首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrological restoration of the Southern Everglades will result in increased freshwater flow to the freshwater and estuarine wetlands bordering Florida Bay. We evaluated the contribution of surface freshwater runoff versus atmospheric deposition and ground water on the water and nutrient budgets of these wetlands. These estimates were used to assess the importance of hydrologic inputs and losses relative to sediment burial, denitrification, and nitrogen fixation. We calculated seasonal inputs and outputs of water, total phosphorus (TP) and total nitrogen (TN) from surface water, precipitation, and evapotranspiration in the Taylor Slough/C-111 basin wetlands for 1.5 years. Atmospheric deposition was the dominant source of water and TP for these oligotrophic, phosphorus-limited wetlands. Surface water was the major TN source of during the wet season, but on an annual basis was equal to the atmospheric TN deposition. We calculated a net annual import of 31.4 mg m–2 yr–1 P and 694 mg m–2 yr–1N into the wetland from hydrologic sources. Hydrologic import of P was within range of estimates of sediment P burial (33–70 mg m–2 yr–1 P), while sediment burial of N (1890–4027 mg m–2 yr–1 N) greatly exceeded estimated hydrologic N import. High nitrogen fixation rates or an underestimation of groundwater N flux may explain the discrepancy between estimates of hydrologic N import and sediment N burial rates.  相似文献   

2.
Stormwater detention ponds are widely utilized as control structures to manage runoff during storm events. These ponds also represent biogeochemical hotspots, where carbon (C) and nutrients can be processed and buried in sediments. This study quantified C and nutrient [nitrogen (N) and phosphorus (P)] sources and burial rates in 14 stormwater detention ponds representative of typical residential development in coastal South Carolina. Bulk sediment accumulation was directly correlated with catchment impervious surface coverage (R2 = 0.90) with sediment accumulation rates ranging from 0.06 to 0.50 cm y?1. These rates of sediment accumulation and consequent pond volume loss were lower than anticipated based on maintenance guidelines provided by the State. N-alkanes were used as biomarkers of sediment source; the derived terrestrial aquatic ratio (TARHC) index was strongly correlated with sediment accumulation rate (R2 = 0.71) which, in conjunction with high C/N ratios (16–33), suggests that terrestrial biomass drives this sediment accumulation, with relatively minimal contributions from algal derived material. This is counter to expectations that were based on the high algal productivity generally observed in stormwater ponds and previous studies of natural lakes. Sediment C and nutrient concentrations were consistent among ponds, such that differences in burial rates were a simple function of bulk sediment accumulation rate. These burial rates (C: 8.7–161 g m?2 y?1, N: 0.65–6.4 g m?2 y?1, P: 0.238–4.13 g m?2 y?1) were similar to those observed in natural lake systems, but lower than those observed in reservoirs or impoundments. Though individual ponds were small in area (930–41,000 m2), they are regionally abundant and, when mean burial rates are extrapolated to the regional scale (≈ 21,000 ponds), ultimately sequester 2.0 × 109 g C y?1, 9.5 × 107 g N y?1, and 3.7 × 107 g P y?1 in the coastal region of South Carolina alone. Stormwater ponds represent a relatively new but increasingly significant feature of the coastal landscape and, thus, are a key component in understanding how urbanization alters the transport and transformations of C and nutrients between terrestrial uplands and downstream receiving waters.  相似文献   

