monkeys. We conclude that, in primates, physical activity does not change across the menstrual cycle and is not influenced by physiological changes in circulating estradiol. This finding will allow investigators to record physical activity in female primates without the concern of controlling for the phase of the menstrual cycle.  相似文献   

16.
Few reports on the reproductive physiology of Cebus apella have been published. In this study we characterized menstrual cycle events by means of vaginal cytology, ultrasonography (US), and hormonal measurements in serum during three consecutive cycles in 10 females, and assessed the probability that ovulation would occur in the same ovary in consecutive cycles in 18 females. The lengths and phases of the cycles were determined according to vaginal cytology. Taking the first day of endometrial bleeding as the first day of the cycle, the mean cycle length +/- SEM was 19.5+/-0.4 days, with follicular and luteal phases lasting 8.2+/-0.2 and 11.3+/-0.4 days, respectively. The follicular phase included menstruation and the periovulatory period, which was characterized by the presence of a large number of superficial eosinophilic cells in the vaginal smear. The myometrium, endometrium, and ovaries were clearly distinguished on US examination. During each menstrual cycle a single follicle was recruited at random from either ovary. The follicle grew from 3 mm to a maximum diameter of 8-9 mm over the course of 8 days, in association with increasing estradiol (E(2)) serum levels (from 489+/-41 to 1600+/-92 pmol/L). At ovulation, the mean diameter of the dominant follicle usually decreased by >20%, 1 day after the maximum E(2) level was reached. Ovulation was associated with an abrupt fall in E(2), a decreased number of eosinophilic cells, the presence of leukocytes and intermediate cells in the vaginal smear, and a progressive increase in progesterone (P) levels that reached a maximum of 892+/-65 nmol/L on days 3-6 of the luteal phase. The menstrual cycle of Cebus apella differs in several temporal and quantitative aspects from that in humans and Old World primates, but it exhibits the same correlations between ovarian endocrine and morphologic parameters.  相似文献   

17.
Sexual behavior, follicular development and ovulation, and concentrations of circulating gonadotropins during the estrous cycle were studied during the summer in 7 jennies. Mean behavioral estrous length was 6.4 +/- 0.6 days (mean +/- SEM, n=19; 5.6 +/- 0.5 days preovulatory and 0.8 +/- 0.2 days post-ovulatory). Mean diestrous length was 19.3 +/- 0.6 days (n=14). Females in estrus typically showed posturing, mouth clapping, clitoral winking, urinating and tail raising. Mouth clapping began approximately one day sooner and lasted approximately one day longer than winking and tail raising, so that the total duration of clapping was significantly greater than for the other two signs. Follicular changes and concentrations of gonadotropins were determined for 14 estrous cycles (2 per jenny). The follicular end points [diameter of the largest follicle and number of large (>25 mm), medium (20-24 mm), and small follicles (<20 mm)] showed a significant day effect. The diameter of the largest follicle and the number of large follicles began to increase significantly 7 days prior to ovulation with a maximum value the day before ovulation. Medium follicles reached a maximum number 4 days prior to ovulation, and small follicles decreased significantly prior to ovulation. After ovulation, all follicular end points, except the number of small follicles, remained low for the next 12 days. Mean values of FSH were low during estrus and high during diestrus with 2 significant peaks, one 3 days and one 9 days after ovulation. In contrast, mean levels of LH were low during diestrus and high during estrus with a maximum value the day after ovulation. The LH profile showed a more prolonged gradual increase prior to ovulation, than that which has been reported for ponies and horses.  相似文献   

