首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The superoxide (O2.-)-forming enzyme NADPH oxidase from pig neutrophils was solubilized and partially purified by gel-filtration chromatography. The purification procedure allowed the separation of NADPH oxidase activity from NADH-dependent cytochrome c reductase and 2,6-dichlorophenol-indophenol reductase activities. O2.-forming activity was co-purified with cytochrome b-245 and was associated with phospholipids. However, active fractions endowed with cytochrome b were devoid of ubiquinone and contained only little FAD. The cytochrome b/FAD ratio was 1.13:1 in the crude solubilized extract and increased to 18.95:1 in the partially purified preparations. Most of FAD was associated with fractions containing NADH-dependent oxidoreductases. These results are consistent with the postulated role of cytochrome b in O2.-formation by neutrophil NADPH oxidase, but raise doubts about the participation of flavoproteins in this enzyme activity.  相似文献   

2.
In guinea pig periotoneal neutrophils NaF at a concentration of above 5 mM elicited a dose-dependent, delayed and sustained activation of NADPH oxidase. Unlike in human neutrophils, in guinea pig cells, this response was independent of extracellular calcium. Fura2 fluorescence measurements indicated also a fluoride-mediated moderate elevation in the level of cytosolic calcium concentration. Pretreatment of neutrophils with pertussis toxin, blocked fluoride-promoted activation of NADPH oxidase, indicating that NaF stimulation was mediated by a G protein which is a pertussis toxin substrate. NaF-elicited calcium elevation was insensitive to the toxin. Upon transfer of NaF-stimulated cells to a fluoride-free medium, superoxide release declined and calcium levels diminished. The response of the deactivated, fluoride-prestimulated guinea pig neutrophils to a secondary stimulation with phorbol myristate acetate (PMA) or fMet-Leu-Phe, was either unaffected by the previous challenge with NaF (PMA) or augmented by it (the chemotactic peptide). In parallel to the activation of NADPH oxidase, NaF also induced translocation of protein kinase C to cell membranes. This effect was also abolished by a pretreatment with pertussis toxin.  相似文献   

3.
Fluoride-mediated activation of guinea pig neutrophils   总被引:1,自引:0,他引:1  
In guinea pig peritoneal neutrophils NaF at a concentration of above 5 mM elicited a dose-dependent, delayed and sustained activation of NADPH oxidase. Unlike in human neutrophils, in guinea pig cells, this response was independent of extracellular calcium. Fura2 fluorescence measurements indicated also a fluoride-mediated moderate elevation in the level of cytosolic calcium concentration. Pretreatment of neutrophils with pertussis toxin, blocked fluoride-promoted activation of NADPH oxidase, indicating that NaF stimulation was mediated by a G protein which is a pertussis toxin substrate. NaF-elicited calcium elevation was insensitive to the toxin. Upon transfer of NaF-stimulated cells to a fluoride-free medium, superoxide release declined and calcium levels diminished. The response of the deactivated, fluoride-prestimulated guinea pig neutrophils to a secondary stimulation with phorbol myristate acetate (PMA) or fMet-Leu-Phe, was either unaffected by the previous challenge with NaF (PMA) or augmented by it (the chemotactic peptide). In parallel to the activation of NADPH oxidase, NaF also induced translocation of protein kinase C to cell membranes. This effect was also abolished by a pretreatment with pertussis toxin.  相似文献   

4.
Summary NADPH oxidase from stimulated guinea pig granulocytes was extracted with deoxycholate. The solubilized enzyme was stable in 20% glycerol. Solubilized enzyme was free of myeloperoxidase activity. The properties of the deoxycholate solubilized enzyme indicated that it is a high molecular weight complex with a flavoprotein, calmodulin and cytochrome b possibly forming part of the complex. Maximum activity was between pH 7.0 and 7.5. The Km value was 15.8 µM for NADPH and 434 µM for NADH indicating that NADPH is the preferential substrate.  相似文献   

5.
We studied the effect of the 2',3'-dialdehyde derivative of NADPH on the activation of superoxide-producing oxidase in a cell-free system of pig neutrophils. The system consisted of a membrane fraction, two cytosolic fractions prepared by gel filtration, and arachidonic acid. Preincubation of one of the cytosolic fractions with the derivatives of NADPH and NADP+ caused the loss of its ability to activate the enzyme. The inactivation was effectively prevented by the addition of NADPH and NADP+. Neither the membrane fraction nor the other cytosolic fraction was affected by the derivatives. The results indicate that the NADPH binding component of the oxidase is present in the cytosolic fraction and may be translocated to the membrane fraction during the activation process in the cell-free system.  相似文献   

