首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species’ responses at the genetic level are key to understanding the long‐term consequences of anthropogenic global change. Herbaria document such responses, and, with contemporary sampling, provide high‐resolution time‐series of plant evolutionary change. Characterizing genetic diversity is straightforward for model species with small genomes and a reference sequence. For nonmodel species—with small or large genomes—diversity is traditionally assessed using restriction‐enzyme‐based sequencing. However, age‐related DNA damage and fragmentation preclude the use of this approach for ancient herbarium DNA. Here, we combine reduced‐representation sequencing and hybridization‐capture to overcome this challenge and efficiently compare contemporary and historical specimens. Specifically, we describe how homemade DNA baits can be produced from reduced‐representation libraries of fresh samples, and used to efficiently enrich historical libraries for the same fraction of the genome to produce compatible sets of sequence data from both types of material. Applying this approach to both Arabidopsis thaliana and the nonmodel plant Cardamine bulbifera, we discovered polymorphisms de novo in an unbiased, reference‐free manner. We show that the recovered genetic variation recapitulates known genetic diversity in A. thaliana, and recovers geographical origin in both species and over time, independent of bait diversity. Hence, our method enables fast, cost‐efficient, large‐scale integration of contemporary and historical specimens for assessment of genome‐wide genetic trends over time, independent of genome size and presence of a reference genome.  相似文献   

2.
There has been remarkably little attention to using the high resolution provided by genotyping‐by‐sequencing (i.e., RADseq and similar methods) for assessing relatedness in wildlife populations. A major hurdle is the genotyping error, especially allelic dropout, often found in this type of data that could lead to downward‐biased, yet precise, estimates of relatedness. Here, we assess the applicability of genotyping‐by‐sequencing for relatedness inferences given its relatively high genotyping error rate. Individuals of known relatedness were simulated under genotyping error, allelic dropout and missing data scenarios based on an empirical ddRAD data set, and their true relatedness was compared to that estimated by seven relatedness estimators. We found that an estimator chosen through such analyses can circumvent the influence of genotyping error, with the estimator of Ritland (Genetics Research, 67, 175) shown to be unaffected by allelic dropout and to be the most accurate when there is genotyping error. We also found that the choice of estimator should not rely solely on the strength of correlation between estimated and true relatedness as a strong correlation does not necessarily mean estimates are close to true relatedness. We also demonstrated how even a large SNP data set with genotyping error (allelic dropout or otherwise) or missing data still performs better than a perfectly genotyped microsatellite data set of tens of markers. The simulation‐based approach used here can be easily implemented by others on their own genotyping‐by‐sequencing data sets to confirm the most appropriate and powerful estimator for their data.  相似文献   

3.
Whole‐genome resequencing (WGR) is a powerful method for addressing fundamental evolutionary biology questions that have not been fully resolved using traditional methods. WGR includes four approaches: the sequencing of individuals to a high depth of coverage with either unresolved or resolved haplotypes, the sequencing of population genomes to a high depth by mixing equimolar amounts of unlabelled‐individual DNA (Pool‐seq) and the sequencing of multiple individuals from a population to a low depth (lcWGR). These techniques require the availability of a reference genome. This, along with the still high cost of shotgun sequencing and the large demand for computing resources and storage, has limited their implementation in nonmodel species with scarce genomic resources and in fields such as conservation biology. Our goal here is to describe the various WGR methods, their pros and cons and potential applications in conservation biology. WGR offers an unprecedented marker density and surveys a wide diversity of genetic variations not limited to single nucleotide polymorphisms (e.g., structural variants and mutations in regulatory elements), increasing their power for the detection of signatures of selection and local adaptation as well as for the identification of the genetic basis of phenotypic traits and diseases. Currently, though, no single WGR approach fulfils all requirements of conservation genetics, and each method has its own limitations and sources of potential bias. We discuss proposed ways to minimize such biases. We envision a not distant future where the analysis of whole genomes becomes a routine task in many nonmodel species and fields including conservation biology.  相似文献   

