首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although sympathetic neurons are a well-studied model for neuronal apoptosis, the role of the apoptosome in activating caspases in these neurons remains debated. We find that the ability of sympathetic neurons to undergo apoptosis in response to nerve growth factor (NGF) deprivation is completely dependent on having an intact apoptosome pathway. Genetic deletion of Apaf-1, caspase-9, or caspase-3 prevents apoptosis after NGF deprivation, and importantly, allows these neurons to recover and survive long-term following readdition of NGF. The inability of caspase-3 deficient sympathetic neurons to undergo apoptosis is particularly striking, as apoptosis in dermal fibroblasts and cortical neurons proceeds even in the absence of caspase-3. Our results show that in contrast to dermal fibroblasts and cortical neurons, sympathetic neurons express no detectable levels of caspase-7. The strict requirement for an intact apoptosome, coupled with a lack of effector caspase redundancy, provides sympathetic neurons with a markedly increased control over their apoptotic pathway.  相似文献   

2.
3.
4.
Mitochondrial dysfunctions have been associated with neuronal apoptosis and are characteristic of neurodegenerative conditions. Caspases play a central role in apoptosis; however, their involvement in mitochondrial dysfunction-induced neuronal apoptosis remains elusive. In the present report using rotenone, a complex I inhibitor that causes mitochondrial dysfunction, we determined the initiator caspase and its role in cell death in primary cultures of cortical neurons from young adult mice (1-2 months old). By pretreating the cells with a cell-permeable, biotinylated pan-caspase inhibitor that irreversibly binds to and traps the active caspase, we identified caspase-2 as an initiator caspase activated in rotenone-treated primary neurons. Loss of caspase-2 inhibited rotenone-induced apoptosis; however, these neurons underwent a delayed cell death by necrosis. We further found that caspase-2 acts upstream of mitochondria to mediate rotenone-induced apoptosis in neurons. The loss of caspase-2 significantly inhibited rotenone-induced activation of Bid and Bax and the release of cytochrome c and apoptosis inducing factor from mitochondria. Rotenone-induced downstream activation of caspase-3 and caspase-9 were also inhibited in the neurons lacking caspase-2. Autophagy was enhanced in caspase-2 knock-out neurons after rotenone treatment, and this response was important in prolonging neuronal survival. In summary, the present study identifies a novel function of caspase-2 in mitochondrial oxidative stress-induced apoptosis in neurons cultured from young adult mice.  相似文献   

5.
目的比较研究大鼠局灶性脑缺血再灌注后神经元和星形胶质细胞的凋亡规律。方法建立大鼠大脑中动脉阻塞(middle cerebral artery occlusion,MCAO)再灌注模型,在缺血再灌注后1、3、7、14d断头取脑,应用流式细胞分选技术和原位末端标记法分别检测各组MCAO后不同时期神经元和星形胶质细胞凋亡情况。结果局灶性脑缺血再灌注后,海马区星形胶质细胞凋亡数量超过神经元,其凋亡以再灌注3d最为显著,而神经元则以7d最为显著;而皮层区神经元凋亡数量超过星形胶质细胞,两种细胞凋亡均在再灌注后7d达高峰。结论脑缺血再灌注后,皮层和海马区的神经元及星形胶质细胞均可发生凋亡,海马区星形胶质细胞比皮层区更易凋亡,而皮层区神经元比海马区更易凋亡。  相似文献   

