首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recovery of DNA barcode sequences is often challenging from the archived specimens. However, short fragments of DNA may be recovered, which would significantly improve many unresolved taxonomic conflicts. Here, we designed a mini‐barcode for catfishes comprising several species and many cryptic taxa. We analysed a data set of 3048 publicly available COI barcode sequences representing 547 worldwide catfish species and performed 152 628 interspecies comparisons. A significantly more positively correlated interspecies distance was detected with transversion (0.78, < 0.001) than with transition (0.70, P < 0.001). This suggested that transversions were better diagnostics for species identification. In the aligned data set, two transversion‐rich fragments (53 bp and 119 bp) were identified. Transition/transversion bias value was 1.04 in 53‐bp fragment, 1.23 in 119‐bp fragment and 1.50 in full‐length barcode. The interspecies distance with full‐length barcode was 0.212 ± 0.037, while that with 53‐bp and 119‐bp fragments was 0.325 ± 0.039 and 0.218 ± 0.045, respectively. Survey of 53‐bp fragment showed a possibility of only 1144 barcodes, while that of 119‐bp fragment showed >4 million barcodes. Thus, the 119‐bp fragment is a viable mini‐barcode for catfishes comprising >3000 extant species. Experiment with 82 archived catfishes showed successful recovery of this mini‐barcode using the designed primer. The mini‐barcode sequences showed species‐specific similarity in the range of 98‐100% with the global database. Therefore, survey of a transversion‐rich fragment within the full‐length barcode would be an ideal approach of mini‐barcode design for biodiversity assessment.  相似文献   

2.
Plant DNA barcoding: from gene to genome   总被引:2,自引:0,他引:2       下载免费PDF全文
DNA barcoding is currently a widely used and effective tool that enables rapid and accurate identification of plant species; however, none of the available loci work across all species. Because single‐locus DNA barcodes lack adequate variations in closely related taxa, recent barcoding studies have placed high emphasis on the use of whole‐chloroplast genome sequences which are now more readily available as a consequence of improving sequencing technologies. While chloroplast genome sequencing can already deliver a reliable barcode for accurate plant identification it is not yet resource‐effective and does not yet offer the speed of analysis provided by single‐locus barcodes to unspecialized laboratory facilities. Here, we review the development of candidate barcodes and discuss the feasibility of using the chloroplast genome as a super‐barcode. We advocate a new approach for DNA barcoding that, for selected groups of taxa, combines the best use of single‐locus barcodes and super‐barcodes for efficient plant identification. Specific barcodes might enhance our ability to distinguish closely related plants at the species and population levels.  相似文献   

3.
DNA barcoding has become a promising means for the identification of organisms of all life‐history stages. Currently, distance‐based and tree‐based methods are most widely used to define species boundaries and uncover cryptic species. However, there is no universal threshold of genetic distance values that can be used to distinguish taxonomic groups. Alternatively, DNA barcoding can deploy a “character‐based” method, whereby species are identified through the discrete nucleotide substitutions. Our research focuses on the delimitation of moth species using DNA‐barcoding methods. We analyzed 393 Lepidopteran specimens belonging to 80 morphologically recognized species with a standard cytochrome c oxidase subunit I (COI) sequencing approach, and deployed tree‐based, distance‐based, and diagnostic character‐based methods to identify the taxa. The tree‐based method divided the 393 specimens into 79 taxa (species), and the distance‐based method divided them into 84 taxa (species). Although the diagnostic character‐based method found only 39 so‐identifiable species in the 80 species, with a reduction in sample size the accuracy rate substantially improved. For example, in the Arctiidae subset, all 12 species had diagnostics characteristics. Compared with traditional morphological method, molecular taxonomy performed well. All three methods enable the rapid delimitation of species, although they have different characteristics and different strengths. The tree‐based and distance‐based methods can be used for accurate species identification and biodiversity studies in large data sets, while the character‐based method performs well in small data sets and can also be used as the foundation of species‐specific biochips.  相似文献   