4.
Next‐generation sequencing (NGS) is emerging as an efficient and cost‐effective tool in population genomic analyses of nonmodel organisms, allowing simultaneous resequencing of many regions of multi‐genomic DNA from multiplexed samples. Here, we detail our synthesis of protocols for targeted resequencing of mitochondrial and nuclear loci by generating indexed genomic libraries for multiplexing up to 100 individuals in a single sequencing pool, and then enriching the pooled library using custom DNA capture arrays. Our use of DNA sequence from one species to capture and enrich the sequencing libraries of another species (i.e. cross‐species DNA capture) indicates that efficient enrichment occurs when sequences are up to about 12% divergent, allowing us to take advantage of genomic information in one species to sequence orthologous regions in related species. In addition to a complete mitochondrial genome on each array, we have included between 43 and 118 nuclear loci for low‐coverage sequencing of between 18 kb and 87 kb of DNA sequence per individual for single nucleotide polymorphisms discovery from 50 to 100 individuals in a single sequencing lane. Using this method, we have generated a total of over 500 whole mitochondrial genomes from seven cetacean species and green sea turtles. The greater variation detected in mitogenomes relative to short mtDNA sequences is helping to resolve genetic structure ranging from geographic to species‐level differences. These NGS and analysis techniques have allowed for simultaneous population genomic studies of mtDNA and nDNA with greater genomic coverage and phylogeographic resolution than has previously been possible in marine mammals and turtles.  相似文献   

5.
6.
Developing genomic insights is challenging in nonmodel species for which resources are often scarce and prohibitively costly. Here, we explore the potential of a recently established approach using Pool‐seq data to generate a de novo genome assembly for mining exons, upon which Pool‐seq data are used to estimate population divergence and diversity. We do this for two pairs of sympatric populations of brown trout (Salmo trutta): one naturally sympatric set of populations and another pair of populations introduced to a common environment. We validate our approach by comparing the results to those from markers previously used to describe the populations (allozymes and individual‐based single nucleotide polymorphisms [SNPs]) and from mapping the Pool‐seq data to a reference genome of the closely related Atlantic salmon (Salmo salar). We find that genomic differentiation (FST) between the two introduced populations exceeds that of the naturally sympatric populations (FST = 0.13 and 0.03 between the introduced and the naturally sympatric populations, respectively), in concordance with estimates from the previously used SNPs. The same level of population divergence is found for the two genome assemblies, but estimates of average nucleotide diversity differ ( ≈ 0.002 and  ≈ 0.001 when mapping to S. trutta and S. salar, respectively), although the relationships between population values are largely consistent. This discrepancy might be attributed to biases when mapping to a haploid condensed assembly made of highly fragmented read data compared to using a high‐quality reference assembly from a divergent species. We conclude that the Pool‐seq‐only approach can be suitable for detecting and quantifying genome‐wide population differentiation, and for comparing genomic diversity in populations of nonmodel species where reference genomes are lacking.  相似文献   

7.
Flexibility and low cost make genotyping‐by‐sequencing (GBS) an ideal tool for population genomic studies of nonmodel species. However, to utilize the potential of the method fully, many parameters affecting library quality and single nucleotide polymorphism (SNP) discovery require optimization, especially for conifer genomes with a high repetitive DNA content. In this study, we explored strategies for effective GBS analysis in pine species. We constructed GBS libraries using HpaII, PstI and EcoRI‐MseI digestions with different multiplexing levels and examined the effect of restriction enzymes on library complexity and the impact of sequencing depth and size selection of restriction fragments on sequence coverage bias. We tested and compared UNEAK, Stacks and GATK pipelines for the GBS data, and then developed a reference‐free SNP calling strategy for haploid pine genomes. Our GBS procedure proved to be effective in SNP discovery, producing 7000–11 000 and 14 751 SNPs within and among three pine species, respectively, from a PstI library. This investigation provides guidance for the design and analysis of GBS experiments, particularly for organisms for which genomic information is lacking.  相似文献   

8.
Whole genome sequences (WGS) greatly increase our ability to precisely infer population genetic parameters, demographic processes, and selection signatures. However, WGS may still be not affordable for a representative number of individuals/populations. In this context, our goal was to assess the efficiency of several SNP genotyping strategies by testing their ability to accurately estimate parameters describing neutral diversity and to detect signatures of selection. We analysed 110 WGS at 12× coverage for four different species, i.e., sheep, goats and their wild counterparts. From these data we generated 946 data sets corresponding to random panels of 1K to 5M variants, commercial SNP chips and exome capture, for sample sizes of five to 48 individuals. We also extracted low‐coverage genome resequencing of 1×, 2× and 5× by randomly subsampling reads from the 12× resequencing data. Globally, 5K to 10K random variants were enough for an accurate estimation of genome diversity. Conversely, commercial panels and exome capture displayed strong ascertainment biases. Besides the characterization of neutral diversity, the detection of the signature of selection and the accurate estimation of linkage disequilibrium (LD) required high‐density panels of at least 1M variants. Finally, genotype likelihoods increased the quality of variant calling from low coverage resequencing but proportions of incorrect genotypes remained substantial, especially for heterozygote sites. Whole genome resequencing coverage of at least 5× appeared to be necessary for accurate assessment of genomic variations. These results have implications for studies seeking to deploy low‐density SNP collections or genome scans across genetically diverse populations/species showing similar genetic characteristics and patterns of LD decay for a wide variety of purposes.  相似文献   