6.
Status epilepticus (SE) induces apoptosis of hippocampal neurons. However, the underlying mechanism in SE is not fully understood. Recently, lncRNA TUG1 is reported as a significant mediator in neuronal development. In present study, we aimed to investigate whether lncRNA TUG1 induces apoptosis of hippocampal neurons in SE rat models. TUG1 expression in serum of normal volunteers and SE patients, SE rats and neurons with epileptiform discharge was detected. SE rat model was established and intervened with TUG1 to evaluate hippocampal neuronal apoptosis. The experiments in vitro were further performed in neurons with epileptiform discharge to verify the effects of TUG1 on neuronal apoptosis of SE rats. The downstream mechanism of TUG1 was predicted and verified. miR-421 was intervened to perform the rescue experiments. Levels of oxidative stress and inflammation-related factors and mTOR pathway-related proteins in SE rats and hippocampal neurons were detected. TUG1 was highly expressed in serum of SE patients, SE rats and neurons with epileptiform discharge. Inhibition of TUG1 relieved pathological injury, oxidative stress and inflammation and reduced neuronal apoptosis in SE rats, which were further verified in hippocampal neurons. TUG1 upregulated TIMP2 expression by targeting miR-421. Overexpressed miR-421 inhibited hippocampal neuronal apoptosis. TUG1 knockout inactivated the mTOR pathway via the miR-421/TIMP2 axis to relieve neuronal apoptosis, oxidative stress and inflammation in SE rats and hippocampal neurons. Taken together, these findings showed that downregulation of lncRNA TUG1 inhibited apoptosis of hippocampal neurons in SE rats, and attenuated oxidative stress and inflammation damage through regulating the miR-421/mTOR axis.  相似文献   

7.
The induction of apoptosis or programmed cell death in virus-infected cells is an important antiviral defense mechanism of the host, and some herpesviruses have evolved strategies to modulate apoptosis in order to enhance their survival and spread. In this study, we examined the ability of varicella-zoster virus (VZV) to induce apoptosis in primary human dorsal root ganglion neurons and primary human foreskin fibroblasts (HFFs). Three independent methods (annexin V, TUNEL [terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling] staining, and electron microscopy) were used to assess apoptosis in these cells on days 1, 2, and 4 postinoculation. By all three methods, apoptosis was readily detected in VZV-infected HFFs. In stark contrast, apoptosis was not detected during productive VZV infection of neurons. The low-passage clinical isolate Schenke and the tissue culture-adapted ROka strain both induced apoptosis in HFFs but not in neurons, suggesting that this cell-type-specific apoptotic phenotype was not VZV strain specific. These data show that the regulation of apoptosis differs markedly between HFFs and neurons during productive VZV infection. Inhibition of apoptosis during infection of neurons may play a significant role in the establishment, maintenance, and reactivation of latent infection by promoting survival of these postmitotic cells.  相似文献   

8.
Dopamine signaling plays a major role in regulation of neuronal apoptosis. During the postnatal period, dopamine signaling is known to be dramatically changed in the striatum. However, because it is difficult to culture neurons after birth, little is known about developmental changes in dopamine-mediated apoptosis. To examine such changes, we established the method of primary culture of striatal neurons from 2- to 3-wk-old (young) mice. Dopamine, via D(1)-like receptors, induced apoptosis in young, but not neonatal, striatal neurons, suggesting that the effect of dopamine on apoptosis changed with development. In contrast, although isoproterenol (Iso), a beta-adrenergic receptor agonist, increased cAMP production to a greater degree than dopamine, Iso did not increase apoptosis in striatal neurons from young and neonatal mice, suggesting a minor role of cAMP in dopamine-mediated apoptosis. Next, we examined the effect of dopamine on Ca(2+) signaling. Dopamine, but not Iso, markedly increased intracellular Ca(2+) in striatal neurons from young mice, and Ca(2+)-chelating agents abolished dopamine-induced apoptosis, suggesting that Ca(2+) played a major role in the dopamine-mediated apoptosis pathway. In contrast, dopamine failed to increase intracellular Ca(2+) in neonatal neurons, and the expression of PLC, which can increase intracellular Ca(2+) via D(1)-like receptor activation, was significantly greater in young than in neonatal striatal neurons. These data suggest that the developmental change in dopamine-mediated Ca(2+) signaling was responsible for differences between young and neonatal striatum in induction of apoptosis. Furthermore, the culture of young striatal neurons is feasible and may provide a new tool for developmental studies.  相似文献   

