首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large‐scale monitoring schemes are essential in assessing global mammalian biodiversity, and in this framework, leeches have recently been promoted as an indirect source of DNA from terrestrial mammal species. Carrion feeding flies are ubiquitous and can be expected to feed on many vertebrate carcasses. Hence, we tested whether fly‐derived DNA analysis may also serve as a novel tool for mammalian diversity surveys. We screened DNA extracted from 201 carrion flies collected in tropical habitats of Côte d'Ivoire and Madagascar for mammal DNA using multiple PCR systems and retrieved DNA sequences from a diverse set of species (22 in Côte d'Ivoire, four in Madagascar) exploiting distinct forest strata and displaying a broad range of body sizes. Deep sequencing of amplicons generated from pools of flies performed equally well as individual sequencing approaches. We conclude that the analysis of fly‐derived DNA can be implemented in a very rapid and cost‐effective manner and will give a relatively unbiased picture of local mammal diversity. Carrion flies therefore represent an extraordinary and thus far unexploited resource of mammal DNA, which will probably prove useful for future inventories of wild mammal communities.  相似文献   

2.
Ingested-derived DNA (iDNA) from insects represents a powerful tool for assessing vertebrate diversity because insects are easy to sample, have a diverse diet and are widely distributed. Because of these advantages, the use of iDNA for detecting mammals has gained increasing attention. Here we aimed to compare the effectiveness of mosquitoes and flies to detect mammals with a small sampling effort in a semi-controlled area, a zoo that houses native and non-native species. We compared mosquitoes and flies regarding the number of mammal species detected, the amount of mammal sequence reads recovered, and the flight distance range for detecting mammals. We also verified if the combination of two mini-barcodes (12SrRNA and 16SrRNA) would perform better than either mini-barcode alone to inform local mammal biodiversity from iDNA. To capture mosquitoes and flies, we distributed insect traps in eight sampling points during 5 days. We identified 43 Operational Taxonomic Units from 10 orders, from the iDNA of 17 mosquitoes and 46 flies. There was no difference in the number of species recovered per individual insect between mosquitoes and flies, but the number of flies captured was higher, resulting in more mammal species recovered by flies. Eight species were recorded exclusively by mosquitoes and 20 by flies, suggesting that using both samplers would allow a more comprehensive screening of the biodiversity. The maximum distance recorded was 337 m for flies and 289 m for mosquitoes, but the average range distance did not differ between insect groups. Our assay proved to be efficient for mammal detection, considering the high number of species detected with a reduced sampling effort.  相似文献   

3.
DNA analysis from carrion flies (iDNA analysis) has recently been promoted as a powerful tool for cost‐ and time‐efficient monitoring of wildlife. While originally applied to identify any mammalian species present in an area, it should also allow for targeted detection of species and individuals. Using carrion flies captured in the Taï National Park, Côte d'Ivoire, we assessed this possibility by (i) screening carrion fly DNA extracts with nonspecific and species‐specific PCR systems, respectively, targeting mitochondrial DNA (mtDNA) fragments of any mammal or of Jentink's duiker (Cephalophus jentinki), three colobine monkeys (subfamily Colobinae) and sooty mangabey (Cercocebus atys); and (ii) genotyping carrion fly extracts containing sooty mangabey mtDNA. In comparison with the nonspecific PCR assay, the use of specific PCRs increased the frequency of detection of target species up to threefold. Detection rates partially reflected relative abundances of target species in the area. Amplification of seven microsatellite loci from carrion flies positive for sooty mangabey mtDNA yielded an average PCR success of 46%, showing that the identification of individuals is, to some extent, possible. Regression analysis of microsatellite PCR success and mtDNA concentration revealed that, among all carrion flies analysed for this study, 1% contained amounts of mammal mtDNA sufficient to attempt genotyping with potentially high success. We conclude that carrion fly‐derived DNA analysis represents a promising tool for targeted monitoring of mammals in their natural habitat.  相似文献   