6.
The gp91phox subunit of flavocytochrome b558 is the catalytic core of the phagocyte plasma membrane NADPH oxidase. Its activation occurs within lipid rafts and requires translocation of four subunits to flavocytochrome b558. gp91phox is the only glycosylated subunit of NADPH oxidase and no data exist about the structure or function of its glycans. Glycans, however, bind to lectins and this can stimulate NADPH oxidase activity. Given this information, we hypothesized that lectin–gp91phox interactions would facilitate the assembly of a functionally active NADPH oxidase in the absence of lipid rafts. To test this, we used lectins with different carbohydrate-binding specificity to examine the effects on H2O2 generation by human neutrophils treated with the lipid raft disrupting agent methyl-β-cyclodextrin (MβCD). MβCD treatment removed membrane cholesterol, caused changes in cell morphology, inhibited lectin-induced cell aggregation, and delayed lectin-induced assembly of the NADPH oxidase complex. More importantly, MβCD treatment either stimulated or inhibited H2O2 production in a lectin-dependent manner. Together, these results show selectivity in lectin binding to gp91phox, and provide evidence for the biochemical structures of the gp91phox glycans. Furthermore, the data also indicate that in the absence of lipid rafts, neutrophil NADPH oxidase activity can be altered by these select lectins.  相似文献   

7.
Cytochalasin D (CD) induced production of the superoxide radical (O(2)(-)) in guinea pig polymorphonuclear leukocytes (PMNs). The protein kinase C (PKC) inhibitor GF109203X (GFX) was rarely without effect on CD-induced O(2)(-) production. CD as well as PMA induced the translocation of p47(phox) to the membrane fraction, and this translocation was slightly decreased by GFX. Moreover, the inhibitory effect of a PKCzeta antagonist with sequences based on the endogenous PKCzeta pseudosubstrate region was weaker than the inhibitory effect on N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced O(2)(-) production. On the other hand, the production of O(2)(-) induced by CD was more strongly suppressed by the PLD inhibitor ethanol and phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin than that induced by fMLP, and the activation of phospholipase D (PLD) by CD was restrained by wortmannin. These findings suggest that NADPH oxidase is activated by CD through a PKC-independent signaling pathway in PMNs, and this pathway involves the activation of PLD through PI3-K.  相似文献   

8.
The protein kinase C inhibitor, staurosporine, inhibited NADPH oxidase activity of human neutrophils activated by phorbol myristate acetate. However, this inhibitor had no effect on either the initiation or the maximal rate of O2- secretion activated by the chemotactic peptide, fMet-Leu-Phe, but resulted in a more rapid termination of oxidant production. Similarly, staurosporine had no effect on the rapid (1 min) increase in luminol-dependent chemiluminescence activated by fMet-Leu-Phe, but the second (intracellular) phase of oxidant production was inhibited. The initial burst of oxidant production during phagocytosis was similarly protein kinase C-independent, but again the later phases of oxidase activity were staurosporine-sensitive. Neutrophils loaded with Quin-2 at concentrations sufficient to act as a Ca2+ buffer could not secrete O2- in response to fMet-Leu-Phe; although the initial (protein kinase C-independent) burst of luminol chemiluminescence was not observed in fMet-Leu-Phe-stimulated Ca2(+)-buffered cells, the second phase of (protein kinase C-dependent) oxidant production was largely unaffected. Hence, the initial burst of oxidant production activated by fMet-Leu-Phe, opsonized zymosan, and latex beads is independent of the activity of protein kinase C-dependent intracellular activation processes, but the activity of this kinase is required to extend or sustain the duration of oxidant production.  相似文献   