9.
The mechanisms for motor neuron degeneration and regeneration in adult spinal cord following axotomy and target deprivation are not fully understood. We used a unilateral sciatic nerve avulsion model in adult rats to test the hypothesis that retrograde degeneration of motor neurons resembles apoptosis. By 21 days postlesion, the number of large motor neurons in lumbar spinal cord was reduced by approximately 30%. The death of motor neurons was confirmed using the terminal transferase-mediated deoxyuridine triphosphate-biotin nick-end labeling method for detecting fragmentation of nuclear DNA. Motor neuron degeneration was characterized by aberrant accumulation of perikaryal phosphorylated neurofilaments. Structurally, motor neuron death was apoptosis. Apoptotic motor neurons undergo chromatolysis followed by progressive cytoplasmic and nuclear condensation with chromatin compaction into uniformly large round clumps. Prior to apoptosis, functionally active mitochondria accumulate within chromatolytic motor neurons, as determined by cytochrome c oxidase activity. These dying motor neurons sustain oxidative damage to proteins and nucleic acids within the first 7 days after injury during the progression of apoptosis, as identified by immunodetection of nitrotyrosine and hydroxyl-modified deoxyguanosine and guanosine. We conclude that the retrograde death of motor neurons in the adult spinal cord after sciatic nerve avulsion is apoptosis. Accumulation of active mitochondria within the perikaryon and oxidative damage to nucleic acids and proteins may contribute to the mechanisms for apoptosis of motor neurons in the adult spinal cord.  相似文献   

10.
Cell cycle activation linked to neuronal cell death initiated by DNA damage   总被引:15,自引:0,他引:15  
Increasing evidence indicates that neurodegeneration involves the activation of the cell cycle machinery in postmitotic neurons. However, the purpose of these cell cycle-associated events in neuronal apoptosis remains unknown. Here we tested the hypothesis that cell cycle activation is a critical component of the DNA damage response in postmitotic neurons. Different genotoxic compounds (etoposide, methotrexate, and homocysteine) induced apoptosis accompanied by cell cycle reentry of terminally differentiated cortical neurons. In contrast, apoptosis initiated by stimuli that do not target DNA (staurosporine and colchicine) did not initiate cell cycle activation. Suppression of the function of ataxia telangiectasia mutated (ATM), a proximal component of DNA damage-induced cell cycle checkpoint pathways, attenuated both apoptosis and cell cycle reentry triggered by DNA damage but did not change the fate of neurons exposed to staurosporine and colchicine. Our data suggest that cell cycle activation is a critical element of the DNA damage response of postmitotic neurons leading to apoptosis.  相似文献   

11.
12.
The mechanisms of injury-induced apoptosis of neurons within the spinal cord are not understood. We used a model of peripheral nerve-spinal cord injury in the rat and mouse to induce motor neuron degeneration. In this animal model, unilateral avulsion of the sciatic nerve causes apoptosis of motor neurons. We tested the hypothesis that p53 and Bax regulate this neuronal apoptosis, and that DNA damage is an early upstream signal. Adult mice and rats received unilateral avulsions causing lumbar motor neurons to achieve endstage apoptosis at 7-14 days postlesion. This motor neuron apoptosis is blocked in bax(-/-) and p53(-/-) mice. Single-cell gel electrophoresis (comet assay), immunocytochemistry, and quantitative immunogold electron microscopy were used to measure molecular changes in motor neurons during the progression of apoptosis. Injured motor neurons accumulate single-strand breaks in DNA by 5 days. p53 accumulates in nuclei of motor neurons destined to undergo apoptosis. p53 is functionally activated by 4-5 days postlesion, as revealed by immunodetection of phosphorylated p53. Preapoptotically, Bax translocates to mitochondria, cytochrome c accumulates in the cytoplasm, and caspase-3 is activated. These results demonstrate that motor neuron apoptosis in the adult spinal cord is controlled by upstream mechanisms involving DNA damage and activation of p53 and downstream mechanisms involving upregulated Bax and cytochrome c and their translocation, accumulation of mitochondria, and activation of caspase-3. We conclude that adult motor neuron death after nerve avulsion is DNA damage-induced, p53- and Bax-dependent apoptosis.  相似文献   