3.
Wetland ecosystems in agricultural areas often become progressively more isolated from main water bodies. Stagnation favors the accumulation of organic matter as the supply of electron acceptors with water renewal is limited. In this context it is expected that nitrogen recycling prevails over nitrogen dissipation. To test this hypothesis, denitrification rates, fluxes of dissolved oxygen (SOD), inorganic carbon (DIC) and nitrogen and sediment features were measured in winter and summer 2007 on 22 shallow riverine wetlands in the Po River Plain (Northern Italy). Fluxes were determined from incubations of intact cores by measurement of concentration changes or isotope pairing in the case of denitrification. Sampled sites were eutrophic to hypertrophic; 10 were connected and 12 were isolated from the adjacent rivers, resulting in large differences in nitrate concentrations in the water column (from <5 to 1,133 μM). Benthic metabolism and denitrification rates were investigated by two overarching factors: season and hydrological connectivity. SOD and DIC fluxes resulted in respiratory quotients greater than one at most sampling sites. Sediment respiration was coupled to both ammonium efflux, which increased from winter to summer, and nitrate consumption, with higher rates in river-connected wetlands. Denitrification rates measured in river-connected wetlands (35–1,888 μmol N m?2 h?1) were up to two orders of magnitude higher than rates measured in isolated wetlands (2–231 μmol N m?2 h?1), suggesting a strong regulation of the process by nitrate availability. These rates were also significantly higher in summer (9–1,888 μmol N m?2 h?1) than in winter (2–365 μmol N m?2 h?1). Denitrification supported by water column nitrate (DW) accounted for 60–100% of total denitrification (Dtot); denitrification coupled to nitrification (DN) was probably controlled by limited oxygen availability within sediments. Denitrification efficiency, calculated as the ratio between N removal via denitrification and N regeneration, and the relative role of denitrification for organic matter oxidation, were high in connected wetlands but not in isolated sites. This study confirms the importance of restoring hydraulic connectivity of riverine wetlands for the maintenance of important biogeochemical functions such as nitrogen removal via denitrification.  相似文献   

4.
Mangroves provide numerous ecosystem services, including biodiversity values such as nesting sites for piscivorous waterbirds. High concentrations of waterbirds at nest sites are hypothesized to affect ecosystem dynamics, yet few studies have examined their effects as a nutrient source in mangroves. We examined the effects of nutrient enrichment by colonial waterbirds at a mangrove rookery in the Gulf of Fonseca, Honduras. We compared nutrient inputs via bird guano deposition and macronutrient levels in the vegetation and soils between a small island that hosted large numbers of roosting waterbirds and an adjacent island with little evidence of waterbird activity. Nest density at the rookery was 1721 ± 469 nests ha?1. Rookery birds deposited 7.2 ± 3.4 g m?2 day?1 guano dry weight, delivering an estimated 1.12 Mg ha?1 nitrogen and 0.16 Mg ha?1 phosphorus to the island over a 120 day breeding season. This large nutrient influx contributed to substantially higher concentrations of biologically important nutrients in the rookery soils (seven times more plant available phosphorus, eight times more nitrate, and two times more ammonium). Rookery mangrove leaves contained significantly higher concentrations of nitrogen and phosphorus compared to the control site. These results suggest that colonial waterbirds significantly influence nutrient dynamics of mangroves at local scales. Further research is needed to understand the effects of avian derived nutrients on mangrove growth rates, nutrient export to adjacent waters, invertebrate communities, and mangrove associated fisheries.  相似文献   

5.

Coastal wetlands are key in regulating coastal carbon and nitrogen dynamics and contribute significantly to climate change mitigation and anthropogenic nutrient reduction. We investigated organic carbon (OC) and total nitrogen (TN) stocks and burial rates at four adjacent vegetated coastal habitats across the seascape elevation gradient of Cádiz Bay (South Spain), including one species of salt marsh, two of seagrasses, and a macroalgae. OC and TN stocks in the upper 1 m sediment layer were higher at the subtidal seagrass Cymodocea nodosa (72.3 Mg OC ha−1, 8.6 Mg TN ha−1) followed by the upper intertidal salt marsh Sporobolus maritimus (66.5 Mg OC ha−1, 5.9 Mg TN ha−1), the subtidal rhizophytic macroalgae Caulerpa prolifera (62.2 Mg OC ha−1, 7.2 Mg TN ha−1), and the lower intertidal seagrass Zostera noltei (52.8 Mg OC ha−1, 5.2 Mg TN ha−1). The sedimentation rates increased from lower to higher elevation, from the intertidal salt marsh (0.24 g cm−2 y−1) to the subtidal macroalgae (0.12 g cm−2 y−1). The organic carbon burial rate was highest at the intertidal salt marsh (91 ± 31 g OC m−2 y−1), followed by the intertidal seagrass, (44 ± 15 g OC m−2 y−1), the subtidal seagrass (39 ± 6 g OC m−2 y−1), and the subtidal macroalgae (28 ± 4 g OC m−2 y−1). Total nitrogen burial rates were similar among the three lower vegetation types, ranging from 5 ± 2 to 3 ± 1 g TN m−2 y−1, and peaked at S. maritimus salt marsh with 7 ± 1 g TN m−2 y−1. The contribution of allochthonous sources to the sedimentary organic matter decreased with elevation, from 72% in C. prolifera to 33% at S. maritimus. Our results highlight the need of using habitat-specific OC and TN stocks and burial rates to improve our ability to predict OC and TN sequestration capacity of vegetated coastal habitats at the seascape level. We also demonstrated that the stocks and burial rates in C. prolifera habitats were within the range of well-accepted blue carbon ecosystems such as seagrass meadows and salt marshes.