4.
Allopatric speciation may be the principal mechanism generating new species. Yet, it remains difficult to judge the generality of this process because few studies have provided evidence that geographic isolation has triggered the development of reproductive isolation over multiple species of a regional fauna. Here, we first combine results from new empirical data sets (7 taxa) and published literature (9 taxa) to show that the eastern Great Lakes drainage represents a multispecies suture zone for glacial lineages of freshwater fishes with variable levels of genetic divergence. Second, we performed amplified fragment length polymorphism analyses among four pairs of lineages. Results indicate that lineages with relatively deep levels of mtDNA 5′ COI (barcode) sequence divergence (>2%) developed strong reproductive barriers, while lineages with lower levels of divergence show weaker reproductive isolation when found in sympatry. This suggests that a threshold of 2% sequence divergence at mtDNA could be used as a first step to flag cryptic species in North American freshwater fishes. By describing different levels of divergence and reproductive isolation in different co‐occurring fishes, we offer strong evidence that allopatric speciation has contributed significantly to the diversification of north‐eastern American freshwater fishes and confirm that Pleistocene glacial cycles can be viewed as a ‘speciation pump’ that played a predominant role in generating biodiversity.  相似文献   

5.
Sixty‐five accessions of the species‐rich freshwater red algal order Batrachospermales were characterized through DNA sequencing of two regions: the mitochondrial cox1 gene (664 bp), which is proposed as the DNA barcode for red algae, and the UPA (universal plastid amplicon) marker (370 bp), which has been recently identified as a universally amplifying region of the plastid genome. upgma phenograms of both markers were consistent in their species‐level relationships, although levels of sequence divergence were very different. Intraspecific variation of morphologically identified accessions for the cox1 gene ranged from 0 to 67 bp (divergences were highest for the two taxa with the greatest number of accessions; Batrachospermum helminthosum and Batrachospermum macrosporum); while in contrast, the more conserved universal plastid amplicon exhibited much lower intraspecific variation (generally 0–3 bp). Comparisons to previously published mitochondrial cox2–3 spacer sequences for B. helminthosum indicated that the cox1 gene and cox2–3 spacer were characterized by similar levels of sequence divergence, and phylogeographic patterns based on these two markers were consistent. The two taxa represented by the largest numbers of specimens (B. helminthosum and B. macrosporum) have cox1 intraspecific divergence values that are substantially higher than previously reported, but no morphological differences can be discerned at this time among the intraspecific groups revealed in the analyses. DNA barcode data, which are based on a short fragment of an organellar genome, need to be interpreted in conjunction with other taxonomic characters, and additional batrachospermalean taxa need to be analyzed in detail to be able to draw generalities regarding intraspecific variation in this order. Nevertheless, these analyses reveal a number of batrachospermalean taxa worthy of more detailed DNA barcode study, and it is predicted that such research will have a substantial effect on the taxonomy of species within the Batrachospermales in the future.  相似文献   

6.
DNA barcodes are widely used in taxonomy, systematics, species identification, food safety, and forensic science. Most of the conventional DNA barcode sequences contain the whole information of a given barcoding gene. Most of the sequence information does not vary and is uninformative for a given group of taxa within a monophylum. We suggest here a method that reduces the amount of noninformative nucleotides in a given barcoding sequence of a major taxon, like the prokaryotes, or eukaryotic animals, plants, or fungi. The actual differences in genetic sequences, called single nucleotide polymorphism (SNP) genotyping, provide a tool for developing a rapid, reliable, and high‐throughput assay for the discrimination between known species. Here, we investigated SNPs as robust markers of genetic variation for identifying different pigeon species based on available cytochrome c oxidase I (COI) data. We propose here a decision tree‐based SNP barcoding (DTSB) algorithm where SNP patterns are selected from the DNA barcoding sequence of several evolutionarily related species in order to identify a single species with pigeons as an example. This approach can make use of any established barcoding system. We here firstly used as an example the mitochondrial gene COI information of 17 pigeon species (Columbidae, Aves) using DTSB after sequence trimming and alignment. SNPs were chosen which followed the rule of decision tree and species‐specific SNP barcodes. The shortest barcode of about 11 bp was then generated for discriminating 17 pigeon species using the DTSB method. This method provides a sequence alignment and tree decision approach to parsimoniously assign a unique and shortest SNP barcode for any known species of a chosen monophyletic taxon where a barcoding sequence is available.  相似文献   

