共查询到20条相似文献,搜索用时 0 毫秒
1.
The review deals with cytoplasmic male sterility (CMS) in higher plants: impairment of the pollen formation resulting from interaction of the nuclear and mitochondrial genomes. The information on the known nuclear restorer-of-fertility genes and their effects on the expression of CMS-associated mitochondrial loci are considered. Heteroplasmy of mtDNA in plants and its potential association with CMS inheritance, as well as possible mechanisms of the observed direct and reverse association between altered expression of the CMS-inducing mitochondrial genome, metabolic defects, and pollen sterility are discussed. 相似文献
2.
The review deals with cytoplasmic male sterility (CMS) in higher plants: impairment of the pollen formation resulting from interaction of the nuclear and mitochondrial genomes. The information on the known nuclear restorer-of-fertility genes and their effects on the expression of CMS-associated mitochondrial loci are considered. Heteroplasmy of mtDNA in plants and its potential association with CMS inheritance, as well as possible mechanisms of the observed direct and reverse association between altered expression of the CMS-inducing mitochondrial genome, metabolic defects, and pollen sterility are discussed. 相似文献
3.
T. Zhu H. L. Mogensen S. E. Smith 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1991,81(1):21-26
Summary Studies utilizing restriction analysis of plastid DNA, as well as those employing chlorophyll-deficient mutants, have shown a high frequency of paternal plastid transmission in alfalfa. Recent research has also shown that plastid inheritance patterns among alfalfa genotypes and are under genetic control. In a previous study we were unable to detect any correlations between qualitative, three-dimensional ultrastructure of generative cells and male plastid transmission strength in certain genotypes. In the present study we used serial ultrathin sectioning, computerized reconstruction and quantitation, and stereology to further analyze generative cells within mature pollen. Measurements included volumes and surface areas of cells, nuclei, and organelles, as well as organelle number and distribution. Three genotypes were investigated, one that is a strong transmitter of male plastids (genotype 301), one that is a weaker transmitter of male plastids (genotype 7W), and a third that is an even weaker male plastid transmitter (genotype MS-5). Our results show that genotype MS-5 has significantly fewer plastids/generative cell than either of the other genotypes, which may account for it being a relatively poor transmitter of male plastids. However, plastid number does not explain known differences in male plastid inheritance between genotypes 301 and 7W, since plastid number does not differ significantly between these two genotypes. Regarding the other features of generative cells measured in this study, no consistent correlations were found that might account for differences in male plastid inheritance patterns between genotypes. Plastid distribution is equal in each end of the spindle-shaped generative cell in all genotypes studied. Similar relative results were found with regard to mitochondria within generative cells; however, comparative genetic data are not available on mitochondrial transmission patterns in alfalfa genotypes. 相似文献
4.
The differing inheritance patterns of cytoplasmic genes and the sex chromosomes from the Mendelian autosomal patterns can be used to divide the genome into fractions whose defining rule is that the fitness of all genes in a set is maximized in the same way. Each set will be selected to modify the phenotype of the organism in a way which maximally propagates the genes comprising the set, and hence in ways inconsistent with the other sets which comprise the total genome. The coexistence of such multiple sets in the same genome creates intragenomic conflict. Evidence is presented in which the fitness of cytoplasmic and other non-autosomal genetic sets are increased at the expense of the autosomal genetic set. The relationship of such intragenomic conflict to the evolution of anisogamy, dioecy, skewed sex ratios, differential male mortality, systems of sex determination, and altruism is discussed. 相似文献
5.
A much-debated issue in plant evolutionary biology concerns the maintenance of a high frequency of male sterility in natural populations. For the past decade, a theoretical framework has been provided by the concept of nucleocytoplasmic conflict. Recent molecular studies on cytoplasmic male sterility indicate that novel chimeric genes, resulting from duplications and rearrangements of mitochondrial DNA sequences, are involved In its control. Thus, male sterility, which is phenotypically the loss of the male function, is encoded by a new mitochondrial function at the molecular level. Molecular data are in agreement with theoretical models that consider cytoplasmic male sterility as a stage in the coevolution between nucleus and mitochondria, and not simply as a deleterious mitochondrial mutation. 相似文献
6.
Isolation of male and female gametes in higher plants 总被引:6,自引:0,他引:6
7.
