首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With a few exceptions, proteins in our biosphereare based exclusively on l-amino acids. The inversionof configuration of all the stereogenic centers in aprotein leads to an all- d compound with mirrorimage properties and mirror image structure. Wepropose to use the term protein-enantiomerism to describe the relationship betweentwo proteins that have the same sequence but whoseamino acids have opposite configuration. We will usethe term protein-diastereomerism todefine the relationship between two proteins that havethe same sequence in which some amino acids haveopposite configurations. A classification of type I,II, III, and IV protein-diastereomerism isproposed. By extension, a diastereoprotein is aprotein where some amino acids have the sameconfiguration (l or d) while others have the oppositeone (d or l). A particular case of diastereoproteinsare mesoproteins, also analyzed in thisarticle. In addition to the goal of making proteinsresistant to protease degradation, the use of d-amino acids in protein de novo design may give riseto proteins with structures, and perhaps properties,very different to those of native all-L-proteins.  相似文献   

2.
S. Asakura  Dr. R. Konno 《Amino acids》1997,12(3-4):213-223
Summary Urine of ddY/DAO mice lackingd-amino-acid oxidase contained 5.7 times more serine than that of normal ddY/DAO+ mice. Most of the serine wasd-isomer. The origin of thisd-serine was examined. Oral administration of 0.02% amoxicillin and 0.004% minocycline to the ddY/ DAO- mice for 7 days did not reduce the urinaryd-serine, indicating that thed-serine was not of intestinal bacterial origin. When the mouse diet was changed to one with different compositions, the urinaryd-serine was considerably reduced. Furthermore, starvation of the ddY/DAO- mice for 24 hours reduced the urinaryd-serine to 33% of the original level. These results indicate that most of the urinaryd-serine comes from the diet. However, the urine of the starved ddY/DAO- mice still contained 4.6 times mored-serine than that of the ddY/DAO+ mice, suggesting a part of the D-serine have an endogenous origin.  相似文献   

3.
Summary Urine of mutant ddY/DAO mice lackingd-amino-acid oxidase activity contained more serine and proline than that of normal ddY/DAO+ mice.d-Amino-acid oxidase treatment of urinary amino acids decreased the serine and proline, suggesting that they containedd-isomers. An HPLC analysis confirmed the presence ofd-serine. Urinary serine and proline contents were not decreased when the ddY/DAO mice were fed a diet which did not contain supplementaryd-methionine or when they were given water containing antibiotics. These results suggest that thed-serine andd-proline do not derive from thed-methionine supplemented in the diet or from intestinal bacteria. In urine of the ddY/DAO mice, a substance which seemed to bed-methionine sulfoxide and/ord-methionine sulfone was present. It is probably a metabolite of thed-methionine supplemented in the diet. Thed-aminoaciduria in the mutant mice lackingd-amino-acid oxidase activity indicates that this enzyme is involved in the metabolism of thed-amino acids in normal mice.  相似文献   

4.
Summary The presence of an enzyme activity which hydrolyzes glycyl-d-aspartate was found in the homogenates of pig kidney cortex. The activity was inhibited by metal chelating agents and cilastatin, suggesting that the enzyme was a cilastatin-sensitive metallo-peptidase. Of the two hydrolysis products,d-aspartate was found to be less accumulated than glycine. The fate ofd-aspartate was, therefore, examined and the amino acid was found to be converted tol-aspartate,l-alanine and pyruvate, in the presence ofl-glutamate. Experiments with enzyme inhibitors suggested that the conversion involvedd-aspartate oxidase, aspartate aminotransferase and alanine aminotransferase as well as decarboxylation of oxaloacetate produced fromd-aspartate. All the results indicate that the enzymes in the pig kidney can liberate thed-aspartyl residue in the peptide and convert it to the compounds readily utilizable. The finding suggests a probable metabolic pathway of thed-aspartate-containing peptide.  相似文献   

5.
d-Serine administration has been shown to be effective for the treatment of schizophrenia symptoms. However, d-serine must be administered at high doses to observe clinical effects. This is due in large part to d-serine undergoing oxidation by d-amino acid oxidase (DAAO) before it reaches the brain. Consequently, coadministration of d-serine with a DAAO inhibitor has been suggested as a way to lower the dose of d-serine required to treat schizophrenia. During the characterization of DAAO inhibitors as potential drugs, inhibitors are evaluated in rodents for their ability to increase plasma d-serine levels after oral coadministration. Current high-performance liquid chromatography (HPLC)-based methodologies to measure d-serine in plasma are time-consuming and are not amenable to concomitant analysis of multiple samples. We report the characterization of a 96-well format assay to monitor d-serine in plasma that greatly expedites analysis time. The assay involves the use of strong cation exchange solid phase extraction (SPE) to isolate d-serine from plasma followed by quantitation of d-serine using the DAAO-catalyzed reaction. Plasma d-serine determination using this assay could also be used as pharmacodynamic marker and as biomarker.  相似文献   

