首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cortical amygdala receives direct olfactory inputs and is thought to participate in processing and learning of biologically relevant olfactory cues. As for other brain structures implicated in learning, the principal neurons of the anterior cortical nucleus (ACo) exhibit intrinsic subthreshold membrane potential oscillations in the θ-frequency range. Here we show that nearly 50% of ACo layer II neurons also display electrical resonance, consisting of selective responsiveness to stimuli of a preferential frequency (2–6 Hz). Their impedance profile resembles an electrical band-pass filter with a peak at the preferred frequency, in contrast to the low-pass filter properties of other neurons. Most ACo resonant neurons displayed frequency preference along the whole subthreshold voltage range. We used pharmacological tools to identify the voltage-dependent conductances implicated in resonance. A hyperpolarization-activated cationic current depending on HCN channels underlies resonance at resting and hyperpolarized potentials; notably, this current also participates in resonance at depolarized subthreshold voltages. KV7/KCNQ K+ channels also contribute to resonant behavior at depolarized potentials, but not in all resonant cells. Moreover, resonance was strongly attenuated after blockade of voltage-dependent persistent Na+ channels, suggesting an amplifying role. Remarkably, resonant neurons presented a higher firing probability for stimuli of the preferred frequency. To fully understand the mechanisms underlying resonance in these neurons, we developed a comprehensive conductance-based model including the aforementioned and leak conductances, as well as Hodgkin and Huxley-type channels. The model reproduces the resonant impedance profile and our pharmacological results, allowing a quantitative evaluation of the contribution of each conductance to resonance. It also replicates selective spiking at the resonant frequency and allows a prediction of the temperature-dependent shift in resonance frequency. Our results provide a complete characterization of the resonant behavior of olfactory amygdala neurons and shed light on a putative mechanism for network activity coordination in the intact brain.  相似文献   

2.
Female choice plays a critical role in the evolution of male acoustic displays. Yet there is limited information on the neurophysiological basis of female songbirds’ auditory recognition systems. To understand the neural mechanisms of how non-singing female songbirds perceive behaviorally relevant vocalizations, we recorded responses of single neurons to acoustic stimuli in two auditory forebrain regions, the caudal lateral mesopallium (CLM) and Field L, in anesthetized adult female zebra finches (Taeniopygia guttata). Using various metrics of response selectivity, we found consistently higher response strengths for unfamiliar conspecific songs compared to tone pips and white noise in Field L but not in CLM. We also found that neurons in the left auditory forebrain had lower response strengths to synthetics sounds, leading to overall higher neural selectivity for song in neurons of the left hemisphere. This laterality effect is consistent with previously published behavioral data in zebra finches. Overall, our results from Field L are in parallel and from CLM are in contrast with the patterns of response selectivity reported for conspecific songs over synthetic sounds in male zebra finches, suggesting some degree of sexual dimorphism of auditory perception mechanisms in songbirds.  相似文献   

3.
4.
The resonant properties of the intrinsic dynamics of single neurons could play a direct role in behaviour. One plausible role is in the recognition of temporal patterns, such as that seen in the auditory communication systems of Orthoptera. Recent behavioural data from bushcrickets suggests that this behaviour has interesting resonance properties, but the underlying mechanism is unknown. Here we show that a very simple and general model for neural resonance could directly account for the different behavioural responses of bushcrickets to different song patterns.  相似文献   

5.
The evolution of mate preferences can be critical for the evolution of reproductive isolation and speciation. Heterospecific interference may carry substantial fitness costs and result in preferences where females are most responsive to the mean conspecific trait with low response to traits that differ from this value. However, when male traits are unbounded by heterospecifics, there may not be selection against females that respond to extreme trait values in the unbounded direction. To test how heterospecifics affected the shape of female response functions, I presented female Oecanthus tree crickets with synthetic calls representing a range of male calls, then measured female phonotaxis to construct response functions. The species with the fastest pulse rates in the community consistently responded to pulse rates faster than those produced by their males, whereas in the intermediate and slowest pulse rate species there was no significant difference between the male trait and the female response. This work suggests that species with the most extreme signal in the community respond to a greater range of signals, potentially resulting in a higher probability of hybridization during secondary contact, and revealing interactions between mate recognition and other aspects of sexual selection.  相似文献   