13.
The mechanisms for motor neuron degeneration and regeneration in adult spinal cord following axotomy and target deprivation are not fully understood. We used a unilateral sciatic nerve avulsion model in adult rats to test the hypothesis that retrograde degeneration of motor neurons resembles apoptosis. By 21 days postlesion, the number of large motor neurons in lumbar spinal cord was reduced by ∼30%. The death of motor neurons was confirmed using the terminal transferase‐mediated deoxyuridine triphosphate‐biotin nick‐end labeling method for detecting fragmentation of nuclear DNA. Motor neuron degeneration was characterized by aberrant accumulation of perikaryal phosphorylated neurofilaments. Structurally, motor neuron death was apoptosis. Apoptotic motor neurons undergo chromatolysis followed by progressive cytoplasmic and nuclear condensation with chromatin compaction into uniformly large round clumps. Prior to apoptosis, functionally active mitochondria accumulate within chromatolytic motor neurons, as determined by cytochrome c oxidase activity. These dying motor neurons sustain oxidative damage to proteins and nucleic acids within the first 7 days after injury during the progression of apoptosis, as identified by immunodetection of nitrotyrosine and hydroxyl‐modified deoxyguanosine and guanosine. We conclude that the retrograde death of motor neurons in the adult spinal cord after sciatic nerve avulsion is apoptosis. Accumulation of active mitochondria within the perikaryon and oxidative damage to nucleic acids and proteins may contribute to the mechanisms for apoptosis of motor neurons in the adult spinal cord. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 185–201, 1999  相似文献   

14.
Mammalian group IIA secretory phospholipase A2 (sPLA2-IIA) generates prostaglandin D2 (PGD2) and triggers apoptosis in cortical neurons. However, mechanisms of PGD2 generation and apoptosis have not yet been established. Therefore, we examined how second messengers are involved in the sPLA2-IIA-induced neuronal apoptosis in primary cultures of rat cortical neurons. sPLA2-IIA potentiated a marked influx of Ca2+ into neurons before apoptosis. A calcium chelator and a blocker of the L-type voltage-sensitive Ca2+ channel (L-VSCC) prevented neurons from sPLA2-IIA-induced neuronal cell death in a concentration-dependent manner. Furthermore, the L-VSCC blocker ameliorated sPLA2-IIA-induced morphologic alterations and apoptotic features such as condensed chromatin and fragmented DNA. Other blockers of VSCCs such as N type and P/Q types did not affect the neurotoxicity of sPLA2-IIA. Blockers of L-VSCC significantly suppressed sPLA2-IIA-enhanced Ca2+ influx into neurons. Moreover, reactive oxygen species (ROS) were generated prior to apoptosis. Radical scavengers reduced not only ROS generation, but also the sPLA2-IIA-induced Ca2+ influx and apoptosis. In conclusion, we demonstrated that sPLA2-IIA potentiates the influx of Ca2+ into neurons via L-VSCC. Furthermore, the present study suggested that eicosanoids and ROS generated during arachidonic acid oxidative metabolism are involved in sPLA2-IIA-induced apoptosis in cooperation with Ca2+.  相似文献   