6.
Utilization of d-amino acids being substrates of d-amino acid dehydrogenase of Salmonella typhimurium was examined. The experiments were done with wild type strains and the mutants dadA missing the enzyme activity and dadR in which its synthesis is released from catabolite repression. Growth on d-tryptophan, d-histidine and d-methionine used as precursors of the l-amino acids was faster when the respective auxotrophs carried dadR mutations. The dadR mutants grew faster when d-or l-alanine was present as a sole source of nitrogen. Experiments with d-amino acid dehydrogenase in vitro provided evidence that d-tryptophan is its substrate with a very low affinity to the dehydrogenase.  相似文献   

7.
Summary Inducible resistance to the glycopeptide antibiotics vancomycin and teicoplanin is mediated by plasmid pIP816 in Enterococcus faecium strain BM4147. Vancomycin induced the synthesis of a ca. 40 kDa membrane-associated protein designated VANA. The resistance protein was partially purified and its N-terminal sequence was determined. A 1761 by DNA restriction fragment of pIP816 was cloned into Escherichia coli and sequenced. When expressed in E. coli, this fragment encoded a ca. 40 kDa protein that comigrated with VANA from enterococcal membrane fractions. The ATG translation initiation codon for VANA specified the methionine present at the N-terminus of the protein indicating the absence of signal peptide processing. The amino acid sequence deduced from the sequence of the vanA gene consisted of 343 amino acids giving a protein with a calculated Mr of 37400. VANA was structurally related to the d-alanyl-d-alanine (d-ala-d-ala) ligases of Salmonella typhimurium (36% amino acid identity) and of E. coli (28%). The vanA gene was able to transcomplement an E. coli mutant with thermosensitive d-ala-d-ala ligase activity. Thus, the inducible resistance protein VANA was structurally and functionally related to cytoplasmic enzymes that synthesize the target of glycopeptide antibiotics. Based on these observations we discuss the possibility that resistance is due to modification of the glycopeptide target.  相似文献   

8.
Growth of Pseudomonas aeruginosa PA01 on isomers of hydroxyproline induced the synthesis of an allohydroxy-d-proline dehydrogenase. The enzyme resembled the d-alanine dehydrogenase of this organism in its association with the particulate fraction and its linkage to oxygen through a cytochrome-containing respiratory chain, but differed from this and other bacterial d-amino acid dehydrogenases in its high substrate specificity and low K m .  相似文献   

9.
The crystal structures of α-d-glucopyranosyl β-d-psicofuranoside and α-d-galactopyranosyl β-d-psicofuranoside were determined by a single-crystal X-ray diffraction analysis, refined to R1 = 0.0307 and 0.0438, respectively. Both disaccharides have a similar molecular structure, in which psicofuranose rings adopt an intermediate form between 4E and 4T3. Unique molecular packing of the disaccharides was found in crystals, with the molecules forming a layered structure stacked along the y-axis.  相似文献   

10.
A significant improvement in the production of l-ribulose from inexpensive and commercially available starting materials, l-arabinose and sodium aluminate, is demonstrated. This has facilitated expeditious access to gram-scale quantities of l-ribulofuranoside derivatives.  相似文献   

11.
d-Cysteine desulfhydrase of Escherichia coli W3110 trpED102/F trpED102 was physiologically characterized. It was found to be located in the cytosolic fraction, as 3-chloro-d-alanine dehydrochlorinase is. d-Cysteine desulfhydrase catalyzed not only the ,-elimination reaction of O-acetyl-d-serine to form pyruvate, acetic acid and ammonia, but also the -replacement reaction of O-acetyl-d-serine with sulfide to form d-cysteine. However, these reactions appeared not to proceed in vivo. No other activity of d-cysteine synthesis from O-acetyl-d-serine and sulfide was detected in a crude cell extract of E. coli which was immunotitrated with antibodies raised against the purified d-cysteine desulfhydrase. Although d-cysteine desulfhydrase catalyzes the degradation (,-elimination reaction) of 3-chloro-d-alanine, which is an effective antibacterial agent, E. coli W3110 trpED102/F trpED102 did not show resistance against 3-chloro-d-alanine. Therefore, d-cysteine desulfhydrase does not contribute to 3-chloro-d-alanine detoxification in vivo.  相似文献   