7.
Small portions of the barcode region – mini‐barcodes – may be used in place of full‐length barcodes to overcome DNA degradation for samples with poor DNA preservation. 591,491,286 rbcL mini‐barcode primer combinations were electronically evaluated for PCR universality, and two novel highly universal sets of priming sites were identified. Novel and published rbcL mini‐barcode primers were evaluated for PCR amplification [determined with a validated electronic simulation (n = 2765) and empirically (n = 188)], Sanger sequence quality [determined empirically (n = 188)], and taxonomic discrimination [determined empirically (n = 30 472)]. PCR amplification for all mini‐barcodes, as estimated by validated electronic simulation, was successful for 90.2–99.8% of species. Overall Sanger sequence quality for mini‐barcodes was very low – the best mini‐barcode tested produced sequences of adequate quality (B20 ≥ 0.5) for 74.5% of samples. The majority of mini‐barcodes provide correct identifications of families in excess of 70.1% of the time. Discriminatory power noticeably decreased at lower taxonomic levels. At the species level, the discriminatory power of the best mini‐barcode was less than 38.2%. For samples believed to contain DNA from only one species, an investigator should attempt to sequence, in decreasing order of utility and probability of success, mini‐barcodes F (rbcL1/rbcLB), D (F52/R193) and K (F517/R604). For samples believed to contain DNA from more than one species, an investigator should amplify and sequence mini‐barcode D (F52/R193).  相似文献   

8.
We use a comprehensive subset of Canarian angiosperms corresponding to 23 families, 35 genera and 60 Canarian endemic taxa to test whether this flora is suitable to taxonomic identification with the two proposed plant DNA barcode sequences and whether these sequences may reveal the existence of cryptic species overlooked by morphology. The rate of discrimination success between the insular congeneric samples using the rbcL+matK combination and a ‘character‐based’ approach (where we use only the combination of nucleotide positions in an alignment that allows unambiguous species identification) is higher (82.29%) than that obtained with the ‘distance‐based’ approach (80.20%) used by the CBOL Plant Working Group in 2009 and also when compared with tests conducted in other floras. This suggests that the molecular identification of the Canarian endemic flora can be achieved as successfully as in other floras where the incidence of radiation is not as relevant. The facts that (i) a distance‐based criterion was unable to discriminate between congeneric and conspecific comparisons and (ii) only the character‐based discrimination criterion resolved cases that the distance‐based criterion did not, further support the use of a character discrimination approach for a more efficient DNA barcoding of floras from oceanic islands like the Canaries. Thus, a barcoding gap seems not to be necessary for the correct molecular characterization of the Canarian flora. DNA barcodes also suggest the possible existence of cryptic taxa to be further investigated by morphology and that the current taxonomic status of some of the taxa analysed may need revision.  相似文献   

9.
Studies focusing on marine macrophyte metabarcoding from environmental samples are scarce, due to the lack of a universal barcode for these taxa, and to their poor representation in DNA databases. Here, we searched for a short barcode able to identify marine macrophytes from tissue samples; then, we created a DNA reference library which was used to identify macrophytes in eDNA from coastal sediments. Barcoding of seagrasses, mangroves and marine macroalgae (Chlorophyta, Rhodophyta and Phaeophyceae) was tested using 18 primer pairs from six barcoding genes: the plant barcodes rbcL, matK and trnL, plus the genes ITS2, COI and 18S. The 18S gene showed the highest universality among marine macrophytes, amplifying 95%–100% of samples; amplification performance of the other barcodes was limited. Taxonomy was assigned using a phylogeny‐based approach to create an 18S DNA reference library. Macrophyte tissue sequences were accurately identified within their phyla (88%), order (76%), genus (71%) and species (23%). Nevertheless, out of 86 macrophytes tested, only 48% and 15% had a reference sequence at genus and at species level, respectively. Identification at these levels can be improved by more inclusive reference libraries. Using the 18S mini‐barcode and the reference library, we recovered eDNA from 21 marine macrophytes in sediments, demonstrating the barcode's ability to trace primary producers that contribute to blue carbon. We expect this barcode to also be useful for other ecological questions, such as tracing macro primary producers in marine food webs.  相似文献   