  相似文献   

6.
Lakes are a central component of the carbon cycle, both mineralizing terrestrially derived organic matter and storing substantial amounts of organic carbon (OC) in their sediments. However, the rates and controls on OC burial by lakes remain uncertain, as do the possible effects of future global change processes. To address these issues, we derived OC burial rates in 210Pb-dated sediment cores from 116 small Minnesota lakes that cover major climate and land-use gradients. Rates for individual lakes presently range from 7 to 127 g C m–2 yr–1 and have increased by up to a factor of 8 since Euro-American settlement (mean increase: 2.8×). Mean pre-disturbance OC burial rates were similar (14–22 g C m–2 yr–1) across all land-cover categories (prairie, mixed deciduous and boreal forest), indicating minimal effect of the regional temperature gradient (approx. 4°C) on background carbon burial. The relationship between modern OC burial rates and temperature was also not significant after removal of the effect of total phosphorus. Contemporary burial rates were strongly correlated with lake-water nutrients and the extent of agricultural land cover in the catchment. Increased OC burial, documented even in relatively undisturbed boreal lake ecosystems, indicates a possible role for atmospheric nitrogen deposition. Our results suggest that globally, future land-cover change, intensification of agriculture and associated nutrient loading together with atmospheric N-deposition will enhance OC sequestration by lakes.  相似文献   

7.
The aim of the study was to determine the reduction of the overall environmental load (in terms of organic and nutrient load) in effluents of a flow‐through trout farm. Effluents of a flow‐through system for rainbow trout (Oncorhynchus mykiss) production passed through constructed wetlands with free water surface. Removal of nutrients was determined in three wetlands of 350 m2 each at hydraulic residence times (HRTs) of 3.5, 5.5 and 11 h. The areal load of total suspended solids (TSS), chemical oxygen demand (COD), total phosphorus (TP), and total nitrogen (TN) varied in terms of HRTs from 12.3–36.8 g m?2 day?1, 21.7–65.2 g m?2 day?1, 0.23–0.70 g m?2 day?1, and 1.46–4.37 g m?2 day?1. Values for reduction of suspended solids, COD, TP, and TN were 67–72%, 30–31%, 41–53% ,and 19–30%, respectively. Significantly lower nutrient concentrations in the effluent among the wetlands were only found for nitrogen parameters: TN and ammonia concentrations were lower in the wetlands with a HRT of 5.5 h (0.89 mg L?1, 0.11 mg L?1) and 11 h (0.81 mg L?1, 0.11 mg L?1) compared with the one with 3.5 h (0.96 mg L?1, 0.16 mg L?1).  相似文献   