4.
Large-bodied mammals are a rich and diversified faunal group in tropical rainforests. However, knowledge on community size and composition, and on species’ distribution and ecology remains often scant and inadequate against their chronic status of threats. We used camera trapping to detect mammals in the forests of the Eastern Arc Mountains (EAM) of Tanzania, a world renowned region for biodiversity comprised by a series of distinct and ancient mountain ranges partially covered in moist montane forest. We conducted surveys from 2003 to 2011 in eight of the 12 mountain blocks in Tanzania, and, through an overall sampling effort of 11,500 camera days, we detected 43 species. We normalized species richness and species’ detection events by effort, and used these metrics to assess the effect of habitat and human disturbance variables. We found that rarefied richness is positively affected by forest area at the block level, and that richness at forest patch level is also affected by forest area as well as surrounding human density (negative effect). For a subset of 17 species, we found consistent patterns of avoidance or tolerance of human disturbance and forest edges, and increased occurrence in areas at higher elevation, matching the historical forest loss that in most mountains occurred at lower elevation. Our study provides ecological insights that are novel for most species and sites, and reveals a general trend of negative impact of human disturbance on both community size and species’ relative abundance. Increased protection of the EAM forests in Tanzania is of urgent importance for the persistence of diversified mammal communities.  相似文献   

5.
Preserving biodiversity is a global challenge requiring data on species’ distribution and abundance over large geographic and temporal scales. However, traditional methods to survey mobile species’ distribution and abundance in marine environments are often inefficient, environmentally destructive, or resource‐intensive. Metabarcoding of environmental DNA (eDNA) offers a new means to assess biodiversity and on much larger scales, but adoption of this approach for surveying whole animal communities in large, dynamic aquatic systems has been slowed by significant unknowns surrounding error rates of detection and relevant spatial resolution of eDNA surveys. Here, we report the results of a 2.5 km eDNA transect surveying the vertebrate fauna present along a gradation of diverse marine habitats associated with a kelp forest ecosystem. Using PCR primers that target the mitochondrial 12S rRNA gene of marine fishes and mammals, we generated eDNA sequence data and compared it to simultaneous visual dive surveys. We find spatial concordance between individual species’ eDNA and visual survey trends, and that eDNA is able to distinguish vertebrate community assemblages from habitats separated by as little as ~60 m. eDNA reliably detected vertebrates with low false‐negative error rates (1/12 taxa) when compared to the surveys, and revealed cryptic species known to occupy the habitats but overlooked by visual methods. This study also presents an explicit accounting of false negatives and positives in metabarcoding data, which illustrate the influence of gene marker selection, replication, contamination, biases impacting eDNA count data and ecology of target species on eDNA detection rates in an open ecosystem.  相似文献   

6.
Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool for species detection from DNA present in the environment. In this study, we tested whether an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony fish. The reliability of this method was cautiously validated in silico, in vitro and in situ. When compared with traditional surveys or historical data, eDNA metabarcoding showed a much better detection probability overall. For amphibians, the detection probability with eDNA metabarcoding was 0.97 (CI = 0.90–0.99) vs. 0.58 (CI = 0.50–0.63) for traditional surveys. For fish, in 89% of the studied sites, the number of taxa detected using the eDNA metabarcoding approach was higher or identical to the number detected using traditional methods. We argue that the proposed DNA‐based approach has the potential to become the next‐generation tool for ecological studies and standardized biodiversity monitoring in a wide range of aquatic ecosystems.  相似文献   

7.
Well-informed biodiversity conservation practice can often be precluded by poor species detectability. For example, populations being missed during surveys can lead to them being omitted from species lists or area management plans. iDNA (invertebrate-derived DNA) is a recently developed set of techniques for improving the detectability of elusive vertebrates by exploiting their associated invertebrates. Parasitic and scavenging invertebrates can be readily collected, and their gut contents DNA barcoded to detect local vertebrate diversity. However, most iDNA surveys have targeted mammals and have been carried out in tropical areas and/or rainforests. We carried out iDNA surveys targeting frogs in temperate dry sclerophyll forests in south-eastern Australia. We set mosquito traps broadcasting recorded frog calls with the aim of collecting frog-biting flies, which are attracted to frog calls. We collected 156 fly specimens, although none were of frog-biting species, and no frogs were detected via iDNA, despite many being observed in the field. However, two mammal and one reptile species were detected via iDNA: the feral cat (Felis catus: Felidae), domestic dog or dingo (Canis lupus: Canidae) and the threatened Rosenberg's monitor (Varanus rosenbergi: Varanidae). Vertebrate-sampling flies are likely highly abundant in the area since they were collected apparently incidentally in traps lacking appropriate attractants; a promising result for further surveys is different attractants are employed. This study is one of the few in which an invasive species has been detected through iDNA, and highlights its potential for improved detectability of threatened species outside of the tropics and early detection of invasive species.  相似文献   