10.
DNA barcoding has emerged as a routine tool in modern taxonomy. Although straightforward, this approach faces new challenges, when applied to difficult situation such as defining cryptic biodiversity. Ants are prime examples for high degrees of cryptic biodiversity due to complex population differentiation, hybridization and speciation processes. Here, we test the DNA barcoding region, cytochrome c oxidase 1 and two supplementary markers, 28S ribosomal DNA and long‐wavelength rhodopsin, commonly used in ant taxonomy, for their potential in a layered, character‐based barcoding approach across different taxonomic levels. Furthermore, we assess performance of the character‐based barcoding approach to determine cryptic species diversity in ants. We found (i) that the barcode potential of a specific genetic marker varied widely among taxonomic levels in ants; (ii) that application of a layered, character‐based barcode for identification of specimens can be a solution to taxonomical challenging groups; (iii) that the character‐based barcoding approach allows us to differentiate specimens even within locations based on pure characters. In summary, (layered) character‐based barcoding offers a reliable alternative for problematic species identification in ants and can be used as a fast and cost‐efficient approach to estimate presence, absence or frequency of cryptic species.  相似文献   

11.
Bees (Apidae), of which there are more than 19 900 species, are extremely important for ecosystem services and economic purposes, so taxon identity is a major concern. The goal of this study was to optimize the DNA barcode technique based on the Cytochrome c oxidase (COI) mitochondrial gene region. This approach has previously been shown to be useful in resolving taxonomic inconsistencies and for species identification when morphological data are poor. Specifically, we designed and tested new primers and standardized PCR conditions to amplify the barcode region for bees, focusing on the corbiculate Apids. In addition, primers were designed to amplify small COI amplicons and tested with pinned specimens. Short barcode sequences were easily obtained for some Bombus century‐old museum specimens and shown to be useful as mini‐barcodes. The new primers and PCR conditions established in this study proved to be successful for the amplification of the barcode region for all species tested, regardless of the conditions of tissue preservation. We saw no evidence of Wolbachia or numts amplification by these primers, and so we suggest that these new primers are of broad value for corbiculate bee identification through DNA barcode.  相似文献   

12.
Species identification based on the DNA sequence of a fragment of the cytochrome c oxidase subunit I gene in the mitochondrial genome, DNA barcoding, is widely applied to assist in sustainable exploitation of fish resources and the protection of fish biodiversity. The aim of this study was to establish a reliable barcoding reference database of the native ray‐finned fishes in Taiwan. A total of 2993 individuals, belonging to 1245 species within 637 genera, 184 families and 29 orders of ray‐finned fishes and representing approximately 40% of the recorded ray‐finned fishes in Taiwan, were PCR amplified at the barcode region and bidirectionally sequenced. The mean length of the 2993 barcodes is 549 bp. Mean congeneric K2P distance (15.24%) is approximately 10‐fold higher than the mean conspecific one (1.51%), but approximately 1.4‐fold less than the mean genetic distance between families (20.80%). The Barcode Index Number (BIN) discordance report shows that 2993 specimens represent 1275 BINs and, among them, 86 BINs are singletons, 570 BINs are taxonomically concordant, and the other 619 BINs are taxonomically discordant. Barcode gap analysis also revealed that more than 90% of the collected fishes in this study can be discriminated by DNA barcoding. Overall, the barcoding reference database established by this study reveals the need for taxonomic revisions and voucher specimen rechecks, in addition to assisting in the management of Taiwan's fish resources and diversity.  相似文献   

13.
DNA barcoding is a tool that uses a short, standard segment of DNA to identify organisms. In diatoms, a consensus on an appropriate DNA barcode has not been reached, but several markers show promise. These include the 5.8S gene plus a fragment of the internal transcribed spacer 2 (ITS‐2) of nuclear‐encoded ribosomal RNA, a 420‐bp segment of the 18S rRNA gene, and a 748‐bp fragment at the 3′‐end of the ribulose bisophosphate carboxylase large subunit (rbcL) gene. Here, we tested a 540‐bp fragment 417‐bp downstream of the start codon of the rbcL gene for its efficacy in distinguishing diatom species in a wide range of taxa. Overall, 381 sequences representing 66 genera and 245 species from the classes Mediophyceae and Bacillariophyceae were examined. Intra/interspecific thresholds were set at p = 0.01 differences per site (diff./site) for Mediophyceae and p = 0.02 diff./site for Bacillariophyceae and correctly segregated 96% and 93% of morphological congeners, respectively. When testing reproductively isolated or biological species, which are only available from Bacillariophyceae, 80% of species were discriminated. Therefore, we concluded that, alone, the rbcL region tested herein as potential a DNA barcode was not a sufficient discriminator of all diatoms. We suggest that this fragment could be used in a dual‐locus barcode with the more variable 5.8S+ITS‐2 to discriminate species without sufficient interspecific divergences in the tested rbcL region and to provide insight into species identity from a separately evolved genome.  相似文献   