9.
In an attempt to elucidate properties and activation mechanisms of the NADPH oxidase system, which is known to be responsible for the production of superoxide anion (O2-) in cell membranes of polymorphonuclear leukocytes (PMNL), intact guinea pig PMNL were treated with glutaraldehyde, a protein crosslinking reagent, before or after stimulation with phorbol 12-myristate 13-acetate (PMA). Then, PMNL were disrupted and NADPH oxidase activity was measured. After the treatment of resting PMNL with glutaraldehyde, NADPH oxidase was no longer activated by PMA. On the other hand, the NADPH oxidase activity enhanced by PMA in advance was markedly retained by the glutaraldehyde treatment of such PMA-stimulated PMNL as compared to that in untreated cells. Similar retention by glutaraldehyde of the stimulated NADPH oxidase activity was observed in PMNL stimulated by formyl-methionyl-leucyl-phenylalanine (FMLP) and cytochalasin D. Furthermore, the oxidase activity of glutaraldehyde-treated PMNL was stable during incubation at 37 degrees C, the half life of the oxidase activity of the treated PMNL being more than 90 min whereas that of the untreated PMNL is about 15 min. This ability of the glutaraldehyde treatment to retain the activity was also observed against inactivation by high concentrations of NaCl and by positively charged alkylamine.  相似文献   

10.
Treatment of guinea pig polymorphonuclear leukocytes (PMNL) with phorbol 12-myristate 13-acetate (PMA) induced an increase in phosphorylation of 46 kDa protein(s) in parallel with activation of NADPH oxidase. In response to PMA stimulation, phosphorylated 46 kDa protein(s) increased markedly in the membrane fraction, accompanied by a decrease in the unphosphorylated form(s) in the cytosol. The results indicate that the 46 kDa protein(s) may be translocated concomitantly with its phosphorylation. On the other hand, in a cell-free activation system reconstituted from the cytosol and plasma membranes of unstimulated PMNL, arachidonic acid caused the translocation of the 46 kDa protein(s) from the cytosol to the plasma membranes concomitantly with an enhancement of NADPH oxidase activity. These results suggest that activation of NADPH oxidase is dependent on an association of 46 kDa protein(s) with the membranes both in intact PMNL and in the cell-free system.  相似文献   

11.
12.
A major function of human neutrophils (PMN) during inflammation is formation of oxygen radicals through activation of the respiratory burst enzyme, NADPH oxidase. Stimulus-induced production of both phosphatidic acid (PA) and diglyceride (DG) has been suggested to mediate oxidase activity; however, transductional mechanisms and cofactor requirements necessary for activation are poorly defined. We have utilized PMN permeabilized with Staphylococcus aureus alpha-toxin to elucidate the signal pathway involved in eliciting oxidase activity and to investigate whether PA or DG act as second messengers. PMN were permeabilized in cytoplasmic buffer supplemented with ATP and EGTA for 15 min before addition of NADPH and various cofactors. Oxidase activation was assessed by superoxide dismutase inhibitable reduction of ferricytochrome C; PA and DG levels were measured by radiolabeled product formation or by metabolite mass formation. Both superoxide (O2-) and PA formation were initiated by 10 microM GTP gamma S; addition of cytosolic levels of calcium ions (Ca2+, 120 nM) enhanced O2- and PA formation 1.5-2 fold. DG levels showed little change during these treatments. PA formation preceded O2- production and varying GTP gamma S levels had parallel effects on O2- and PA formation. However, while PA formation and oxidase activation occurred in tandem at Ca2+ levels of < 1 microM, higher calcium enhanced PA formation but inhibited O2- production. Removal of ATP completely blocked O2- production but had little effect on PA formation; in contrast, if ATP was replaced with ATP gamma S, parallel production of PA and O2- occurred in the absence of other cofactors. Finally, while inhibition of PA production by ethanol pretreatment led to inhibition of O2- formation in PMN treated with GTP gamma S alone, in cells stimulated with a combination of GTP gamma S and Ca2+, ethanol continued to inhibit PA formation but had no effect on O2- production. Our results do not support a role for DG in the signal transduction path leading to oxidase activation and, while we show a close correlation between oxidase activation and PA production under many physiologic conditions, we also demonstrate that PA is not sufficient to induce oxidase activation and O2- formation can occur when PA production is inhibited.  相似文献   