8.
Camera traps are a powerful and increasingly popular tool for mammal research, but like all survey methods, they have limitations. Identifying animal species from images is a critical component of camera trap studies, yet while researchers recognize constraints with experimental design or camera technology, image misidentification is still not well understood. We evaluated the effects of a species’ attributes (body mass and distinctiveness) and individual observer variables (experience and confidence) on the accuracy of mammal identifications from camera trap images. We conducted an Internet‐based survey containing 20 questions about observer experience and 60 camera trap images to identify. Images were sourced from surveys in northern Australia and included 25 species, ranging in body mass from the delicate mouse (Pseudomys delicatulus, 10 g) to the agile wallaby (Macropus agilis, >10 kg). There was a weak relationship between the accuracy of mammal identifications and observer experience. However, accuracy was highest (100%) for distinctive species (e.g. Short‐beaked echidna [Tachyglossus aculeatus]) and lowest (36%) for superficially non‐distinctive mammals (e.g. rodents like the Pale field‐rat [Rattus tunneyi]). There was a positive relationship between the accuracy of identifications and body mass. Participant confidence was highest for large and distinctive mammals, but was not related to participant experience level. Identifications made with greater confidence were more likely to be accurate. Unreliability in identifications of mammal species is a significant limitation to camera trap studies, particularly where small mammals are the focus, or where similar‐looking species co‐occur. Integration of camera traps with conventional survey techniques (e.g. live‐trapping), use of a reference library or computer‐automated programs are likely to aid positive identifications, while employing a confidence rating system and/or multiple observers may lead to a collection of more robust data. Although our study focussed on Australian species, our findings apply to camera trap studies globally.  相似文献   

9.
Because significant global changes are currently underway in the Arctic, creating a large‐scale standardized database for Arctic marine biodiversity is particularly pressing. This study evaluates the potential of aquatic environmental DNA (eDNA) metabarcoding to detect Arctic coastal biodiversity changes and characterizes the local spatio‐temporal distribution of eDNA in two locations. We extracted and amplified eDNA using two COI primer pairs from ~80 water samples that were collected across two Canadian Arctic ports, Churchill and Iqaluit, based on optimized sampling and preservation methods for remote regions surveys. Results demonstrate that aquatic eDNA surveys have the potential to document large‐scale Arctic biodiversity change by providing a rapid overview of coastal metazoan biodiversity, detecting nonindigenous species, and allowing sampling in both open water and under the ice cover by local northern‐based communities. We show that DNA sequences of ~50% of known Canadian Arctic species and potential invaders are currently present in public databases. A similar proportion of operational taxonomic units was identified at the species level with eDNA metabarcoding, for a total of 181 species identified at both sites. Despite the cold and well‐mixed coastal environment, species composition was vertically heterogeneous, in part due to river inflow in the estuarine ecosystem, and differed between the water column and tide pools. Thus, COI‐based eDNA metabarcoding may quickly improve large‐scale Arctic biomonitoring using eDNA, but we caution that aquatic eDNA sampling needs to be standardized over space and time to accurately evaluate community structure changes.  相似文献   