9.
Recent advances in high‐throughput sequencing library preparation and subgenomic enrichment methods have opened new avenues for population genetics and phylogenetics of nonmodel organisms. To multiplex large numbers of indexed samples while sequencing predominantly orthologous, targeted regions of the genome, we propose modifications to an existing, in‐solution capture that utilizes PCR products as target probes to enrich library pools for the genomic subset of interest. The sequence capture using PCR‐generated probes (SCPP) protocol requires no specialized equipment, is highly flexible and significantly reduces experimental costs for projects where a modest scale of genetic data is optimal (25–100 genomic loci). Our alterations enable application of this method across a wider phylogenetic range of taxa and result in higher capture efficiencies and coverage at each locus. Efficient and consistent capture over multiple SCPP experiments and at various phylogenetic distances is demonstrated, extending the utility of this method to both phylogeographic and phylogenomic studies.  相似文献   

10.
Understanding the genetics of biological diversification across micro‐ and macro‐evolutionary time scales is a vibrant field of research for molecular ecologists as rapid advances in sequencing technologies promise to overcome former limitations. In palms, an emblematic, economically and ecologically important plant family with high diversity in the tropics, studies of diversification at the population and species levels are still hampered by a lack of genomic markers suitable for the genotyping of large numbers of recently diverged taxa. To fill this gap, we used a whole genome sequencing approach to develop target sequencing for molecular markers in 4,184 genome regions, including 4,051 genes and 133 non‐genic putatively neutral regions. These markers were chosen to cover a wide range of evolutionary rates allowing future studies at the family, genus, species and population levels. Special emphasis was given to the avoidance of copy number variation during marker selection. In addition, a set of 149 well‐known sequence regions previously used as phylogenetic markers by the palm biological research community were included in the target regions, to open the possibility to combine and jointly analyse already available data sets with genomic data to be produced with this new toolkit. The bait set was effective for species belonging to all three palm sub‐families tested (Arecoideae, Ceroxyloideae and Coryphoideae), with high mapping rates, specificity and efficiency. The number of high‐quality single nucleotide polymorphisms (SNPs) detected at both the sub‐family and population levels facilitates efficient analyses of genomic diversity across micro‐ and macro‐evolutionary time scales.  相似文献   

11.
For half a century population genetics studies have put type II restriction endonucleases to work. Now, coupled with massively‐parallel, short‐read sequencing, the family of RAD protocols that wields these enzymes has generated vast genetic knowledge from the natural world. Here, we describe the first software natively capable of using paired‐end sequencing to derive short contigs from de novo RAD data. Stacks version 2 employs a de Bruijn graph assembler to build and connect contigs from forward and reverse reads for each de novo RAD locus, which it then uses as a reference for read alignments. The new architecture allows all the individuals in a metapopulation to be considered at the same time as each RAD locus is processed. This enables a Bayesian genotype caller to provide precise SNPs, and a robust algorithm to phase those SNPs into long haplotypes, generating RAD loci that are 400–800 bp in length. To prove its recall and precision, we tested the software with simulated data and compared reference‐aligned and de novo analyses of three empirical data sets. Our study shows that the latest version of Stacks is highly accurate and outperforms other software in assembling and genotyping paired‐end de novo data sets.  相似文献   