8.
Nutrient biogeochemistry associated with the early stages of soil development in deltaic floodplains has not been well defined. Such a model should follow classic patterns of soil nutrient pools described for alluvial ecosystems that are dominated by mineral matter high in phosphorus and low in carbon and nitrogen. A contrast with classic models of soil development is the anthropogenically enriched high nitrate conditions due to agricultural fertilization in upstream watersheds. Here we determine if short-term patterns of soil chemistry and dissolved inorganic nutrient fluxes along the emerging Wax Lake delta (WLD) chronosequence are consistent with conceptual models of long-term nutrient availability described for other ecosystems. We add a low nitrate treatment more typical of historic delta development to evaluate the role of nitrate enrichment in determining the net dinitrogen (N2) flux. Throughout the 35-year chronosequence, soil nitrogen and organic matter content significantly increased by an order of magnitude, whereas phosphorus exhibited a less pronounced increase. Under ambient nitrate concentrations (>60 μM), mean net N2 fluxes (157.5 μmol N m?2 h?1) indicated greater rates of gross denitrification than gross nitrogen fixation; however, under low nitrate concentrations (<2 μM), soils switched from net denitrification to net nitrogen fixation (?74.5 μmol N m?2 h?1). As soils in the WLD aged, the subsequent increase in organic matter stimulated net N2, oxygen, nitrate, and nitrite fluxes producing greater fluxes in more mature soils. In conclusion, soil nitrogen and carbon accumulation along an emerging delta chronosequence largely coincide with classic patterns of soil development described for alluvial floodplains, and substrate age together with ambient nitrogen availability can be used to predict net N2 fluxes during early delta evolution.  相似文献   

9.
The same methods were used to study the phosphorus budget of aSolidago altissima population on the flood plain of the Tone River as were used for the nitrogen budget studies. The standing crop of phosphorus and the phosphorus flow through the population were determined seasonally and annually. The annual absorption of phosphorus was 2.25 g/m2/year, which is the same as the annual return to the environment. Turnover rates of phosphorus were calculated. Whether expressed seasonally or annually, turnover rates of phosphorus were larger than those of nitrogen. Phosphorus utility, net dry matter productivity of a unit amount of phosphorus absorbed, in this population was 1,060. This was in the range reported on other perennial herb communities. Phosphorus cycling in the population was quantified. Total phosphorus input to organs and the amount of phosphorus recycled in the living plants were 3.67 g/m2/year and 1.42 g/m2/year, respectively. The proportion of recycling to the total movement of phosphorus in the plant was 39%, which was lower than that of nitrogen. Comparing the phosphorus and nitrogen budgets in the population, it was concluded that larger recycling of an element results in a smaller turnover rate of the element in the population.  相似文献   

10.
Sanitary sewage can create serious environmental problems if discharged directly into natural waters without appropriate treatment. This study showed that red light is the optimum light wavelength for growing microalgae Chlorella vulgaris in microalgae biological wastewater treatment systems, given a harvest time of 144 h. Only moderate light intensities (1,000, 1,500, 2,000, and 2,500 μmol m?2 s?1) were able to remove nutrients from synthetic sanitary sewage, but higher light intensity led to better nutrient removal effects. Because of economic considerations, the optimum light intensity range for efficient nutrient removal was determined to be between 1,500 and 2,000 μmol m?2 s?1. Furthermore, nutrient removal efficiency was significantly affected by light wavelength, light intensity, the interaction of these two factors, and the interaction among light wavelength, light intensity, and influent carbon/nitrogen (C/N) ratios. Total nitrogen and total phosphorus removal efficiency was also significantly affected by influent C/N ratios. Appropriate control of carbon and nitrogen source concentrations enabled optimal nutrient removal. The optimal influent C/N ratio was determined to be 6:1.  相似文献   