6.
The information code in the temporal and spectral characteristics of the substrate-borne communication signals produced by insects has been primarily studied in insects in the suborder Auchenorrhyncha. In the present study we investigated which of the female calling song (FCS) parameters in Nezara viridula (L.) (Heteroptera, Pentatomidae) are essential for recognition by conspecific males. In playback experiments we measured male vibrational responsiveness to FCS signals varying in the durations of pulse trains and inter-pulse train intervals, repetition times, duty cycles, and dominant frequencies, and determined the preference range for each specific parameter. Males were able to distinguish songs of different temporal and frequency parameters and responded best to values characteristic of the song of conspecific females. Signal recognition is achieved on the basis of two temporal filters tuned to the durations of the pulse train and inter-pulse train interval. Males responded best to the dominant frequency characteristic of conspecific songs, which are tuned to the resonant properties of the herbaceous plants used for intraspecific signal transmission during communication.  相似文献   

7.
 Taking a global analogy with the structure of perceptual biological systems, we present a system composed of two layers of real-valued sigmoidal neurons. The primary layer receives stimulating spatiotemporal signals, and the secondary layer is a fully connected random recurrent network. This secondary layer spontaneously displays complex chaotic dynamics. All connections have a constant time delay. We use for our experiments a Hebbian (covariance) learning rule. This rule slowly modifies the weights under the influence of a periodic stimulus. The effect of learning is twofold: (i) it simplifies the secondary-layer dynamics, which eventually stabilizes to a periodic orbit; and (ii) it connects the secondary layer to the primary layer, and realizes a feedback from the secondary to the primary layer. This feedback signal is added to the incoming signal, and matches it (i.e., the secondary layer performs a one-step prediction of the forthcoming stimulus). After learning, a resonant behavior can be observed: the system resonates with familiar stimuli, which activates a feedback signal. In particular, this resonance allows the recognition and retrieval of partial signals, and dynamic maintenence of the memory of past stimuli. This resonance is highly sensitive to the temporal relationships and to the periodicity of the presented stimuli. When we present stimuli which do not match in time or space, the feedback remains silent. The number of different stimuli for which resonant behavior can be learned is analyzed. As with Hopfield networks, the capacity is proportional to the size of the second, recurrent layer. Moreover, the high capacity displayed allows the implementation of our model on real-time systems interacting with their environment. Such an implementation is reported in the case of a simple behavior-based recognition task on a mobile robot. Finally, we present some functional analogies with biological systems in terms of autonomy and dynamic binding, and present some hypotheses on the computational role of feedback connections. Received: 27 April 2001 / Accepted in revised form: 15 January 2002  相似文献   

8.
In the present paper, we propose a novel neural procedure for signal processing and coding based on the subthreshold oscillations and resonance of the neural membrane potential that could be used by real neurons to perform frequency spectra analysis and information coding of incoming signals. Taking into account the biophysical properties of the neural membranes, we note that the subthreshold resonant behaviour they exhibit can be used to analyse incoming signals and represent them in the frequency domain. We study the reliability of the representation of signals depending on the biophysical parameters of the neurons, the fault-tolerance of this coding scheme and its robustness against noise and in the presence of spikes. The principal characteristics of our system are the use of the physical phenomenon of neural resonance (rarely considered in the literature for signal coding); it fits well with the biophysical parameters of most neurons that exhibit subthreshold oscillations; it is compatible with experimental data; and it can be easily integrated in a more general model of information processing and coding that includes communication between neurons based on spikes.  相似文献   

9.
Female phonotaxis of Tettigonia viridissima and T. caudata was investigated on a walking compensator to determine the temporal parameters of the male song used for song recognition, and to compare them with the previously described pulse rate filtering of T. cantans. The T. cantans song is continuous with a ≈30-Hz pulse rate. The T. caudata song has a higher pulse rate (≈40 Hz) and duty cycle than T. cantans and a distinct verse structure. The T. viridissima song is continuous with a double-pulse pattern. While the pulse rate is essential for song recognition in T. cantans, neither pulse rate not verse structure were essential for song recognition in T. caudata: females responded to signals above a minimum duty cycle. T. viridissima females did not require the double-pulse structure, but a single long pulse, equivalent to the duration of the double pulses and interval between them, was effective. Song attractiveness was limited by a minimum duration of the merged double pulse, and by minimum and maximum duration of the interval between them. Pulse rate recognition had little if any importance in either of the species investigated. Thus, the three congeners use different mechanisms for temporal song recognition. Accepted: 18 June 1998  相似文献   