18.
Seasonal effects on ovarian folliculogenesis in rhesus monkeys   总被引:1,自引:0,他引:1  
Reproductive performance is reportedly reduced in some rhesus monkeys during the summer months, even when environmental conditions are controlled. The mechanism(s) underlying this phenomenon remain unknown. We noted that the pattern of folliculogenesis appeared to be altered in rhesus monkeys that continued to exhibit ovulatory menstrual cycles during the "nonbreeding" season. This study was designed to investigate the effect of season on development of the dominant follicle (DF) and upon levels of serum gonadotropins and sex steroids in animals maintained in a controlled environment. Forty-four menstrual cycles were evaluated from October, 1982 to October, 1983. Animals were housed individually in controlled light (12L:12D) and temperature (22-25 degrees C). A DF was identified by laparoscopy on Day 6 of the cycle in only 45% of cycles during the months of May through September, compared with 87.5% the remainder of the year. No effect of season was detected on either the length of the menstrual cycle or luteal phase, mean follicular diameter, or the percentage of ovulatory cycles. During the follicular phase, amounts of follicle-stimulating hormone (FSH) in peripheral sera were depressed, whereas those of luteinizing hormone (LH) were consistently elevated. Amounts of circulating estradiol were similar between groups. However, serum concentrations of progesterone were markedly reduced in the summer. Development of the DF appeared to be delayed in the early follicular phase during the summer months in those rhesus monkeys that had ovulatory menstrual cycles. This delay was accompanied by an alteration in the FSH to LH ratio. Although most cycles were ovulatory, altered follicular development resulted in deficient luteal function.  相似文献   

19.
Individual follicles were monitored by ultrasonography in 15 mares during the transitional period preceding the first ovulation of the year and in 9 mares during the first interovulatory interval. During the transitional period, 7 mares developed 1-3 anovulatory follicular waves characterized by a dominant follicle (maximum diameter greater than or equal to 38 mm) that had growing, static, and regressing phases. The emergence of a subsequent wave (anovulatory or ovulatory) did not occur until the dominant follicle of the previous wave was in the static phase. After the emergence of the subsequent wave, the previous dominant follicle regressed. The mean (+/- s.d.) length of the interval between successive waves was 10.8 +/- 2.2 days. Before the emergence of waves (identified by a dominant follicle), follicular activity seemed erratic and follicles did not reach greater than 35 mm. During the interovulatory interval, 6 mares developed 2 waves (an anovulatory wave and a subsequent ovulatory wave) and 3 mares developed only 1 detected wave (the ovulatory wave). The ovulatory follicle at the end of the transitional period reached 20 mm earlier (Day - 15), grew slower (2.6 +/- 0.1 mm/day; mean +/- s.e.m.) but reached a larger diameter on Day - 1 (50.5 +/- 1.1 mm) than for the ovulatory follicle at the end of the interovulatory interval (Day - 10, 3.6 +/- 0.2 mm/day, 44.4 +/- 1.0 mm, respectively; P less than 0.05 for each end point). The interval from cessation of growth of the largest subordinate follicle to the occurrence of ovulation was longer (P less than 0.05) for end of the transitional period (9.5 +/- 0.7 days) than for the end of the interovulatory interval (6.8 +/- 0.6 days). Results demonstrated the occurrence of rhythmic follicular waves during some transitional periods and the occurrence of 2 waves during some of the first oestrous cycles of the year.  相似文献   

20.
Studies were undertaken in adult bonnet monkeys to investigate whether treatment with an antiprogestin ZK 98.734 at weekly intervals, starting from day one of menstrual cycle, could arrest ovulation and also to determine if ZK 98.734 induced blockade of ovulation could be reversed with gonadotropins. Adult animals have ovulatory menstrual cycles of normal duration were treated at weekly intervals with ZK 98.734 (25 mg/dose, sc, oil base) for 10 consecutive weeks and its effects on serum levels of estradiol, bioactive LH and progesterone, and endometrial histology were investigated. Following treatment with the antiprogestin they were treated with hMG or hFSH alone. Ovulation was blocked during treatment period in all the animals (n = 14). Typical follicular phase rise in estradiol levels was inhibited, mid cycle surge in the levels of bioactive LH was abolished and serum progesterone levels remained below 1 ng/ml throughout the treatment period. However, prolonged treatment had no significant effect on the basal levels of estradiol which were around 50 pg/ml. ZK 98.734 also had no significant effect on cortisol levels. In animals (n = 4) followed for recovery after the last dose, the treatment cycle length was increased to 117.8 + 6.8 days. In three animals the treatment cycles were anovulatory, whereas in one delayed ovulation with luteal insufficiency was observed. The endometrium had become atrophic. Treatment with hMG (Pergonal: 35 I.U. hLH and 35 I.U. hFSH) or hFSH (Metrodin, 35 I.U.) for 7 consecutive days initiated folliculogenesis and the animals ovulated either spontaneously or after a single im injection of hCG (100 I.U.) on day 8 in ZK 98.734 treated animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号