14.
Non-biting midges (Diptera: Chironomidae) are a diverse population that commonly causes respiratory allergies in humans. Chironomid larvae can be used to indicate freshwater pollution, but accurate identification on the basis of morphological characteristics is difficult. In this study, we constructed a mitochondrial cytochrome c oxidase subunit I (COI)-based DNA barcode library for Korean chironomids. This library consists of 211 specimens from 49 species, including adults and unidentified larvae. The interspecies and intraspecies COI sequence variations were analyzed. Sophisticated indexes were developed in order to properly evaluate indistinct barcode gaps that are created by insufficient sampling on both the interspecies and intraspecies levels and by variable mutation rates across taxa. In a variety of insect datasets, these indexes were useful for re-evaluating large barcode datasets and for defining COI barcode gaps. The COI-based DNA barcode library will provide a rapid and reliable tool for the molecular identification of Korean chironomid species. Furthermore, this reverse-taxonomic approach will be improved by the continuous addition of other speceis’ sequences to the library.  相似文献   

15.
DNA barcoding is a molecular tool that exploits a unique DNA sequence of a standardized gene or non-coding region for the species identification of unknown individuals. The investigation into a suitable barcode for diatoms is ongoing and there are several promising candidates including mitochondrial, plastidial and nuclear markers. We analyzed 272 sequences from 76 diatoms species in the orders Thalassiosirales, Lithodesmiales and Cymatosirales, using distance and character based approaches, to assess the applicability of a DNA barcode based on the hypervariable V4 region of the nuclear 18S rRNA gene. We show that the proposed V4 barcode separated ca. 97% of all centric diatom taxa tested using a threshold p-distance of 0.02 and that many problem pairs were further separated using a character based approach. The reliability of amplification, extensive reference library and variability seen in the V4 region make it the most promising candidate to date for a barcode marker for diatoms particularly when combined with DNA character analysis.  相似文献   

16.
DNA barcoding was used in the identification of 89 commercially important freshwater and marine fish species found in Turkish ichthyofauna. A total of 1765 DNA barcodes using a 654‐bp‐long fragment of the mitochondrial cytochrome c oxidase subunit I gene were generated for 89 commercially important freshwater and marine fish species found in Turkish ichthyofauna. These species belong to 70 genera, 40 families and 19 orders from class Actinopterygii, and all were associated with a distinct DNA barcode. Nine and 12 of the COI barcode clusters represent the first species records submitted to the BOLD and GenBank databases, respectively. All COI barcodes (except sequences of first species records) were matched with reference sequences of expected species, according to morphological identification. Average nucleotide frequencies of the data set were calculated as T = 29.7%, C = 28.2%, A = 23.6% and G = 18.6%. Average pairwise genetic distance among individuals were estimated as 0.32%, 9.62%, 17,90% and 22.40% for conspecific, congeneric, confamilial and within order, respectively. Kimura 2‐parameter genetic distance values were found to increase with taxonomic level. For most of the species analysed in our data set, there is a barcoding gap, and an overlap in the barcoding gap exists for only two genera. Neighbour‐joining trees were drawn based on DNA barcodes and all the specimens clustered in agreement with their taxonomic classification at species level. Results of this study supported DNA barcoding as an efficient molecular tool for a better monitoring, conservation and management of fisheries.  相似文献   

17.
Anthropogenic impacts are an increasing threat to the diversity of fishes, especially in areas around large urban centres, and many effective conservation actions depend on accurate species identification. Considering the utility of DNA barcoding as a global system for species identification and discovery, this study aims to assemble a DNA barcode reference sequence library for marine fishes from the coastal region of São Paulo State, Brazil. The standard 652 bp ‘barcode’ fragment of the cytochrome c oxidase subunit I (COI) gene was PCR amplified and bidirectionally sequenced from 678 individuals belonging to 135 species. A neighbour‐joining analysis revealed that this approach can unambiguously discriminate 97% of the species surveyed. Most species exhibited low intraspecific genetic distances (0.31%), about 43‐fold less than the distance among species within a genus. Four species showed higher intraspecific divergences ranging from 2.2% to 7.6%, suggesting overlooked diversity. Notably, just one species‐pair exhibited barcode divergences of <1%. This library is a first step to better know the molecular diversity of marine fish species from São Paulo, providing a basis for further studies of this fauna – extending the ability to identify these species from all life stages and even fragmentary remains, setting the stage for a better understanding of interactions among species, calibrating the estimations about species composition and richness in an ecosystem, and providing tools for authenticating bioproducts and monitoring illegal species exploitation.  相似文献   

18.