13.
Cholestatic hepatitis is frequently found in Niemann-Pick C (NPC) disease. We studied the influence of diet and the low density lipoprotein receptor (LDLR, Ldlr in mice, known to be the source of most of the stored cholesterol) on liver disease in the mouse model of NPC. Npc1-/- mice of both sexes, with or without the Ldlr knockout, were fed a 18% fat, 1% cholesterol ("high-fat") diet and were evaluated by chemical and histological methods. Bile acid transporters [multidrug resistance protein (Mrps) 1-5; Ntcp, Bsep, and OatP1, 2, and 4] were quantitated by real-time RT-PCR. Many mice died prematurely (within 6 wk) with hepatomegaly. Histopathology showed an increase in macrophage and hepatocyte lipids independent of Ldlr genotype. Non-zone-dependent diffuse fibrosis was found in the surviving mice. Serum alanine aminotransferase was elevated in Npc1-/- mice on the regular diet and frequently became markedly elevated with the high-fat diet. Serum cholesterol was increased in the controls but not the Npc1-/- mice on the high-fat diet; it was massively increased in the Ldlr-/- mice. Esterified cholesterol was greatly increased by the high-fat diet, independent of Ldlr genotype. gamma-Glutamyltransferase was also elevated in Npc1-/- mice, more so on the high-fat diet. Mrps 1-5 were elevated in Npc1-/- liver and became more elevated with the high-fat diet; Ntcp, Bsep, and OatP2 were elevated in Npc1-/- liver and were suppressed by the high-fat diet. In conclusion, Npc1-/- mice on a high-fat diet provide an animal model of NPC cholestatic hepatitis and indicate a role for altered bile acid transport in its pathogenesis.  相似文献   

14.
This experiment was performed to clarify the role of protein kinase C (PKC) delta in NADPH oxidase-dependent O(2-) production and actin polymerization followed by phagocytosis in neutrophils. Bovine neutrophils and human neutrophil-like differentiated HL-60 (dHL-60) cells were stimulated with serum-opsonized zymosan (OZ) and fMet-Leu-Phe (fMLP), respectively. Rottlerin, a specific inhibitor of PKCdelta, attenuated the production of O(2-) from NADPH oxidase in both neutrophils and dHL-60 cells. However, it did not inhibit the translocation of p47(phox) from the cytosol to the membrane in either type of cell or the phosphorylation of p47(phox) in dHL-60 cells. GF109203X (GFX), an inhibitor of cPKC, attenuated not only the production of O(2-) but also the translocation of p47(phox) in both cells. Furthermore, rottlerin significantly attenuated the ingestion of opsonized particles and the formation of F-actin in OZ-stimulated neutrophils, whereas, GFX did not affect those phagocytic processes. These results suggest that both PKCdelta and cPKC regulate NADPH oxidase through different pathways, but only PKCdelta regulates the phagocytic function in neutrophils.  相似文献   

15.
Recently, we showed that cultured guinea pig gastric pit cells possess a phagocyte NADPH oxidase-like activity, which was up-regulated by Helicobacter pylori lipopolysaccharide. We demonstrate here that these cells express all of the phagocyte NADPH oxidase components (gp91-, p22-, p67-, p47-, and p40-phoxes). Treatment with lipopolysaccharide increased the expression of gp91-, p22-, and p67-phoxes, but not that of p47- and p40-phoxes. Intriguingly, the p67-phox expression consistently correlated with up-regulation of superoxide anion-producing ability. Thus, the gastric pit cell NADPH oxidase may play an important role in regulation of the inflammatory response associated with H. pylori infection.  相似文献   

16.
In a previous study, the S100A8/A9 protein, a Ca2+- and arachidonic acid-binding protein, abundant in neutrophil cytosol, was found to potentiate the activation of the redox component of the O2- generating oxidase in neutrophils, namely the membrane-bound flavocytochrome b, by the cytosolic phox proteins p67phox, p47phox and Rac (Doussière J., Bouzidi F. and Vignais P.V. (2001) Biochem. Biophys. Res. Commun.285, 1317-1320). This led us to check by immunoprecipitation and protein fractionation whether the cytosolic phox proteins could bind to S100A8/A9. Following incubation of a cytosolic extract from nonactivated bovine neutrophil with protein A-Sepharose bound to anti-p67phox antibodies, the recovered immunoprecipitate contained the S100 protein, p47phox and p67phox. Cytosolic protein fractionation comprised two successive chromatographic steps on hydroxyapatite and DEAE cellulose, followed by isoelectric focusing. The S100A8/A9 heterodimeric protein comigrated with the cytosolic phox proteins, and more particularly with p67phox and Rac2, whereas the isolated S100A8 protein displayed a tendancy to bind to p47phox. Using a semirecombinant cell-free system of oxidase activation consisting of recombinant p67phox, p47phox and Rac2, neutrophil membranes and arachidonic acid, we found that the S100A8/A9-dependent increase in the elicited oxidase activity corresponded to an increase in the turnover of the membrane-bound flavocytochrome b, but not to a change of affinity for NADPH or O2. In the absence of S100A8/A9, oxidase activation departed from michaelian kinetics above a critical threshold concentration of cytosolic phox proteins. Addition of S100A8/A9 to the cell-free system rendered the kinetics fully michaelian. The propensity of S100A8/A9 to bind the cytosolic phox proteins, and the effects of S100A8/A9 on the kinetics of oxidase activation, suggest that S100A8/A9 might be a scaffold protein for the cytosolic phox proteins or might help to deliver arachidonic acid to the oxidase, thus favoring the productive interaction of the cytosolic phox proteins with the membrane-bound flavocytochrome b.  相似文献   