11.
The eutrophication of lowland lakes in Europe by excess nitrogen (N) and phosphorus (P) is severe because of the long history of land‐cover change and agricultural intensification. The ecological and socio‐economic effects of eutrophication are well understood but its effect on organic carbon (OC) sequestration by lakes and its change overtime has not been determined. Here, we compile data from ~90 culturally impacted European lakes [~60% are eutrophic, Total P (TP) >30 μg P l?1] and determine the extent to which OC burial rates have increased over the past 100–150 years. The average focussing corrected, OC accumulation rate (C ARFC) for the period 1950–1990 was ~60 g C m?2 yr?1, and for lakes with >100 μg TP l?1 the average was ~100 g C m?2 yr?1. The ratio of post‐1950 to 1900–1950 C AR is low (~1.5) indicating that C accumulation rates have been high throughout the 20th century. Compared to background estimates of OC burial (~5–10 g C m?2 yr?1), contemporary rates have increased by at least four to fivefold. The statistical relationship between C ARFC and TP derived from this study (r2 = 0.5) can be used to estimate OC burial at sites lacking estimates of sediment C‐burial. The implications of eutrophication, diagenesis, lake morphometry and sediment focussing as controls of OC burial rates are considered. A conservative interpretation of the results of the this study suggests that lowland European meso‐ to eutrophic lakes with >30 μg TP l?1 had OC burial rates in excess of 50 g C m?2 yr?1 over the past century, indicating that previous estimates of regional lake OC burial have seriously underestimated their contribution to European carbon sequestration. Enhanced OC burial by lakes is one positive side‐effect of the otherwise negative impact of the anthropogenic disruption of nutrient cycles.  相似文献   

12.
Human activities have recently caused severe destruction of Sphagnum wetlands in subtropical high-mountain regions, calling for urgent efforts to restore Sphagnum wetlands. Through a greenhouse experiment in western Hubei, China, we studied the effects of different substrate types (peat and mountain soil) and different levels of nitrogen (N) (0, 2, 4, 6, 10 g m?2 year?1) and phosphorus (P) (0, 0.2, 0.5, 1, 2 g m?2 year?1) on the growth of Sphagnum palustre, which was evaluated by four growth indicators: length growth, number of capitula, coverage change and biomass. We aimed to determine the optimal nutrient conditions for S. palustre growth, which would contribute to the rapid colonization and restoration of Sphagnum wetlands. The results showed that the different substrates significantly influenced S. palustre growth. Compared with those of peat, the acidic properties of the local yellow brown soil in the subtropical high-mountain regions were more favorable for S. palustre growth. As N addition increased, the four growth indicators responded inconsistently to the different substrates. While the number of capitula markedly increased, the other three indicators significantly decreased in the mountain soil or exhibited no definitive changes in the peat. The addition of P markedly promoted S. palustre growth in both substrates. However, a threshold for P fertilization existed; the highest productivity occurred at P additions of 0.2 and 0.5 g m?2 year?1 in the peat and mountain soil, respectively. The N and P contents in the capitula increased in parallel as the N and P fertilization rates increased, suggesting that these nutrients were absorbed proportionately and were used during the growth of S. palustre.  相似文献   

13.
Microbial respiration (Rm) and ecoenzyme activities (EEA) related to microbial carbon, nitrogen, and phosphorus acquisition were measured in 792 freshwater and estuarine wetlands (representing a cumulative area of 217,480 km2) across the continental United States as part of the US EPA’s 2011 National Wetland Condition Assessment. EEA stoichiometry was used to construct models for and assess nutrient limitation, carbon use efficiency (CUE), and organic matter decomposition (? k). The wetlands were classified into ten groups based on aggregated ecoregion and wetland type. The wetlands were also assigned to least, intermediate, and most disturbed classes, based on the extent of human influences. Ecoenzyme activity related to C, N and P acquisition, Rm, CUE, and ? k differed among ecoregion–wetland types and, with the exception of C acquisition and ? k, among disturbance classes. Rm and EEA were positively correlated with soil C, N and P content (r = 0.15–0.64) and stoichiometry (r = 0.15–0.48), and negatively correlated with an index of carbon quality (r = ? 0.22 to ? 0.39). EEA stoichiometry revealed that wetlands were more often P- than N-limited, and that P-limitation increases with increasing disturbance. Our enzyme-based approach for modeling C, N, and P acquisition, and organic matter decomposition, all rooted in stoichiometric theory, provides a mechanism for modeling resource limitations of microbial metabolism and biogeochemical cycling in wetlands. Given the ease of collecting and analyzing soil EEA and their response to wetland disturbance gradients, enzyme stoichiometry models are a cost-effective tool for monitoring ecosystem responses to resource availability and the environmental drivers of microbial metabolism, including those related to global climate changes.  相似文献   