10.
Much evidence indicates that recognition memory involves two separable processes, recollection and familiarity discrimination, with familiarity discrimination being dependent on the perirhinal cortex of the temporal lobe. Here, we describe a new neural network model designed to mimic the response patterns of perirhinal neurons that signal information concerning the novelty or familiarity of stimuli. The model achieves very fast and accurate familiarity discrimination while employing biologically plausible parameters and Hebbian learning rules. The fact that the activity patterns of the model's simulated neurons are closely similar to those of neurons recorded from the primate perirhinal cortex indicates that this brain region could discriminate familiarity using principles akin to those of the model. If so, the capacity of the model establishes that the perirhinal cortex alone may discriminate the familiarity of many more stimuli than current neural network models indicate could be recalled (recollected) by all the remaining areas of the cerebral cortex. This efficiency and speed of detecting novelty provides an evolutionary advantage, thereby providing a reason for the existence of a familiarity discrimination network in addition to networks used for recollection.  相似文献   

11.
Two hypotheses have been proposed to explain the mechanisms of calling signal recognition in orthopterans: the filtration and resonance ones. To test these hypotheses, conspecific male calling songs and their models with modified temporal parameters were presented to females of bush crickets in ethological experiments. The models with a double pulse rate evoked positive phonotaxis of females while phase shift significantly complicated the recognition process. These data fit the resonance hypothesis.  相似文献   

12.
1. Hypopomus occidentalis, a weakly electric gymnotiform fish with a pulse-type discharge, has a sexually dimorphic electric organ discharge (Hagedorn 1983). The electric organ discharges (EODs) of males in the breeding season are longer in duration and have a lower peak-power frequency than the EODs of females. We tested reproductively mature fish in the field by presenting electronically generated stimuli in which the only cue for sex recognition was the waveshape of individual EOD-like pulses in a train. We found that gravid females could readily discriminate male-like from female-like EOD waveshapes, and we conclude that this feature of the electric signal is sufficient for sex recognition. 2. To understand the possible neural bases for discrimination of male and female EODs by H . occidentalis, we conducted a neurophysiological examination of both peripheral and central neurons. Our studies show that there are sets of neurons in this species which can discriminate male or female EODs by coding either temporal or spectral features of the EOD. 3. Temporal encoding of stimulus duration was observed in evoked field potential recordings from the magnocellular nucleus of the midbrain torus semicircularis. This nucleus indirectly receives pulse marker electroreceptor information. The field potentials suggest that comparison is possible between pulse marker activity on opposite sides of the body. 4. From standard frequency-threshold curves, spectral encoding of stimulus peak-power frequency was measured in burst duration coder electroreceptor afferents. In both male and female fish, the best frequencies of the narrow-band population of electroreceptors were lower than the peak-power frequency of the EOD. Based on this observation, and the presence of a population of wide-band receptors which can serve as a frequency-independent amplitude reference, a slope-detection model of frequency discrimination is advanced. 5. Spectral discrimination of EOD peak-power frequency was also shown to be possible in a more natural situation similar to that present during behavioral discrimination. As the fish's EOD mimic slowly scanned through and temporally coincided with the neighbor's EOD mimic, peak spike rate in burst duration coder afferents was measured. Spike rate at the moment of coincidence changed predictably as a function of the neighbor's EOD peak-power frequency. 6. Single-unit threshold measurements were made on afferents from peripheral burst duration coder receptors in the amplitude-coding pathway, and midbrain giant cells in the time-coding pathway.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Auditory communication in humans and other animals frequently takes place in noisy environments with many co‐occurring signallers. Receivers are thus challenged to rapidly recognize salient auditory signals and filter out irrelevant sounds. Most bird species produce a variety of complex vocalizations that function to communicate with other members of their own species and behavioural evidence broadly supports preferences for conspecific over heterospecific sounds (auditory species recognition). However, it remains unclear whether such auditory signals are categorically recognized by the sensory and central nervous system. Here, we review 53 published studies that compare avian neural responses between conspecific versus heterospecific vocalizations. Irrespective of the techniques used to characterize neural activity, distinct nuclei of the auditory forebrain are consistently shown to be repeatedly conspecific selective across taxa, even in response to unfamiliar individuals with distinct acoustic properties. Yet, species‐specific neural discrimination is not a stereotyped auditory response, but is modulated according to its salience depending, for example, on ontogenetic exposure to conspecific versus heterospecific stimuli. Neuromodulators, in particular norepinephrine, may mediate species recognition by regulating the accuracy of neuronal coding for salient conspecific stimuli. Our review lends strong support for neural structures that categorically recognize conspecific signals despite the highly variable physical properties of the stimulus. The available data are in support of a ‘perceptual filter’‐based mechanism to determine the saliency of the signal, in that species identity and social experience combine to influence the neural processing of species‐specific auditory stimuli. Finally, we present hypotheses and their testable predictions, to propose next steps in species‐recognition research into the emerging model of the neural conceptual construct in avian auditory recognition.  相似文献   