12.
d-Amino acid N-acetyltransferase is a unique enzyme of Saccharomyces cerevisiae acting specifically on d-amino acids. The enzyme was found to be encoded by HPA3, a putative histone/protein acetyltransferase gene, and we purified its gene product, Hpa3p, from recombinant Escherichia coli cells. Hpa3p shares 49% sequence identity and 81% sequence similarity with a histone acetyltransferase, Hpa2p, of S. cerevisiae. Hpa3p acts on a wide range of d-amino acids but shows extremely low activity toward histone. However, Hpa2p does not act on any of the free amino acids except l-lysine and d-lysine. Kinetic analyses suggest that Hpa3p catalyzes the N-acetylation of d-amino acids through an ordered bi-bi mechanism, in which acetyl-CoA is the first substrate to be bound and CoA is the last product to be liberated.  相似文献   

13.
Summary A synthetic peptide library, theoretically composed of 537 824 d-amino acid pentapeptides anchored on polystyrene beads, was prepared with each bead bearing a single pentapeptide sequence. This library was screened for interaction with fructose-1,6-biphosphate aldolase of T. brucei labelled with biotin. Affinity beads that bound the enzyme were selected with streptavidin-coated magnetic beads. A total of 19 beads were isolated and individually subjected to Edman microsequence analysis. The corresponding peptide sequences were synthesized and evaluated for enzyme activity inhibition.  相似文献   

14.
A non-characterized gene, previously proposed as the d-tagatose-3-epimerase gene from Rhodobacter sphaeroides, was cloned and expressed in Escherichia coli. Its molecular mass was estimated to be 64 kDa with two identical subunits. The enzyme specificity was highest with d-fructose and decreased for other substrates in the order: d-tagatose, d-psicose, d-ribulose, d-xylulose and d-sorbose. Its activity was maximal at pH 9 and 40°C while being enhanced by Mn2+. At pH 9 and 40°C, 118 g d-psicose l−1 was produced from 700 g d-fructose l−1 after 3 h. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Saccharomyces cerevisiae is sensitive to d-amino acids: those corresponding to almost all proteinous l-amino acids inhibit the growth of yeast even at low concentrations (e.g. 0.1 mM). We have determined that d-amino acid-N-acetyltransferase (DNT) of the yeast is involved in the detoxification of d-amino acids on the basis of the following findings. When the DNT gene was disrupted, the resulting mutant was far less tolerant to d-amino acids than the wild type. However, when the gene was overexpressed with a vector plasmid p426Gal1 in the wild type or the mutant S. cerevisiae as a host, the recombinant yeast, which was found to show more than 100 times higher DNT activity than the wild type, was much more tolerant to d-amino acids than the wild type. We further confirmed that, upon cultivation with d-phenylalanine, N-acetyl-d-phenylalanine was accumulated in the culture but not in the wild type and hpa3Δ cells overproducing DNT cells. Thus, d-amino acids are toxic to S. cerevisiae but are detoxified with DNT by N-acetylation preceding removal from yeast cells.  相似文献   

16.
Summary A cluster of three genes involved in d-xylose catabolism (viz. xylose genes) in Lactobacillus pentosus has been cloned in Escherichia coli and characterized by nucleotide sequence analysis. The deduced gene products show considerable sequence similarity to a repressor protein involved in the regulation of expression of xylose genes in Bacillus subtilis (58%), to E. coli and B. subtilis d-xylose isomerase (68% and 77%, respectively), and to E. coli d-xylulose kinase (58%). The cloned genes represent functional xylose genes since they are able to complement the inability of a L. casei strain to ferment d-xylose. NMR analysis confirmed that 13C-xylose was converted into 13C-acetate in L. casei cells transformed with L. pentosus xylose genes but not in untransformed L. casei cells. Comparison with the aligned amino acid sequences of d-xylose isomerases of different bacteria suggests that L. pentosus d-xylose isomerase belongs to the same similarity group as B. subtilis and E. coli d-xylose isomerase and not to a second similarity group comprising d-xylose isomerases of Streptomyces violaceoniger, Ampullariella sp. and Actinoplanes. The organization of the L. pentosus xylose genes, 5-xylR (1167 bp, repressor) — xylA (1350 bp, D-xylose isomerase) — xylB (1506 bp, d-xylulose kinase) — 3 is similar to that in B. subtilis. In contrast to B. subtilis xylR, L. pentosus xylR is transcribed in the same direction as xylA and xylB.  相似文献   