14.
One-pass harvest equipment has been developed to collect corn (Zea mays L.) grain, stover, and cobs that can be used as bioenergy feedstock. Nutrients removed in these feedstocks have soil fertility implication and affect feedstock quality. The study objectives were to quantify nutrient concentrations and potential removal as a function of cutting height, plant organ, and physiological stage. Plant samples were collected in 10-cm increments at seven diverse geographic locations at two maturities and analyzed for multiple elements. At grain harvest, nutrient concentration averaged 5.5 g?N kg?1, 0.5 g?P kg?1, and 6.2 g?K kg?1 in cobs, 7.5 g?N kg?1, 1.2 g?P kg?1, and 8.7 g?K kg?1 in the above-ear stover fraction, and 6.4 g?N kg?1, 1.0 g?P kg?1, and 10.7 g?K kg?1 in the below-ear stover fraction (stover fractions exclude cobs). The average collective cost to replace N, P, and K was $11.66 Mg?1 for cobs, $17.59 Mg?1 for above-ear stover, and $18.11 Mg?1 for below-ear stover. If 3 Mg ha?1 of above-ear stover fraction plus 1 Mg of cobs are harvested, an average N, P, and K replacement cost was estimated at $64 ha?1. Collecting cobs or above-ear stover fraction may provide a higher quality feedstock while removing fewer nutrients compared to whole stover removal. This information will enable producers to balance soil fertility by adjusting fertilizer rates and to sustain soil quality by predicting C removal for different harvest scenarios. It also provides elemental information to the bioenergy industry.  相似文献   

15.
Over the past three decades, Narragansett Bay has undergone various ecological changes, including significant decreases in water column chlorophyll a concentrations, benthic oxygen uptake, and benthic nutrient regeneration rates. To add to this portrait of change, we measured the net flux of N2 across the sediment–water interface over an annual cycle using the N2/Ar technique at seven sites in the bay for comparison with measurements made decades ago. Net denitrification rates ranged from about 10–90 μmol N2–N m?2 h?1 over the year. Denitrification rates were not significantly different among sites and had no clear correlation with temperature. Net nitrogen fixation (?5 to ?650 μmol N2–N m?2 h?1) was measured at three sites and only observed in summer (June–August). Neither denitrification nor nitrogen fixation exhibited a consistent relationship with sediment oxygen demand or with fluxes of nitrite, nitrate, ammonium, total dissolved inorganic nitrogen, or dissolved inorganic phosphate across all stations. In contrast to the mid-bay historical site where denitrification rates have declined, denitrification rates in the Providence River Estuary have not changed significantly over the past 30 years.  相似文献   

16.
In this study, we sought to identify influent carbon-to-nitrogen (C/N) ratios that yield relatively high nutrient removal efficiency with relatively low greenhouse gas (GHG) emissions. The earthworm eco-filter (EE) system, which is composed of earthworms and plants (EP group), was found to be optimal for maximizing nutrient removal while reducing GHG emissions. In this EE system, the optimal influent C/N ratio for nutrient removal and GHG emission under C2N treatment conditions. Nutrient removal efficiency under this condition was 85.19 ± 6.40 % chemical oxygen demand, 71.99 ± 11.28 % total nitrogen, and 77.91 ± 8.51 % total phosphorus, while the CO2 emission rate was 678.89 ± 201.87 mg m?2 h?1. Moreover, the highest nutrient removal and GHG emission rates were both achieved in late summer (August). Thus, carbon variation, season, system variation, as well as synergistic interaction between system variations and seasons, significantly affect nutrient removal efficiencies and GHG emissions.  相似文献   