10.
Environmental DNA (eDNA) metabarcoding surveys enable rapid, noninvasive identification of taxa from trace samples with wide‐ranging applications from characterizing local biodiversity to identifying food‐web interactions. However, the technique is prone to error from two major sources: (a) contamination through foreign DNA entering the workflow, and (b) misidentification of DNA within the workflow. Both types of error have the potential to obscure true taxon presence or to increase taxonomic richness by incorrectly identifying taxa as present at sample sites, but multiple error sources can remain unaccounted for in metabarcoding studies. Here, we use data from an eDNA metabarcoding study designed to detect vertebrate species at waterholes in Australia's arid zone to illustrate where and how in the workflow errors can arise, and how to mitigate those errors. We detected the DNA of 36 taxa spanning 34 families, 19 orders and five vertebrate classes in water samples from waterholes, demonstrating the potential for eDNA metabarcoding surveys to provide rapid, noninvasive detection in remote locations, and to widely sample taxonomic diversity from aquatic through to terrestrial taxa. However, we initially identified 152 taxa in the samples, meaning there were many false positive detections. We identified the sources of these errors, allowing us to design a stepwise process to detect and remove error, and provide a template to minimize similar errors that are likely to arise in other metabarcoding studies. Our findings suggest eDNA metabarcoding surveys need to be carefully conducted and screened for errors to ensure their accuracy.  相似文献   

11.
12.
Aquatic environmental DNA (eDNA) surveys are transforming how marine ecosystems are monitored. The time-consuming preprocessing step of active filtration, however, remains a bottleneck. Hence, new approaches that eliminate the need for active filtration are required. Filter-feeding invertebrates have been proven to collect eDNA, but side-by-side comparative studies to investigate the similarity between aquatic and filter-feeder eDNA signals are essential. Here, we investigated the differences among four eDNA sources (water; bivalve gill-tissue; sponges; and ethanol in which filter-feeding organisms were stored) along a vertically stratified transect in Doubtful Sound, New Zealand using three metabarcoding primer sets targeting fish and vertebrates. Combined, eDNA sources detected 59 vertebrates, while concurrent diver surveys observed eight fish species. There were no significant differences in alpha and beta diversity between water and sponge eDNA and both sources were highly correlated. Vertebrate eDNA was successfully extracted from the ethanol in which sponges were stored, although a reduced number of species were detected. Bivalve gill-tissue dissections, on the other hand, failed to reliably detect eDNA. Overall, our results show that vertebrate eDNA signals obtained from water samples and marine sponges are highly concordant. The strong similarity in eDNA signals demonstrates the potential of marine sponges as an additional tool for eDNA-based marine biodiversity surveys, by enabling the incorporation of larger sample numbers in eDNA surveys, reducing plastic waste, simplifying sample collection, and as a cost-efficient alternative. However, we note the importance to not detrimentally impact marine communities by, for example, nonlethal subsampling, specimen cloning, or using bycatch specimens.  相似文献   

13.
Camera traps are a popular tool for monitoring wildlife though they can fail to capture enough morphological detail for accurate small mammal species identification. Camera trapping small mammals is often limited by the inability of camera models to: (i) record at close distances; and (ii) provide standardised photos. This study aims to provide a camera trapping method that captures standardised images of the faces of small mammals for accurate species identification, with further potential for individual identification. A novel camera trap design coined the ‘selfie trap’ was developed. The selfie trap is a camera contained within an enclosed PVC pipe with a modified lens that produces standardised close images of small mammal species encountered in this study, including: Brown Antechinus (Antechinus stuartii), Bush Rat (Rattus fuscipes) and Sugar Glider (Petaurus breviceps). Individual identification was tested on the common arboreal Sugar Glider. Five individual Sugar Gliders were identified based on unique head stripe pelage. The selfie trap is an accurate camera trapping method for capturing detailed and standardised images of small mammal species. The design described may be useful for wildlife management as a reliable method for surveying small mammal species. However, intraspecies individual identification using the selfie trap requires further testing.  相似文献   

14.
Phlebotomine sand flies are haematophagous dipterans of primary medical importance. They represent the only proven vectors of leishmaniasis worldwide and are involved in the transmission of various other pathogens. Studying the ecology of sand flies is crucial to understand the epidemiology of leishmaniasis and further control this disease. A major limitation in this regard is that traditional morphological‐based methods for sand fly species identifications are time‐consuming and require taxonomic expertise. DNA metabarcoding holds great promise in overcoming this issue by allowing the identification of multiple species from a single bulk sample. Here, we assessed the reliability of a short insect metabarcode located in the mitochondrial 16S rRNA for the identification of Neotropical sand flies, and constructed a reference database for 40 species found in French Guiana. Then, we conducted a metabarcoding experiment on sand flies mixtures of known content and showed that the method allows an accurate identification of specimens in pools. Finally, we applied metabarcoding to field samples caught in a 1‐ha forest plot in French Guiana. Besides providing reliable molecular data for species‐level assignations of phlebotomine sand flies, our study proves the efficiency of metabarcoding based on the mitochondrial 16S rRNA for studying sand fly diversity from bulk samples. The application of this high‐throughput identification procedure to field samples can provide great opportunities for vector monitoring and eco‐epidemiological studies.  相似文献   