Background

DNA barcoding refers to the use of short DNA sequences for rapid identification of species. Genetic distance or character attributes of a particular barcode locus discriminate the species. We report an efficient approach to analyze short sequence data for discrimination between species.

Methodology and Principal Findings

A new approach, Oligonucleotide Frequency Range (OFR) of barcode loci for species discrimination is proposed. OFR of the loci that discriminates between species was characteristic of a species, i.e., the maxima and minima within a species did not overlap with that of other species. We compared the species resolution ability of different barcode loci using p-distance, Euclidean distance of oligonucleotide frequencies, nucleotide-character based approach and OFR method. The species resolution by OFR was either higher or comparable to the other methods. A short fragment of 126 bp of internal transcribed spacer region in ribosomal RNA gene was sufficient to discriminate a majority of the species using OFR.

Conclusions/Significance

Oligonucleotide frequency range of a barcode locus can discriminate between species. Ability to discriminate species using very short DNA fragments may have wider applications in forensic and conservation studies.  相似文献   

19.
DNA barcodes analyzed by using relevant techniques provide an imperative approach towards validation of prevailing taxa and putative species. Here, molecular methods were used for assessment of 246 barcodes belonging to 81 fish species from northern Western Ghats of India, using, Barcode gap analysis, barcode index number, automatic barcode gap discovery, Poisson tree processes and general mixed Yule-coalescent, these methods had their potential to discriminate 97.53%, 93.90% 95.06%, 93.82% and 92.59% of species respectively. But, some of them tended to estimate the inconsistent number of species leading to discrepancies between the morphological concept and inference from molecular phylogenetic reconstructions. So, we took a standard approach to recognize those methods that produced consistent results, three of five such methods were identified that revealed three hidden cryptic species complexes in Monopterus indicus, Parambassis ranga and Systomus sarana. Further, to validate these three genetically diverged species, we used diagnostic character based approach along with nine unidentified species through BLOG and WEKAs SMO classifier. Those methods were unable to identify these species, which might be due to the limited number of specimens used for the analysis. This is the first effort to generate the DNA barcode reference library of freshwater fishes from northern Western Ghats of India, one of the world’s biodiversity hotspots. These barcodes when analyzed through the defined workflow, will provide valuable measures to prove the efficiency of molecular species delimitation methods in taxonomic discrimination which aid conservation of biodiversity.  相似文献   

20.
Abstract The genus Eois comprises an important part of megadiverse assemblages of geometrid moths in mountain rainforests of southern Ecuador. In this study we report: (i) on the construction of a DNA barcode library of Eois for identification purposes; and (ii) the exploration of species diversity through species delimitation by pair‐wise distance thresholds. COI barcode sequences were generated from 408 individuals (at least 105 species) collected on a narrow geographic scale (~40 km2) in the Reserva Biológica San Francisco. Analyses of barcode sequence divergence showed that species delimitations based solely on external morphology result in broad overlap of intra‐ and interspecific distances. Species delimitation at a 2% pair‐wise distance threshold reveals a clear barcoding gap. Fifty‐two previously unrecognized species were identified, 31 of which could only be distinguished by an integrative taxonomy approach. Twelve additional putative species could only be recognized by threshold‐based delimitation. Most splits resulted in two or three newly perceived cryptic taxa. The present study increased the number of Eois species recorded from that small area of Andean mountain forest from 102 to 154 (morphology‐ plus integrative taxonomy‐based) or even 166 (sequence‐based), leaving the species accumulation curve still far from reaching an asymptote. Notably, in no case did two or more previously distinguished morphospecies have to be lumped. This barcode inventory can be used to match larvae to known adult samples without rearing, and will therefore be of vital help to extend the currently limited knowledge about food plant relationships and host specialization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号