17.
Cuet  P.  Atkinson  M. J.  Blanchot  J.  Casareto  B. E.  Cordier  E.  Falter  J.  Frouin  P.  Fujimura  H.  Pierret  C.  Susuki  Y.  Tourrand  C. 《Coral reefs (Online)》2011,30(1):45-55

Productivity, nutrient input, nutrient uptake, and release rates were determined for a coral-dominated reef flat at La Réunion, France, to assess the influence of groundwater nitrogen on carbon and nutrient budgets. Water samples were collected offshore in the ocean, at the reef crest and back reef for nutrients, picoplankton, pH, and total alkalinity. Volume transport of ocean water across the reef flat was measured using both current meters and drogues. Groundwater advected onto the reef flat and mixed with incoming ocean water. Metabolic rates for the reef community were determined to be: gross primary production = 1,000 mmol C m−2 d−1, community respiration = 960 mmol C m−2 d−1, and community calcification = 210 mmol C m−2 d−1. Across the reef flat, silicate behaved conservatively, there was net uptake of phosphate (0.06 mmol P m−2 d−1) and net release of nitrate, ammonia, dissolved and particulate organic nitrogen (total 7.0 mmol N m−2 d−1). Groundwater nitrate contributed 37% of the increase in nitrate plus ammonia. The first-order mass transfer coefficient of phosphate was 3.3 m d−1, and for nitrate plus ammonia, 5.9 m d−1. Gross N and P uptake from estimates of mass transfer and uptake of particles were 0.37 mmol P m−2 d−1 and 7.2 mmol N m−2 d−1, respectively giving an N:P uptake ratio of 20:1. Thus, the elevation of nitrogen across the reef flat maintains a high N:P flux, enhancing algal growth downstream of the transect. We conclude that net community production (40 mmol C m−2 d−1) was sustained by net uptake of phosphate from the ocean and net uptake of new nitrogen from groundwater.

  相似文献   

18.
Gross primary productivity (GPP) of phytoplankton and planktonic respiration (PR) (i.e., planktonic metabolism) are critical pathways for carbon transformation in many aquatic ecosystems. In inland floodplain wetlands with variable inundation regimes, quantitative measurements of GPP and PR are rare and their relationships with wetland environmental conditions are largely unknown. We measured PR and the GPP of phytoplankton using light and dark biological oxygen demand bottles in open waters of channel and non-channel floodplain habitats of inland floodplain wetlands of southeast Australia that had been inundated by environmental water. Overall, GPP varied from 3.7 to 405.5 mg C m?3 h?1 (mean ± standard error: 89.4 ± 9.2 mg C m?3 h?1, n = 81), PR from 1.5 to 251.6 mg C m?3 h?1 (43.2 ± 5.6 mg C m?3 h?1, n = 81), and GPP/PR from 0.2 to 15.6 (3.0 ± 0.3, n = 81). In terms of wetland environmental conditions, total nitrogen (TN) ranged from 682.0 to 14,700.0 mg m?3 (mean ± standard error: 2,643.0 ± 241.6 mg m?3, n = 81), total phosphorus (TP) from 48.0 to 1,405.0 mg m?3 (316.8 ± 31.4 mg m?3, n = 81), and dissolved organic carbon (DOC) from 1.9 to 46.3 g m?3 (22.0 ± 1.6 g m?3, n = 81). Using ordinary least-squares multiple regression analyses, the rates of GPP and PR, and their ratio (GPP/PR) were modeled as a function of TN, TP, and DOC that had been measured concomitantly. The “best” models predicted GPP and GPP/PR ratio in channel habitats as a function of DOC; and GPP, PR, and GPP/PR in non-channel floodplain habitats as a function of TN and/or TP. The models explained between 46 and 74 % of the variance in channel habitats and between 17 and 87 % of the variance in non-channel floodplain habitats. Net autotrophy (mean GPP/PR 3.0) of planktonic metabolism in our work supports the prevailing view that wetlands are a net sink for carbon dioxide. We propose a nutrient-DOC framework, combined with hydrological and geomorphological delineations, to better predict and understand the planktonic metabolism in inland floodplain wetlands.  相似文献   