14.
The weakly electric fish, Eigenmannia, changes its frequency of electric organ discharges (EODs) to increase the frequency difference between its EODs and those of a jamming neighbor. This jamming avoidance response is greatest for frequency differences (i.e., beat rates) of approximately 4 Hz and barely detectable at beat rates of 20 Hz. A neural correlate of this behavior is found in the torus semicircularis, where most neurons act as low-pass or band-pass filters over this range of beat rates.This study examines two mechanisms that could possibly underlie low-pass temporal filtering: 1) Inhibition by a high-pass interneuron. 2) Voltage and time-dependent conductances associated with ligand-gated channels. These mechanisms were tested by recording intracellularly while employing stimuli consisting of simultaneous low and high beat rates. A neuron's response to the low beat rate was not diminished by the addition of the higher frequency jamming signal (thereby superimposing a high rate of amplitude and phase modulation onto the lower rate), and the inhibitory interneuron hypothesis is, therefore, not supported. Also, the responses to the high beat rate were not facilitated during maintained depolarization in response to the low beat rate.In some cases, particularly band-pass neurons, accommodation processes appeared to contribute to the decline in the amplitude of psps at high beat rates.  相似文献   

15.
The concept of orienting reflex based on the principle of vector coding of cognitive and executive processes is proposed. The orienting reflex to non-signal and signal stimuli is a set of orienting reactions: motor, autonomic, neuronal, and subjective emphasizing new and significant stimuli. Two basic mechanisms can be identified within the orienting reflex: a "targeting reaction" and a "searchlight of attention". In the visual system the first one consists in a foveation of a target stimulus. The foveation is performed with participation of premotor neurons excited by saccadic command neurons of the superior colliculi. The "searchlight of attention" is based on the resonance of gamma-oscillations in the reticular thalamus selectively enhancing responses of cortical neurons (involuntary attention). The novelty signal is generated in novelty neurons of the hippocampus, which are selectively tuned to a repeatedly presented standard stimulus. The selective tuning is caused by the depression of plastic synapses representing a "neuronal model" of the standard stimulus. A mismatch of the novel stimulus with the established neuronal model gives rise to a "novelty signal" enhancing the novel input. The novelty signal inhibits current conditioned reflexes (external inhibition) contributing to redirecting the behavior. By triggering the expression of early genes the novelty signal initiates the formation of the long-term memory connected with neoneurogenesis.  相似文献   

16.
Abstract. Female mating behavior plays a fundamental role in the divergent evolution of mate recognition systems that may lead to speciation. Despite this important role, the phenotypic and genetic bases of female mating behavior remain poorly understood. In this study, I examine the shape of the female acoustic preference function and estimate values for pulse rate preference in two species of Hawaiian crickets, Laupala kohalensis and L. paranigra . In addition, I examine how preference differences are inherited in hybrid crosses between these species. Females expressed unimodal preference functions and were generally more attracted to pulse rates characterizing their own species. Unimodal preference functions also characterized F1 and backcross generations, with hybrid females expressing preferences for intermediate pulse rates. Pulse rate preferences segregated in the backcross generation. Mean pulse rate preference matched mean pulse rate in both parental and hybrid generations. Based on F1 hybrids and segregation patterns in backcross females, I show that changes in both signal and receiver components of the mate recognition system are consistent with a multilocus model of change through incremental steps. The results therefore suggest that ancestors of the current species also expressed unimodal preference functions and that changes in acoustic communication signals occurred through shifts in mean pulse rates and pulse rate preferences among populations.  相似文献   