Biparental inheritance of plastids has been documented in numerous angiosperm species. The adaptive significance of the mode of plastid inheritance (unior biparental) is poorly understood. In plants exhibiting paternal inheritance of plastids, DNA-containing plastids in the microgametophyte may affect survival or growth of the gametophyte or the embryo. In this study the number of plastids containing DNA (nucleoids) in generative cells and generative cell and pollen volumes were evaluated in a range of genotypes of Medicago sativa (alfalfa). M. sativa exhibits biparental inheritance of plastids with strong paternal bias. The M. sativa genotypes used were crossed as male parents to a common genotype and the relationships between the gametophytic traits measured and male reproductive success were assessed. Generative cell plastid number and pollen grain size exhibited opposing associations with male fertility. Path analysis showed that generative cell plastid number was negatively associated with male fertility. This study provides evidence that there may be a competitive advantage at fertilization afforded sperm that have minimized their organelle content. The apparent lack of strong selection for reduced plastid number in generative cells of M. sativa may be a reflection of the diminished importance of reproductive success due to its perenniality or its long use in cultivation. 相似文献
8.
Brown algae, together with diatoms and chrysophytes, are a member of the heterokonts. They have either a characteristic life
cycle of diplohaplontic alternation of gametophytic and sporophytic generations that are isomorphic or heteromorphic, or a
diplontic life cycle. Isogamy, anisogamy and oogamy have been recognized as the mode of sexual reproduction. Brown algae are
the characteristic group having elaborated multicellular organization within the heterokonts. In this study, cytoplasmic inheritance
of chloroplasts, mitochondria and centrioles was examined, with special focus on sexual reproduction and subsequent zygote
development. In oogamy, chloroplasts and mitochondria are inherited maternally. In isogamy, chloroplasts in sporophyte cells
are inherited biparentally (maternal or paternal); however, mitochondria (or mitochondrial DNA) derived from the female gamete
only remained during zygote development after fertilization. Centrioles in zygotes are definitely derived from the male gamete,
irrespective of the sexual reproduction pattern. Female centrioles in zygotes are selectively broken down within 1–2 h after
fertilization. The remaining male centrioles play a crucial role as a part of the centrosome for microtubule organization,
mitosis, determination of the cytokinetic plane and cytokinesis, as well as for maintaining multicellularity and regular morphogenesis
in brown algae. 相似文献
9.
Manganese in cell metabolism of higher plants 总被引:1,自引:0,他引:1
Manganese, a group VII element of the periodic table, plays an important role in biological systems and exists in a variety of oxidation states. The normal level of Mn in air surrounding major industrial sites is 0.03 μg/m3, in drinking water 0.05 mg/liter and in soil between 560 and 850 ppm. Manganese is an essential trace element for higher plant systems. It is absorbed mainly as divalent Mn2+, which competes effectively with Mg2+ and strongly depresses its rate of uptake. The accumulation of Mn particularly takes place in peripheral cells of the leaf petiole, petiolule and palisade and spongy parenchyma cells. Mn is involved in photosynthesis and activation of different enzyme systems. Mn deficiency may be expressed as inhibition of cell elongation and yield decrease. Mn toxicity is one of the important growth limiting factors in acid soils. Plant tops are affected to a greater extent than root systems. The toxicity symptoms are, in general, similar to the deficiency symptoms. Toxic effects of Mn on plant growth have been attributed to several physiological and biochemical pathways, although the detailed mechanism is still not very clear. Higher O2 uptake and loss of control in Mn activated enzyme systems have been associated with Mn toxicity. Mn interferes with the uptake, transport and use of several essential elements including Ca, Fe, Cu, Al, Si, Mg, K, P and N. Excess of Mn reduces the uptake of certain elements and increases that of others. pH plays an important role in Mn uptake. Acidic pH causes a lack of substantial amount of nitrate as an alternative electron acceptor and leads to a high amount of Mn in leaves. High microbial activity, water logging and poorly structured soils cause severe Mn toxicity even in neutral soils. The molecular mechanism of Mn-tolerance is not yet clear. The level of tolerance is different in different species and seems to be controlled by more than one gene. Further information is required on the factors affecting the distribution, accumulation and membrane permeability of the metal in different plant parts and different species. Understanding of the genetic basis of Mn-tolerance is necessary to improve adaptation of crops against acid soils, water logging and other adverse soil conditions. 相似文献
10.
11.
Cummins JM 《Theriogenology》2001,55(6):1381-1399
At fertilization, the mammalian sperm transmits the haploid paternal genome. However, it also carries a variety of other factors into the oocyte that have the potential to affect embryo development. These include mRNAs left over from spermatogenesis, mitochondria with their own DNA, cytoskeletal and contractile elements, remnants of the sperm plasma membrane and, in many species, the sperm centriole. While most of these elements are eliminated, some play essential roles in early embryogenesis. In this review, I summarize the latest information on these phenomena and indicate some of the implications for animal biotechnology and, in particular, cloning. 相似文献
12.
13.