12.
13.
Restriction site‐associated DNA sequencing (RAD‐Seq), a next‐generation sequencing‐based genome ‘complexity reduction’ protocol, has been useful in population genomics in species with a reference genome. However, the application of this protocol to natural populations of genomically underinvestigated species, particularly under low‐to‐medium sequencing depth, has not been well justified. In this study, a Bayesian method was developed for calling genotypes from an F2 population of bottle gourd [Lagenaria siceraria (Mol.) Standl.] to construct a high‐density genetic map. Low‐depth genome shotgun sequencing allowed the assembly of scaffolds/contigs comprising approximately 50% of the estimated genome, of which 922 were anchored for identifying syntenic regions between species. RAD‐Seq genotyping of a natural population comprising 80 accessions identified 3226 single nuclear polymorphisms (SNPs), based on which two sub‐gene pools were suggested for association with fruit shape. The two sub‐gene pools were moderately differentiated, as reflected by the Hudson's FST value of 0.14, and they represent regions on LG7 with strikingly elevated FST values. Seven‐fold reduction in heterozygosity and two times increase in LD (r2) were observed in the same region for the round‐fruited sub‐gene pool. Outlier test suggested the locus LX3405 on LG7 to be a candidate site under selection. Comparative genomic analysis revealed that the cucumber genome region syntenic to the high FST island on LG7 harbors an ortholog of the tomato fruit shape gene OVATE. Our results point to a bright future of applying RAD‐Seq to population genomic studies for non‐model species even under low‐to‐medium sequencing efforts. The genomic resources provide valuable information for cucurbit genome research.  相似文献   

14.
Decreasing costs of next‐generation sequencing (NGS) experiments have made a wide range of genomic questions open for study with nonmodel organisms. However, experimental designs and analysis of NGS data from less well‐known species are challenging because of the lack of genomic resources. In this work, we investigate the performance of alternative experimental designs and bioinformatics approaches in estimating variability and neutrality tests based on the site‐frequency‐spectrum (SFS) from individual resequencing data. We pay particular attention to challenges faced in the study of nonmodel organisms, in particular the absence of a species‐specific reference genome, although phylogenetically close genomes are assumed to be available. We compare the performance of three alternative bioinformatics approaches – genotype calling, genotype–haplotype calling and direct estimation without calling genotypes. We find that relying on genotype calls provides biased estimates of population genetic statistics at low to moderate read depth (2–8×). Genotype–haplotype calling returns more accurate estimates irrespective of the divergence to the reference genome, but requires moderate depth (8–20×). Direct estimation without calling genotypes returns the most accurate estimates of variability and of most SFS tests investigated, including at low read depth (2–4×). Studies without species‐specific reference genome should thus aim for low read depth and avoid genotype calling whenever individual genotypes are not essential. Otherwise, aiming for moderate to high depth at the expense of number of individuals, and using genotype–haplotype calling, is recommended.  相似文献   

15.
Crop wild relatives (CWR) provide an important source of allelic diversity for any given crop plant species for counteracting the erosion of genetic diversity caused by domestication and elite breeding bottlenecks. Hordeum bulbosum L. is representing the secondary gene pool of the genus Hordeum. It has been used as a source of genetic introgressions for improving elite barley germplasm (Hordeum vulgare L.). However, genetic introgressions from Hbulbosum have yet not been broadly applied, due to a lack of suitable molecular tools for locating, characterizing, and decreasing by recombination and marker‐assisted backcrossing the size of introgressed segments. We applied next‐generation sequencing (NGS) based strategies for unlocking genetic diversity of three diploid introgression lines of cultivated barley containing chromosomal segments of its close relative H. bulbosum. Firstly, exome capture‐based (re)‐sequencing revealed large numbers of single nucleotide polymorphisms (SNPs) enabling the precise allocation of H. bulbosum introgressions. This SNP resource was further exploited by designing a custom multiplex SNP genotyping assay. Secondly, two‐enzyme‐based genotyping‐by‐sequencing (GBS) was employed to allocate the introgressed H. bulbosum segments and to genotype a mapping population. Both methods provided fast and reliable detection and mapping of the introgressed segments and enabled the identification of recombinant plants. Thus, the utilization of H. bulbosum as a resource of natural genetic diversity in barley crop improvement will be greatly facilitated by these tools in the future.  相似文献   

16.
Molecular markers produced by next‐generation sequencing (NGS) technologies are revolutionizing genetic research. However, the costs of analysing large numbers of individual genomes remain prohibitive for most population genetics studies. Here, we present results based on mathematical derivations showing that, under many realistic experimental designs, NGS of DNA pools from diploid individuals allows to estimate the allele frequencies at single nucleotide polymorphisms (SNPs) with at least the same accuracy as individual‐based analyses, for considerably lower library construction and sequencing efforts. These findings remain true when taking into account the possibility of substantially unequal contributions of each individual to the final pool of sequence reads. We propose the intuitive notion of effective pool size to account for unequal pooling and derive a Bayesian hierarchical model to estimate this parameter directly from the data. We provide a user‐friendly application assessing the accuracy of allele frequency estimation from both pool‐ and individual‐based NGS population data under various sampling, sequencing depth and experimental error designs. We illustrate our findings with theoretical examples and real data sets corresponding to SNP loci obtained using restriction site–associated DNA (RAD) sequencing in pool‐ and individual‐based experiments carried out on the same population of the pine processionary moth (Thaumetopoea pityocampa). NGS of DNA pools might not be optimal for all types of studies but provides a cost‐effective approach for estimating allele frequencies for very large numbers of SNPs. It thus allows comparison of genome‐wide patterns of genetic variation for large numbers of individuals in multiple populations.  相似文献   

