首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Plant cell wall modification is a critical component in stress responses. Endo‐1,4‐β‐glucanases (EGs) take part in cell wall editing processes, e.g. elongation, ripening and abscission. Here we studied the infection response of Solanum lycopersicum and Arabidopsis thaliana with impaired EGs. Transgenic TomCel1 and TomCel2 tomato antisense plants challenged with Pseudomonas syringae showed higher susceptibility, callose priming and increased jasmonic acid pathway marker gene expression. These two EGs could be resistance factors and may act as negative regulators of callose deposition, probably by interfering with the defence‐signalling network. A study of a set of Arabidopsis EG T‐DNA insertion mutants challenged with P. syringae and Botrytis cinerea revealed that the lack of other EGs interferes with infection phenotype, callose deposition, expression of signalling pathway marker genes and hormonal balance. We conclude that a lack of EGs could alter plant response to pathogens by modifying the properties of the cell wall and/or interfering with signalling pathways, contributing to generate the appropriate signalling outcomes. Analysis of microarray data demonstrates that EGs are differentially expressed upon many different plant–pathogen challenges, hormone treatments and many abiotic stresses. We found some Arabidopsis EG mutants with increased tolerance to osmotic and salt stress. Our results show that impairing EGs can alter plant–pathogen interactions and may contribute to appropriate signalling outcomes in many different biotic and abiotic plant stress responses.  相似文献   

2.
The advent of next‐generation sequencing (NGS) has dramatically changed bacterial typing technologies, increasing our ability to differentiate bacterial isolates. Despite it is now possible to sequence a bacterial genome in a few days and at reasonable costs, most genetic analyses do not require whole‐genome sequencing, which also remains impractical for large population samples due to the cost of individual library preparation and bioinformatics. More traditional sequencing approaches, however, such as MultiLocus Sequence Typing (mlst ) are quite laborious and time‐consuming, especially for large‐scale analyses. In this study, a genotyping approach based on restriction site‐associated (RAD) tag sequencing, 2b‐RAD, was applied to characterize Listeria monocytogenes strains. To verify the feasibility of the method, an in silico analysis was performed on 30 available complete genomes. For the same set of strains, in silico mlst analysis was conducted as well. Subsequently, 2b‐RAD and mlst analyses were experimentally carried out on 58 isolates collected from food samples or food‐processing sites. The obtained results demonstrate that 2b‐RAD predicts mlst types and often provides more detailed information on population structure than mlst . Moreover, the majority of variants differentiating identical sequence type isolates mapped against accessory fragments, thus providing additional information to characterize strains. Although mlst still represents a reliable typing method, large‐scale studies on molecular epidemiology and public health, as well as bacterial phylogenetics, population genetics and biosafety could benefit of a low cost and fast turnaround time approach such as the 2b‐RAD analysis proposed here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号