15.
Apoptosis has been widely reported to be involved in the pathogenesis associated with spinal cord injury (SCI). Recently, autophagy has also been implicated in various neuronal damage models. However, the role of autophagy in SCI is still controversial and its interrelationship with apoptosis remains unclear. Here, we used an in vitro SCI model to observe a time-dependent induction of autophagy and apoptosis. Mechanical injury induced autophagy markers such as LC3 lipidation, LC3II/LC3I conversion, and Beclin-1expression. Injured neurons showed decreased cell viability and increased apoptosis. To elucidate the effect of autophagy on apoptosis, the mechanically-injured neurons were treated with the mTOR inhibitor rapamycin and 3-methyl adenine (3-MA), which are known to regulate autophagy positively and negatively, respectively. Rapamycin-treated neurons showed the highest level of cell viability and lowest level of apoptosis among the injured neurons and those treated with 3-MA showed the reciprocal effect. Notably, rapamycin-treated neurons exhibited slightly reduced Bax expression and significantly increasedBcl-2 expression. Furthermore, by plasmid transfection, we showed that Beclin-1-overexpressing neuronal cells responded to mechanical injury with greater LC3II/LC3I conversion and cell viability, lower levels of apoptosis, higher Bcl-2 expression, and unaltered Bax expression as compared to vector control cells. Beclin-1-knockdown neurons showed almost the opposite effects. Taken together, our results suggest that autophagy may serve as a protection against apoptosis in mechanically-injured spinal cord neurons. Targeting mTOR and/or enhancing Beclin-1 expression might be alternative therapeutic strategies for SCI.  相似文献   

16.
Neuronal apoptosis contributes to the progression of neurodegenerative disease. Primary cerebellar granule neurons are an established in vitro model for investigating neuronal death. After removal of serum and depolarizing potassium, granule neurons undergo apoptosis via a mechanism that requires intrinsic (mitochondrial) death signals; however, the role of extrinsic (death receptor-mediated) signals is presently unclear. Here, we investigate involvement of death receptor signaling in granule neuron apoptosis by expressing adenoviral, AU1-tagged, dominant-negative Fas-associated death domain (Ad-AU1-deltaFADD). Ad-AU1-deltaFADD decreased apoptosis of granule neurons from 65 +/- 5 to 27 +/- 2% (n = 7, p < 0.01). Unexpectedly, immunocytochemical staining for AU1 revealed that <5% of granule neurons expressed deltaFADD. In contrast, deltaFADD was expressed in >95% of calbindin-positive Purkinje neurons ( approximately 2% of the cerebellar culture). Granule neurons in proximity to deltaFADD-expressing Purkinje cells demonstrated markedly increased survival. Both granule and Purkinje neurons expressed insulin-like growth factor-I (IGF-I) receptors, and deltaFADD-mediated survival of granule neurons was inhibited by an IGF-I receptor blocking antibody. These results demonstrate that the selective suppression of death receptor signaling in Purkinje neurons is sufficient to rescue neighboring granule neurons that depend on Purkinje cell-derived IGF-I. Thus, the extrinsic death pathway has a profound but indirect effect on the survival of cerebellar granule neurons.  相似文献   

17.
Zhao L  Qian ZM  Zhang C  Wing HY  Du F  Ya K 《Aging cell》2008,7(1):47-57
This study aims to investigate the roles of the protein kinase A (PKA)- and caspase-dependent pathways in amyloid beta-peptide 31-35 (Abeta[31-35])-induced apoptosis, and the mechanisms of neuroprotection by group III metabotropic glutamate receptor (mGluR) activation against apoptosis induced by Abeta[31-35] in cortical neurons. We demonstrated that Abeta[31-35] induces neuronal apoptosis as well as a significant increase in caspase-3, -8 and -9. Activation of group III mGluRs by l-serine-O-phosphate and (R,S)-4-phosphonophenylglycine (two group III mGluR agonists), which attenuate the effects of Abeta[31-35], provides neuroprotection to the cortical neurons subjected to Abeta[31-35]. We also showed that Rp-cAMP, an inhibitor of cAMP-dependent PKA, has the ability to protect neurons from Abeta[31-35]-induced apoptosis and to reverse almost completely the effects of Abeta[31-35] on the activities of caspase-3. Further, we found that Sp-cAMP, an activator of cAMP-dependent PKA, can significantly abolish the l-serine-O-phosphate- and (R,S)-4-phosphonophenylglycine-induced neuroprotection against apoptosis, and decrease caspase-3, -8 and -9 in the Abeta[31-35]-treated neurons. Our findings suggest that neuronal apoptosis induced by Abeta[31-35] is mediated by the PKA-dependent pathway as well as the caspase-dependent intrinsic and extrinsic apoptotic pathways. Activation of group III mGluRs protects neurons from Abeta[31-35]-induced apoptosis by blocking the caspase-dependent pathways. Inhibition of the PKA-dependent pathway might also protect neurons from Abeta[31-35]-induced apoptosis by blocking the caspase-dependent pathways. Taken together, our observations suggest that Abeta[31-35] might have the ability to activate PKA, which in turn activates the caspase-dependent intrinsic and extrinsic apoptotic pathways, inducing apoptosis in the cortical neurons.  相似文献   