15.
DNA metabarcoding is an efficient method for measuring biodiversity, but the process of initiating long‐term DNA‐based monitoring programmes, or integrating with conventional programs, is only starting. In marine ecosystems, plankton surveys using the continuous plankton recorder (CPR) have characterized biodiversity along transects covering millions of kilometres with time‐series spanning decades. We investigated the potential for use of metabarcoding in CPR surveys. Samples (n = 53) were collected in two Southern Ocean transects and metazoans identified using standard microscopic methods and by high‐throughput sequencing of a cytochrome c oxidase subunit I marker. DNA increased the number of metazoan species identified and provided high‐resolution taxonomy of groups problematic in conventional surveys (e.g., larval echinoderms and hydrozoans). Metabarcoding also generally produced more detections than microscopy, but this sensitivity may make cross‐contamination during sampling a problem. In some samples, the prevalence of DNA from large plankton such as krill masked the presence of smaller species. We investigated adding a fixed amount of exogenous DNA to samples as an internal control to allow determination of relative plankton biomass. Overall, the metabarcoding data represent a substantial shift in perspective, making direct integration into current long‐term time‐series challenging. We discuss a number of hurdles that exist for progressing DNA metabarcoding from the current snapshot studies to the requirements of a long‐term monitoring programme. Given the power and continually increasing efficiency of metabarcoding, it is almost certain this approach will play an important role in future plankton monitoring.  相似文献   

16.
Terrestrial mammals are a key component of tropical forest communities as indicators of ecosystem health and providers of important ecosystem services. However, there is little quantitative information about how they change with local, regional and global threats. In this paper, the first standardized pantropical forest terrestrial mammal community study, we examine several aspects of terrestrial mammal species and community diversity (species richness, species diversity, evenness, dominance, functional diversity and community structure) at seven sites around the globe using a single standardized camera trapping methodology approach. The sites-located in Uganda, Tanzania, Indonesia, Lao PDR, Suriname, Brazil and Costa Rica-are surrounded by different landscape configurations, from continuous forests to highly fragmented forests. We obtained more than 51 000 images and detected 105 species of mammals with a total sampling effort of 12 687 camera trap days. We find that mammal communities from highly fragmented sites have lower species richness, species diversity, functional diversity and higher dominance when compared with sites in partially fragmented and continuous forest. We emphasize the importance of standardized camera trapping approaches for obtaining baselines for monitoring forest mammal communities so as to adequately understand the effect of global, regional and local threats and appropriately inform conservation actions.  相似文献   

17.
Determining species distributions can be extremely challenging but is crucial to ecological and conservation research. Environmental DNA (eDNA) approaches have shown particular promise in aquatic systems for several vertebrate and invertebrate species. For terrestrial animals, however, eDNA‐based surveys are considerably more difficult due to the lack of or difficulty in obtaining appropriate sampling substrate. In water‐limited ecosystem where terrestrial mammals are often forced to congregate at waterholes, water and sediment from shared water sources may be a suitable substrate for noninvasive eDNA approaches. We characterized mitochondrial DNA sequences from a broad range of terrestrial mammal species in two different African ecosystems (in Namibia and Tanzania) using eDNA isolated from native water, sediment and water filtered through glass fibre filters. A hybridization capture enrichment with RNA probes targeting the mitochondrial genomes of 38 mammal species representing the genera/families expected at the respective ecosystems was employed, and 16 species were identified, with a maximum mitogenome coverage of 99.8%. Conventional genus‐specific PCRs were tested on environmental samples for two genera producing fewer positive results than hybridization capture enrichment. An experiment with mock samples using DNA from non‐African mammals showed that baits covering 30% of nontarget mitogenomes produced 91% mitogenome coverage after capture. In the mock samples, over‐representation of DNA of one species still allowed for the detection of DNA of other species that was at a 100‐fold lower concentration. Hybridization capture enrichment of eDNA is therefore an effective method for monitoring terrestrial mammal species from shared water sources.  相似文献   