17.
N-Acetyl-L-glutamate (NAG), the activator of mitochondrial carbamoyl phosphate synthetase (CPS), is demonstrated by several methods, including a new HPLC assay, in the brain of mammals and of chicken. The brain levels of NAG are 200–300 times lower than the levels of N-acetyl-l-aspartate (NAA), and are similar to the levels of NAG in rat liver. The NAG levels in chicken liver are very low. Although NAG is mitochondrial in the liver, it is cytosolic in brain. Using enzyme activity and immuno assays we did not detect CPS in brain (detection limit, 12.5 g/g brain), excluding that brain NAG is involved in citrullinogenesis. The regional distribution of brain NAG differs from that of NAA and resembles that of N-acetyl-l-aspartyl-l-glutamate (NAAG), suggesting that NAG and NAAG are related. NAG might be involved in the modulation of NAAG degradation.Special issue dedicated to Dr. Santiago Grisolía  相似文献   

18.
A high-performance liquid chromatographic procedure has been developed for the determination of [d-Ala2, d-Leu5]enkephalin (DADLE) and the fragments containing d-leucine in rat blood. The procedure was applied to the determination of blood levels of [3H-d-Leu5]DADLE and the C-terminal fragments after intravenous administration of [3H-d-Leu5]DADLE to a rat. Unlabelled DADLE and the C-terminal fragments were spiked as carriers to rat blood samples and the blood samples were extracted with 1% trifluoroacetic acid in methanol. The recoveries from rat blood were quantitative for all compounds. DADLE and the C-terminal four fragments were well separated on a reversed-phase column with gradient elution using a mobile phase composed of 0.14% HClO4 and acetonitrile.  相似文献   

19.
l-Galactono-1,4-lactone (GalL) dehydrogenase (GLDH) is an enzyme that catalyzes the last step of l-ascorbate (AsA) biosynthesis in plants. To re-evaluate the importance of the enzyme and the possibility of manipulating the AsA content in plants, a cDNA encoding GLDH from sweet potato was introduced into tobacco plants by Agrobacterium-mediated transformation under the control of a CaMV 35S promoter. Protein blot analysis revealed the elevation of GLDH protein contents in three GLDH-transformed lines. Furthermore, these transgenic lines showed 6- to 10-fold higher GLDH activities in the roots than the non-transformed plants, SR1. Despite the elevated GLDH activity, the AsA content in the leaves did not change in all lines; i.e., the AsA content in GLDH-transformed lines was 3–7 μmol g−1 FW, comparable to that in the non-transformed plants. Incubation of leaf discs in a GalL solution led to a rapid 2- to 3-fold increase in the AsA content in both GLDH-transformed and non-transformed plants in the same manner. These results suggest that the supply of GalL is a crucial factor for determining the AsA pool size and that the upstream genes in the AsA biosynthetic pathway are responsible for enhancing the AsA content in plants.  相似文献   

20.
Syntheses of l-dopa 1a glucoside 10a,b and dl-dopa 1b glycosides 1018 with d-glucose 2, d-galactose 3, d-mannose 4, d-fructose 5, d-arabinose 6, lactose 7, d-sorbitol 8 and d-mannitol 9 were carried out using amyloglucosidase from Rhizopus mold, β-glucosidase isolated from sweet almond and immobilized β-glucosidase. Invariably, l-dopa and dl-dopa gave low to good yields of glycosides 10–18 at 12–49% range and only mono glycosylated products were detected through glycosylation/arylation at the third or fourth OH positions of l-dopa 1a and dl-dopa 1b. Amyloglucosidase showed selectivity with d-mannose 4 to give 4-O-C1β and d-sorbitol 8 to give 4-O-C6-O-arylated product. β-Glucosidase exhibited selectivity with d-mannose 4 to give 4-O-C1β and lactose 7 to give 4-O-C1β product. Immobilized β-glucosidase did not show any selectivity. Antioxidant and angiotensin converting enzyme inhibition (ACE) activities of the glycosides were evaluated glycosides, out of which l-3-hydroxy-4-O-(β-d-galactopyranosyl-(1′→4)β-d-glucopyranosyl) phenylalanine 16 at 0.9 ± 0.05 mM and dl-3-hydroxy-4-O-(β-d-glucopyranosyl) phenylalanine 11b,c at 0.98 ± 0.05 mM showed the best IC50 values for antioxidant activity and dl-3-hydroxy-4-O-(6-d-sorbitol)phenylalanine 17 at 0.56 ± 0.03 mM, l-dopa-d-glucoside 10a,b at 1.1 ± 0.06 mM and dl-3-hydroxy-4-O-(d-glucopyranosyl)phenylalanine 11a-d at 1.2 ± 0.06 mM exhibited the best IC50 values for ACE inhibition. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号