19.
Animal excretion can be a significant nutrient flux within ecosystems, where it supports primary production and facilitates microbial decomposition of organic matter. The effects of excretory products on nutrient cycling have been documented for various species and ecosystems, but temporal variation in these processes is poorly understood. We examined variation in excretion rates of a dominant grazing snail, Elimia clavaeformis, and its contribution to nutrient cycling, over the course of 14 months in a well-studied, low-nutrient stream (Walker Branch, east Tennessee, USA). Biomass-specific excretion rates of ammonium varied over twofold during the study, coinciding with seasonal changes in food availability (measured as gross primary production) and water temperature (multiple linear regression, R 2 = 0.57, P = 0.053). The contribution of ammonium excretion to nutrient cycling varied with seasonal changes in both biological (that is, nutrient uptake rate) and physical (that is, stream flow) variables. On average, ammonium excretion accounted for 58% of stream water ammonium concentrations, 26% of whole-stream nitrogen demand, and 66% of autotrophic nitrogen uptake. Phosphorus excretion by Elimia was contrastingly low throughout the year, supplying only 1% of total dissolved phosphorus concentrations. The high average N:P ratio (89:1) of snail excretion likely exacerbated phosphorus limitation in Walker Branch. To fully characterize animal excretion rates and effects on ecosystem processes, multiple measurements through time are necessary, especially in ecosystems that experience strong seasonality.  相似文献   

20.

Background and aims

Wetlands are important carbon sinks across the planet. However, soil carbon sequestration in tropical freshwater wetlands has been studied less than its counterpart in temperate wetlands. We compared carbon stocks and carbon sequestration in freshwater wetlands with various geomorphic features (estuarine, perilacustrine and depressional) and various plant communities (marshes and swamps) on the tropical coastal plain of the Gulf of Mexico in the state of Veracruz, Mexico. These swamps are dominated by Ficus insipida, Pachira aquatic and Annona glabra and the marshes by Typha domingensis, Thalia geniculata, Cyperus giganteus, and Pontederia sagittata.

Methods

The soil carbon concentration and bulk density were measured every 2 cm along 80 cm soil profiles in five swamps and five marshes. Short-term sediment accretion rates were measured during a year using horizontal makers in three of the five swamps and marshes, the carbon sequestration was calculated using the accretion rates, and the bulk density and the percentage of organic carbon in the surficial layer was measured.

Results

The average carbon concentration ranged from 50 to 150 gC kg?1 in the marshes and 50 to 225 gC kg?1 in the swamps. When the wetlands were grouped according to their geomorphic features, no significant differences in the carbon stock (P?=?0.095) were found (estuarine (25.50?±?2.26 kgC m?2), perilacustrine (28.33?±?2.74 kgC m?2) and depressional wetlands (34.93?±?4.56 kgC m?2)). However, the carbon stock was significantly higher (P?=?0.030) in the swamps (34.96?±?1.3 kgC m?2) than in the marshes (25.85?±?1.19 kgC m?2). The average sediment accretion rates were 1.55?±?0.09 cm yr?1 in the swamps and 0.84?±?0.02 cm yr?1 in the marshes with significant differences (P?=?0.040). The rate of carbon sequestration was higher (P?=?0.001) in swamp soils (0.92?±?0.12 kgC m?2 yr?1) than marsh soils (0.31?±?0.08 kgC m?2 yr?1). Differences in the rates of carbon sequestration associated with geomorphic features were found between the swamp ecosystems (P?<?0.05); i.e., higher values were found in the swamps than in the marshes in perilacustrine and estuarine wetlands (P?<?0.05). However, no significant differences (P?=?0.324) in carbon sequestration rates were found between the marsh and swamp areas of the depressional site.

Conclusions

Swamp soils are more important contributors to the carbon stock and sequestration than are marsh soils, resulting in a reduction in global warming, which suggests that the plant community is an important factor that needs to be considered in global carbon budgets and projects of restoration and conservation of wetlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号