18.
We examined the ability of pseudorabies virus (PRV) to induce and suppress apoptosis in the trigeminal ganglion during acute infection of its natural host. Eight pigs were intranasally inoculated with a virulent field strain of PRV, and at various early times after inoculation, the trigeminal ganglia were assessed histologically. PRV-infected cells were detected by use of immunohistochemistry and in situ hybridization, and apoptosis was identified by in situ terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling. Light and electron microscopy was also used for morphological studies. Apoptosis was readily detected among infiltrating immune cells that were located surrounding PRV-infected neurons. The majority of PRV-infected neurons did not show morphological or histochemical evidence of apoptosis, even including those neurons that were surrounded by numerous inflammatory cells and exhibited profound pathological changes. However, neuronal virus-induced apoptosis also occurred but at a sporadic low level. These findings suggest that PRV is able to block apoptosis of infected trigeminal ganglionic neurons during acute infection of swine. Furthermore, our results also suggest that apoptosis of infiltrating inflammatory cells may represent an important viral mechanism of immune evasion.  相似文献   

19.
Apoptosis triggered by endoplasmic reticulum (ER) stress is associated with various pathophysiological conditions including neurodegenerative diseases and ischemia. However, the mechanism by which ER stress induces neuronal apoptosis remains controversial. Here we identify the pathway of apoptosis carried out in sympathetic neurons triggered to die by ER stress-inducing agent tunicamycin. We find that ER stress induces a neuronal apoptotic pathway which upregulates BH3-only genes DP5 and Puma. Importantly, we show that ER stress commits neurons to die before cytochrome c release and this commitment requires Bax activation and c-jun N-terminal kinase signaling. Furthermore, ER stress engages the mitochondrial pathway of death as neurons release cytochrome c and Apaf-1 deficiency is sufficient to block apoptosis. Our findings identify a critical function of Bax in committing neurons to ER stress-induced apoptosis and clarify the importance of the apoptosome as the non-redundant caspase activation pathway to execute neuronal apoptosis in response to ER stress.  相似文献   

20.
Varicella-zoster virus ORF63 inhibits apoptosis of primary human neurons   总被引:6,自引:4,他引:2  
Virus-encoded modulation of apoptosis may serve as a mechanism to enhance cell survival and virus persistence. The impact of productive varicella-zoster virus (VZV) infection on apoptosis appears to be cell type specific, as infected human sensory neurons are resistant to apoptosis, yet human fibroblasts readily become apoptotic. We sought to identify the viral gene product(s) responsible for this antiapoptotic phenotype in primary human sensory neurons. Treatment with phosphonoacetic acid to inhibit viral DNA replication and late-phase gene expression did not alter the antiapoptotic phenotype, implicating immediate-early (IE) or early genes or a virion component. Compared to the parental VZV strain (rOKA), a recombinant virus unable to express one copy of the diploid IE gene ORF63 (rOkaΔORF63) demonstrated a significant induction of apoptosis in infected neurons, as determined by three methods: annexin V staining, deoxynucleotidyltransferase-mediated dUTP-biotin nick end label staining, and transmission electron microscopy. Furthermore, neurons transfected with a plasmid expressing ORF63 resisted apoptosis induced by nerve growth factor withdrawal. These results show that ORF63 can suppress apoptosis of neurons and provide the first identification of a VZV gene encoding an antiapoptotic function. As ORF63 is expressed in neurons during both productive and latent infection, it may play a significant role in viral pathogenesis by promoting neuron survival during primary and reactivated infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号