17.
Two cytosolic components, which cooperate with a 63-kDa cytosolic factor (Tanaka, T., Imajoh-Ohmi, S., Kanegasaki, S., Takagi, Y., Makino, R., and Ishimura, Y. (1990) J. Biol. Chem. 265, 18717-18720) in activation of the O(2-)-generating NADPH-oxidase in neutrophil membrane, were isolated and characterized from porcine neutrophils. One, which was purified to electrophoretic homogeneity, was a 47-kDa protein cross-reactive to an antibody raised against a portion of human 47-kDa cytosolic factor, a component of the human NADPH-oxidase activation system. Another one, designated here as the third component, was partially purified and found to contain 49- and 55-kDa proteins as the major constituents. No colored prosthetic group such as heme, flavin, and non-heme iron was detected in both cytosolic components. In a reconstituted assay system with a solubilized membrane preparation containing the dormant oxidase and with oleate as a stimulus, the 47-kDa protein together with the 63-kDa factor was essential for activating the dormant oxidase, while the third component was not essential for the activation of but enhanced the O(2-)-generation evoked by the former two components. Thus, the 47- and 63-kDa cytosolic proteins are the principal constituents of the activation system, while the other factors such as those contained in the third component may regulate the activity induced by the essential components.  相似文献   

18.
The membrane fraction of guinea pig polymorphonuclear leukocytes stimulated with phorbol myristate acetate exhibits the respiratory burst NADPH oxidase activity. This activity is markedly unstable at 37 degrees C, disappearing with a half-life of 11.0 min. When the membrane fraction was pretreated with 0.1% glutaraldehyde, the NADPH oxidase was found to become more stable; its half-life increased about sixfold without any enhancement of the initial activity. The glutaraldehyde treatment of the membrane fraction also protected the NADPH oxidase against inactivation with 0.1-0.2% Triton X-100. These stabilizing effects of glutaraldehyde on the NADPH oxidase seem to be due to its protein cross-linking ability, since its monovalent analogue, butyraldehyde, did not show any effect on the NADPH oxidase activity. In fact, sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that glutaraldehyde cross-linked many proteins constituting the membrane.  相似文献   

19.
Heat shock inhibits NADPH oxidase in human neutrophils   总被引:4,自引:0,他引:4  
The heat shock response is a conserved, physiological, transient cellular response to injury. Several studies have suggested a link between the heat shock response and oxidative injury. We have investigated the effects of heat shock on superoxide anion generation by human neutrophils stimulated with opsonized zymosan or phorbol myristate acetate. Human neutrophils exposed to elevated temperatures or to the heavy metal cadmium synthetized a variety of heat shock proteins. In parallel to this protein synthesis, we observed a selective, reversible and temperature-dependent inhibition of NADPH oxidase activation, which was independent from variations of cytosolic pH or thiol group oxidation. Inhibition of NADPH oxidase by heat shock appeared related to the synthesis of heat shock proteins and may represent an intrinsic cellular mechanism to down regulate superoxide production.  相似文献   

20.
Calmodulin-dependent stimulation of the NADPH oxidase of human neutrophils   总被引:4,自引:0,他引:4  
The NADPH oxidase of human neutrophils is highly sensitive to calcium concentration and is inhibited in intact cells and cell-free preparations by various phenothiazine drugs. Addition of calmodulin to preparations of NADPH oxidase stimulates enzymatic rates from 1.4-2.5-fold. Addition of calmodulin and calcium, but not calcium alone, to NADPH oxidase preparations which have been inactivated by EDTA results in the restoration of activity. No activation is observed when membrane preparations containing latent NADPH oxidase are exposed to calcium and calmodulin. These studies suggest a role for calmodulin in the control of NADPH oxidase but that calmodulin alone is not sufficient for activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号