18.
Determining the species compositions of local assemblages is a prerequisite to understanding how anthropogenic disturbances affect biodiversity. However, biodiversity measurements often remain incomplete due to the limited efficiency of sampling methods. This is particularly true in freshwater tropical environments that host rich fish assemblages, for which assessments are uncertain and often rely on destructive methods. Developing an efficient and nondestructive method to assess biodiversity in tropical freshwaters is highly important. In this study, we tested the efficiency of environmental DNA (eDNA) metabarcoding to assess the fish diversity of 39 Guianese sites. We compared the diversity and composition of assemblages obtained using traditional and metabarcoding methods. More than 7,000 individual fish belonging to 203 Guianese fish species were collected by traditional sampling methods, and ~17 million reads were produced by metabarcoding, among which ~8 million reads were assigned to 148 fish taxonomic units, including 132 fish species. The two methods detected a similar number of species at each site, but the species identities partially matched. The assemblage compositions from the different drainage basins were better discriminated using metabarcoding, revealing that while traditional methods provide a more complete but spatially limited inventory of fish assemblages, metabarcoding provides a more partial but spatially extensive inventory. eDNA metabarcoding can therefore be used for rapid and large‐scale biodiversity assessments, while at a local scale, the two approaches are complementary and enable an understanding of realistic fish biodiversity.  相似文献   

19.
Commercial plantations and alien tree invasions often have substantial negative impacts on local biodiversity. The effect of plantations on faunal communities in the fire‐adapted fynbos vegetation of the Cape Floristic Region biodiversity hotspot is not yet well quantified. We studied small mammal community structure in alien Pinus radiata plantations and adjacent fynbos regenerating after clear‐felling of plantations on the Cape Peninsula, South Africa. Small mammal sampling over 1,800 trap‐nights resulted in 480 captures of 345 individuals (excluding recaptures) representing six species. Significantly more species, individuals (12 X) and biomasses (29 X) of small mammals occurred on recovering fynbos sites compared to plantations. This was commensurate with a higher diversity of plant growth forms, vegetation densities and live vegetation biomass. Only one small mammal species, the pygmy mouse (Mus minutoides), was consistently trapped within plantations. Fynbos sites were dominated by three small mammal species that are ecological generalists and early successional pioneer species, rendering the recovering fynbos slightly depauperate in terms of species richness and evenness relative to other studies done in pristine fynbos. We make three recommendations for forestry that would facilitate the restoration of more diverse natural plant communities and progressively more diverse and dynamic small mammal assemblages in a key biodiversity hotspot.  相似文献   

20.
Effective monitoring programs are required to understand and mitigate biodiversity declines, particularly in tropical ecosystems where conservation conflicts are severe yet ecological data are scarce. “Locally-based” monitoring has been advanced as an approach to improve biodiversity monitoring in developing countries, but the accuracy of data from many such programs has not been adequately assessed. I evaluated a long-term, patrol-based wildlife monitoring system in Mole National Park, Ghana, through comparison with camera trapping and an assessment of sampling error. I found that patrol observations underrepresented the park’s mammal community, recording only two-thirds as many species as camera traps over a common sampling period (2006–2008). Agreement between methods was reasonable for larger, diurnal and social species (e.g., larger ungulates and primates), but camera traps were more effective at detecting smaller, solitary and nocturnal species (particularly carnivores). Data from patrols and cameras corresponded for some spatial patterns of management interest (e.g., community turnover, edge effect on abundance) but differed for others (e.g., richness, edge effect on diversity). Long-term patrol observations were influenced by uneven sampling effort and considerable variation in replicate counts. Despite potential benefits of locally-based monitoring, these results suggest that data from this and similar programs may be subject to biases that complicate interpretation of wildlife population and community dynamics. Careful attention to monitoring objectives, methodological design and robust analysis is required if locally-based approaches are to satisfy an aim of reliable biodiversity monitoring, and there is a need for greater international support in the creation and maintenance of local monitoring capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号