共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Nucleotide sequence and organization of Bacillus subtilis RNA polymerase major sigma (sigma 43) operon. 总被引:19,自引:3,他引:19 下载免费PDF全文
The gene coding for Bacillus subtilis RNA polymerase major sigma 43, rpoD, was cloned together with its neighboring genes in a 7 kb EcoRI fragment. The complete nucleotide sequence of a 5 kb fragment including the entire rpoD gene revealed the presence of two other genes preceding rpoD in the order P23-dnaE-rpoD. The dnaE codes for DNA primase while the function of P23 remains unknown. The three genes reside in an operon that is similar in organization to the E. coli RNA polymerase major sigma 70 operon, which is composed of genes encoding small ribosome protein S21 (rpsU), DNA primase (dnaG), and RNA polymerase sigma 70 (rpoD). There is a relatively high degree of base and amino acid homology between the DNA primase and sigma genes. The most significant differences between the two operons are observed in the molecular size of the first genes (P23 and rpsU), the complete lack of amino acid homology between P23 and S21, the molecular weights of the two rpoD genes, the size of the intercistronic region between the first two genes, and the regulatory elements of the operon. 相似文献
14.
15.
Overproduction, purification, and characterization of Bacillus subtilis RNA polymerase sigma A factor. 总被引:4,自引:9,他引:4 下载免费PDF全文
By use of a T7 expression system, large amounts of active Bacillus subtilis RNA polymerase sigma A factor were produced in Escherichia coli cells. This overproduced protein was found in the form of inclusion bodies and constituted 40% of the total cellular protein. Because of the ease of isolation of the inclusion bodies and the acidic properties of sigma A, the protein was purified to more than 99% purity and the yield was about 90 mg/liter of culture. Gel mobility, antigenicity, specificity of promoter recognition, and N-terminal amino acid sequence of the overproduced sigma were found to be the same as those of native sigma A. Partial proteolysis analysis of sigma A protein suggested the presence of a protease-sensitive surface region in the C-terminal part of the sigma A protein. The promoter -10 binding region of sigma A was less sensitive to proteases and was probably involved in a hydrophobic, tightly folded domain of sigma A protein. 相似文献
16.
17.
细菌的转录过程是一个由多种分子共同调控的复杂过程,其中RNA聚合酶(RNA polymerase,RNAP)是催化转录合成RNA的重要酶.作为RNAP中一个独立的亚单位,σ因子(sigma factor)在转录起始过程中起着至关重要的作用.最近的研究表明σ因子参与了转录起始的各个过程,包括启动子的定位、启动子的解链、起始RNA合成、脱离启动子等过程.由于其在细菌转录过程中的重要作用,σ因子正在成为抗菌药物研究的新靶点.本文对σ因子的结构、分类、功能以及以它为中心的调控网络的研究进行综述. 相似文献
18.
Genetic mapping of rpoD implicates the major sigma factor of Bacillus subtilis RNA polymerase in sporulation initiation 总被引:16,自引:0,他引:16
Summary We have mapped the chromosomal locus of rpoD, which encodes the major sigma factor of Bacillus subtilis RNA polymerase. The rpoD locus lay between aroD and lys, tightly linked to dnaE and inseparable from crsA. Marker order in this region was acf-aroD-dnaE-rpoD(crsA)-spoOG-lys. By transformation using cloned donor DNA from the rpoD region, we identified the gene immediately upstream of rpoD as dnaE, which coded for a 62,000 dalton protein essential for DNA replication. Both dnaE and rpoD were transcribed in the same direction, counterclockwise on the chromosome. The gene functions and organization in the rpoD region are thus similar to those of the E. coli sigma operon. We also used transformation to identify crsA47 as a mutation within the sigma coding region itself. The crsA alteration of sigma renders the sporulation process insensitive to glucose catabolite repression, and also restores sporulation ability to strains carrying early-blocked spoOE, spoOF, and spoOK mutations. Thus the major sigma factor and these spoO gene products directly or indirectly affect the same cellular function. 相似文献
19.