17.
人类听觉的基本特性和机制与其他哺乳动物相似,因此,利用动物所作的听觉研究和获得的结果,有助于认识人类自身的听觉.围绕听觉中枢神经元对不同模式的声信号的识别和处理,简要综述了这方面的研究.声信号和声模式识别在听觉中枢对声信号的感受和加工中具有重要意义.听神经元作为声模式识别的结构和功能基础,对不同的声刺激模式产生不同反应,甚至是在同一声刺激模式下,改变其中的某个声参数,神经元的反应也会发生相应改变,而其反应的特性和机制均需要更多研究来解答.另外,声信号作为声信息的载体,不同的声信息寓于不同的声参数和声特征之中,研究发现,听觉中枢神经元存在相应的声信息甄别和选择的神经基础,能对动态变化的声频率、幅度和时程等进行反应和编码,并且,在不同种类动物上获得的研究结果极为相似,表明听觉中枢对不同声信号和声刺激模式的识别、分析和加工,具有共同性和普遍性.  相似文献   

18.
GABA能抑制调制大棕蝠下丘听神经元时间编码模式   总被引:3,自引:1,他引:2  
大棕幅(Eptesicus fuscus)下丘神经元对重复率为10pps(pulse per second)、30pps的串声刺激均产生跟随反应,但对90pps串声刺激的跟随反应则不尽相同,微电泳bicuculline阻断GABA能抑制作用后,所记录的58个神经元中,有13个(22%)放电率及串声刺激反应模式无;45个(78%)神经元放电率有不同程度的增加。对10pps、30pps串声刺激仍能产生跟随反应,但对90pps串声刺激的跟随反应模式有多种变化。其中:17个(29%)神经元为放电率增加的跟随反应;9个(15%)神经元放电率增加,对前100ms的串刺激产生反应且放电密集,而对随后200ms的串刺激只产生少量的放电;15个(26%)神经元放电率增加,在前几十毫秒范围内有较多的放电反应,后续的反应很弱;4个(7%)神经元只对第一个声刺激产生反应,且放电率增加,随后放电急剧减少。结果提示中脑下丘神经元对听觉信息的时间编码可能具有更复杂的机理。  相似文献   

19.
Young-of-the-year, predator-naive fathead minnows, Pimephales promelas , from a pikesympatric population did not respond to chemical stimuli from northern pike, Esox Indus , while wild-caught fish of the same age and size did. These results suggest that chemical predator recognition is a result of previous experience and not genetic factors, Wild young-of-the-year minnows responded to pike odour with a response intensity that was similar to that of older fish, demonstrating that the ability to recognize predators is learned within the first year. The intensity of response of wild minnows which had been maintained in a predator free environment for 1 year was similar to that of recently caught minnows of the same age, suggesting that reinforcement was not required for predator recognition to be retained. Naive minnows that were exposed simultaneously to chemical stimuli from pike (a neutral stimulus) and minnow alarm substance exhibited a fright response upon subsequent exposure to the pike stimulus alone. Predator-naive minnows exposed simultaneously to chemical stimuli from pike and glass-distilled water did not exhibit a fright response to the pike stimulus alone. These results demonstrate that fathead minnows can acquire predator recognition through releaserinduced recognition learning, thus confirming a known mechanism through which alarm substance may benefit the receivers of an alarm signal.  相似文献   

20.
This study investigated whether the role of endogenous opioid peptides in the suppression of LH secretion during seasonal anestrus in the sheep changes with age. The experimental approach was to determine the effect of blockade of opioid receptors with naloxone on LH secretion at different times of year within the anestrous season, and to compare responses between seasonally anestrous sheep of different ages. Sheep, all past the normal age of puberty, were ovariectomized before the study and treated s.c. with estradiol implants to provide a fixed estradiol feedback signal. One-year-old females responded to naloxone with a rapid increase in LH pulse frequency in the early (April) and late (August) phases of their first anestrous season. This response was similar to that previously found in prepubertal female sheep. Only 5 of the 8 females responded to the same naloxone challenge in mid anestrus (June), suggesting that the contribution of opioid pathways to the inhibition of LH secretion at this time of year is not necessarily the same as that in early and late anestrus. None of the older anestrous sheep (greater than or equal to 2 yr) responded to naloxone in June, indicating age-related changes in the role of endogenous opioid mechanisms in the inhibition of LH secretion. Ovary-intact mature sheep did not respond to naloxone, in contrast to our previous observations in intact prepubertal females. We infer that the neural mechanisms underlying the superficially similar hypogonadotropic states that occur during the prepubertal period, first anestrous season, and later anestrous seasons are not identical.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号