17.
18.
High‐throughput sequencing has revolutionized population and conservation genetics. RAD sequencing methods, such as 2b‐RAD, can be used on species lacking a reference genome. However, transferring protocols across taxa can potentially lead to poor results. We tested two different IIB enzymes (AlfI and CspCI) on two species with different genome sizes (the loggerhead turtle Caretta caretta and the sharpsnout seabream Diplodus puntazzo) to build a set of guidelines to improve 2b‐RAD protocols on non‐model organisms while optimising costs. Good results were obtained even with degraded samples, showing the value of 2b‐RAD in studies with poor DNA quality. However, library quality was found to be a critical parameter on the number of reads and loci obtained for genotyping. Resampling analyses with different number of reads per individual showed a trade‐off between number of loci and number of reads per sample. The resulting accumulation curves can be used as a tool to calculate the number of sequences per individual needed to reach a mean depth ≥20 reads to acquire good genotyping results. Finally, we demonstrated that selective‐base ligation does not affect genomic differentiation between individuals, indicating that this technique can be used in species with large genome sizes to adjust the number of loci to the study scope, to reduce sequencing costs and to maintain suitable sequencing depth for a reliable genotyping without compromising the results. Here, we provide a set of guidelines to improve 2b‐RAD protocols on non‐model organisms with different genome sizes, helping decision‐making for a reliable and cost‐effective genotyping.  相似文献   

19.
Identifying fish stock structure is fundamental to pinpoint stocks that might contribute colonizers to overfished stocks. However, a stock's potential to contribute to rebuilding hinges on demographic connectivity, a challenging parameter to measure. With genomics as a new tool, fisheries managers can detect signatures of natural selection and thus identify fishing areas likely to contribute evolutionarily compatible colonizers to an overfished area (i.e. colonizers that are not at a fitness disadvantage in the overfished area and able to reproduce at optimal rates). Identifying evolutionarily compatible stocks would help narrow the focus on establishing demographic connectivity where it matters. Here, we genotype 4723 SNPs in 616 orange roughy (Hoplostethus atlanticus) across five fishing areas off the Tasmanian coast in Australia. We ask whether these areas form a single genetic unit, and test for signatures of local adaptation. Results from amova , structure , discriminant analysis of principal components, bayesass and isolation by distance suggest that sampled locations are subjected to geneflow amounts that are above what is needed to establish ‘drift connectivity’. However, it remains unclear whether there is a single panmictic population or several highly connected populations. Most importantly, we did not find any evidence of local adaptation, suggesting that the examined orange roughy stocks are evolutionarily compatible. The data have helped test an assumption of the orange roughy management programme and to formulate hypotheses regarding stock demographic connectivity. Overall, our results demonstrate the potential of genomics to inform fisheries management, even when evidence for stock structure is sparse.  相似文献   

20.
Reduced representation genome sequencing such as restriction‐site‐associated DNA (RAD) sequencing is finding increased use to identify and genotype large numbers of single‐nucleotide polymorphisms (SNPs) in model and nonmodel species. We generated a unique resource of novel SNP markers for the European eel using the RAD sequencing approach that was simultaneously identified and scored in a genome‐wide scan of 30 individuals. Whereas genomic resources are increasingly becoming available for this species, including the recent release of a draft genome, no genome‐wide set of SNP markers was available until now. The generated SNPs were widely distributed across the eel genome, aligning to 4779 different contigs and 19 703 different scaffolds. Significant variation was identified, with an average nucleotide diversity of 0.00529 across individuals. Results varied widely across the genome, ranging from 0.00048 to 0.00737 per locus. Based on the average nucleotide diversity across all loci, long‐term effective population size was estimated to range between 132 000 and 1 320 000, which is much higher than previous estimates based on microsatellite loci. The generated SNP resource consisting of 82 425 loci and 376 918 associated SNPs provides a valuable tool for future population genetics and genomics studies and allows for targeting specific genes and particularly interesting regions of the eel genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号