Summary The fate of plastid and mitochondrial nucleoids (pt and mt nucleoids) ofTriticum aestivum was followed during the reproductive organ formation using fluorescence microscopy after staining with 4'6-diamidino-2-phenylindole (DAPI). This investigation showed a drastic morphological change of pt nucleoids during the differentiation of reproductive organs from the shoot apex. Dot-shaped pt nucleoids grew into ring-shaped ones, which divided into small pieces in the monocellular pollen grain, as observed in this plant's earlier stage of leaf development. During the development of mature pollen grain from monocellular pollen grain, pt and/or mt nucleoids disappeared through the division of the male generative cell ofT. aestivum. Cytologically, this observation is direct evidence of the maternal inheritance of higher plants. Thus far, cytological evidence of this phenomenon has been found mostly by morphological criteria using electron microscopy, which admits some ambiguity. In the plants exemplified byLilium longiflorum, pt and/or mt nucleoids disappeared after the first pollen grain mitosis, which precededT. aestivum. In the plants exemplified byTrifolium repens, pt and/or mt nucleoids existed in the generative cells of the mature pollen grain.The significance of these observations was discussed in relation to the interaction between nuclear and organelle genomes during plant development.Abbreviations DAPI 4'6
diamidino-2-phenylindole
- Mt DNA
Mitochondrial DNA
- Mt
nucleoid Mitochondrial nucleoid
- Pt DNA
Plastid DNA
- Pt
nucleoid Plastid nucleoid
On leave from Department of Biology, Nagoya University, Furocho, Chikusaku, Nagoya 464, Japan. 相似文献
14.
15.
16.
17.
An analysis of interspecific hybrids of Nicotiana spp. in which one of the parents was sensitive to tentoxin showed that this sensitivity was transmitted only through the female parent. Since tentoxin acts by selectively binding to the alpha,beta subunit complex of chloroplast coupling factor 1, the gene(s) specifying either one or both of these subunits is located in the cytoplasm. 相似文献
18.
Elizabeth Faris Crowell Martine GonneauSamantha Vernhettes Herman Höfte 《Comptes rendus biologies》2010,333(4):320-324
Plant growth and development depend on anisotropic cell expansion. Cell wall yielding provides the driving force for cell expansion, and is regulated in part by the oriented deposition of cellulose microfibrils around the cell. Our current understanding of anisotropic cell expansion combines hypotheses generated by more than 50 years of research. Here, we discuss the evolving views of researchers in the field of cellulose synthesis, and highlight several unresolved questions. Recent results using live-cell imaging have illustrated novel roles for cortical microtubules in cellulose synthesis, and further research using these approaches promises to reveal exciting links between the cytoskeleton, intracellular trafficking, and anisotropic growth. 相似文献
19.
Background Lignin is a polyphenolic polymer that strengthens and waterproofs the cell wall of specialized plant cell types. Lignification is part of the normal differentiation programme and functioning of specific cell types, but can also be triggered as a response to various biotic and abiotic stresses in cells that would not otherwise be lignifying.Scope Cell wall lignification exhibits specific characteristics depending on the cell type being considered. These characteristics include the timing of lignification during cell differentiation, the palette of associated enzymes and substrates, the sub-cellular deposition sites, the monomeric composition and the cellular autonomy for lignin monomer production. This review provides an overview of the current understanding of lignin biosynthesis and polymerization at the cell biology level.Conclusions The lignification process ranges from full autonomy to complete co-operation depending on the cell type. The different roles of lignin for the function of each specific plant cell type are clearly illustrated by the multiple phenotypic defects exhibited by knock-out mutants in lignin synthesis, which may explain why no general mechanism for lignification has yet been defined. The range of phenotypic effects observed include altered xylem sap transport, loss of mechanical support, reduced seed protection and dispersion, and/or increased pest and disease susceptibility. 相似文献
20.
X. C. Liu K. Jones H. G. Dickinson 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1988,76(2):305-310
Summary In view of accumulating evidence that cytoplasmic male sterility (CMS) in some species results from an inability to generate the high ATP/ADP ratios required for specific stages of differentiation in the reproductive cycle, a number of aspects of ATP metabolism are being examined in CMS and male fertile plants.In experiments designed to test mitochondrial efficiency in ATP export, organelles from CMS plants performed very poorly when compared with normal lines. It is proposed that although most of the molecules involved in mitochondrial ATP production are nuclear encoded, the lesions in mitochondrial (mt)DNA known to accompany the CMS phenotype may be expressed as small modifications within the architecture of the mitochondrial membrane. To detect whether such changes could affect the ADP-ATP translocator in the membrane, two sets of experiments were carried out to determine a Km for the translocator. The two methods employed were based on different precepts, but nevertheless indicated a Km for the mitochondrial translocator in CMS lines which differed dramatically from that of male fertile plants. The view that CMS in Petunia hybrida thus might result from small differences in mtDNA encoded membrane proteins is considered in the light of the cytological changes seen to accompany CMS in these plants, as well as in the context of current theories advanced to explain CMS in other species. 相似文献