首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the history of forests and their species'' demographic responses to past disturbances is important for predicting impacts of future environmental changes. Tropical rainforests of the Guineo-Congolian region in Central Africa are believed to have survived the Pleistocene glacial periods in a few major refugia, essentially centred on mountainous regions close to the Atlantic Ocean. We tested this hypothesis by investigating the phylogeographic structure of a widespread, ancient rainforest tree species, Symphonia globulifera L. f. (Clusiaceae), using plastid DNA sequences (chloroplast DNA [cpDNA], psbA-trnH intergenic spacer) and nuclear microsatellites (simple sequence repeats, SSRs). SSRs identified four gene pools located in Benin, West Cameroon, South Cameroon and Gabon, and São Tomé. This structure was also apparent at cpDNA. Approximate Bayesian Computation detected recent bottlenecks approximately dated to the last glacial maximum in Benin, West Cameroon and São Tomé, and an older bottleneck in South Cameroon and Gabon, suggesting a genetic effect of Pleistocene cycles of forest contraction. CpDNA haplotype distribution indicated wide-ranging long-term persistence of S. globulifera both inside and outside of postulated forest refugia. Pollen flow was four times greater than that of seed in South Cameroon and Gabon, which probably enabled rapid population recovery after bottlenecks. Furthermore, our study suggested ecotypic differentiation—coastal or swamp vs terra firme—in S. globulifera. Comparison with other tree phylogeographic studies in Central Africa highlighted the relevance of species-specific responses to environmental change in forest trees.  相似文献   

2.
Butterflyfish are among the most iconic of the coral reef fishes and represent a model system to study general questions of biogeography, evolution and population genetics. We assembled and annotated the genome sequence of the blacktail butterflyfish (Chaetodon austriacus), an Arabian region endemic species that is reliant on coral reefs for food and shelter. Using available bony fish (superclass Osteichthyes) genomes as a reference, a total of 28 926 high‐quality protein‐coding genes were predicted from 13 967 assembled scaffolds. The quality and completeness of the draft genome of C. austriacus suggest that it has the potential to serve as a resource for studies on the co‐evolution of reef fish adaptations to the unique Red Sea environment, as well as a comparison of gene sequences between closely related congeneric species of butterflyfish distributed more broadly across the tropical Indo‐Pacific.  相似文献   

3.
Marine medaka (Oryzias melastigma) is considered to be a useful fish model for marine and estuarine ecotoxicology studies and has good potential for field‐based population genomics because of its geographical distribution in Asian estuarine and coastal areas. In this study, we present the first whole‐genome draft of O. melastigma. The genome assembly consists of 8,602 scaffolds (N50 = 23.737 Mb) and a total genome length of 779.4 Mb. A total of 23,528 genes were predicted, and 12,670 gene families shared with three teleost species (Japanese medaka, mangrove killifish and zebrafish) were identified. Genome analyses revealed that the O. melastigma genome is highly heterozygous and contains a large number of repeat sequences. This assembly represents a useful genomic resource for fish scientists.  相似文献   

4.
The rice stem borer, Chilo suppressalis, is one of the most damaging insect pests to rice production worldwide. Although C. suppressalis has been the focus of numerous studies examining cold tolerance and diapause, plant–insect interactions, pesticide targets and resistance, and the development of RNAi‐mediated pest management, the absence of a high‐quality genome has limited deeper insights. To address this limitation, we generated a draft C. suppressalis genome constructed from both Illumina and PacBio sequences. The assembled genome size was 824.35 Mb with a contig N50 of 307 kb and a scaffold N50 of 1.75 Mb. Hi‐C scaffolding assigned 99.2% of the bases to one of 29 chromosomes. Based on universal single‐copy orthologues (BUSCO), the draft genome assembly was estimated to be 97% complete and is predicted to encompass 15,653 protein‐coding genes. Cold tolerance is an extreme survival strategy found in animals. However, little is known regarding the genetic basis of the winter ecology of C. suppressalis. Here, we focused our orthologous analysis on those gene families associated with animal cold tolerance. Our finding provided the first genomic evidence revealing specific cold‐tolerant strategies in C. suppressalis, including those involved in glucose‐originated glycerol biosynthesis, triacylglycerol‐originated glycerol biosynthesis, fatty acid synthesis and trehalose transport‐intermediate cold tolerance. The high‐quality C. suppressalis genome provides a valuable resource for research into a broad range of areas in molecular ecology, and subsequently benefits developing modern pest control strategies.  相似文献   

5.
6.
The leopard coral grouper, Plectropomus leopardus, belonging to the family Epinephelinae, is a carnivorous coral reef fish widely distributed in tropical and subtropical waters of the Indo‐Pacific. Due to its appealing body appearance and delicious taste, P. leopardus has become a popular commercial fish for aquaculture in many countries. However, the lack of genomic and molecular resources for P. leopardus has hindered study of its biology and genomic breeding programmes. Here we report the de novo sequencing and assembly of the P. leopardus genome using a combination of 10 × Genomics, high‐throughput chromosome conformation capture (Hi‐C) and PacBio long‐read sequencing technologies. The genome assembly has a total length of 881.55 Mb with a scaffold N50 of 34.15 Mb, consisting of 24 pseudochromosome scaffolds. busco analysis showed that 97.2% of the conserved single‐copy genes were retrieved, indicating the assembly was almost entire. We predicted 25,248 protein‐coding genes, among which 96.5% were functionally annotated. Comparative genomic analyses revealed that gene family expansions in P. leopardus were associated with immune‐related pathways. In addition, we identified 5,178,453 single nucleotide polymorphisms based on genome resequencing of 54 individuals. The P. leopardus genome and genomic variation data provide valuable genomic resources for studies of its genetics, evolution and biology. In particular, it is expected to benefit the development of genomic breeding programmes in the farming industry.  相似文献   

7.
8.
The first microsatellite linkage map of Ae. speltoides Tausch (2n = 2x = 14, SS), which is a wild species with a genome closely related to the B and G genomes of polyploid wheats, was developed based on two F2 mapping populations using microsatellite (SSR) markers from Ae. speltoides, wheat genomic SSRs (g-SSRs) and EST-derived SSRs. A total of 144 different microsatellite loci were mapped in the Ae. speltoides genome. The transferability of the SSRs markers between the related S, B, and G genomes allowed possible integration of new markers into the T. timopheevii G genome chromosomal maps and map-based comparisons. Thirty-one new microsatellite loci assigned to the genetic framework of the T. timopheevii G genome maps were composed of wheat g-SSR (genomic SSR) markers. Most of the used Ae. speltoides SSRs were mapped onto chromosomes of the G genome supporting a close relationship between the G and S genomes. Comparative microsatellite mapping of the S, B, and G genomes demonstrated colinearity between the chromosomes within homoeologous groups, except for intergenomic T6AtS.1G, T4AL.5AL.7BS translocations. A translocation between chromosomes 2 and 6 that is present in the T. aestivum B genome was found in neither Ae. speltoides nor in T. timopheevii. Although the marker order was generally conserved among the B, S, and G genomes, the total length of the Ae. speltoides chromosomal maps and the genetic distances between homoeologous loci located in the proximal regions of the S genome chromosomes were reduced compared with the B, and G genome chromosomes.  相似文献   

9.
10.
With the access to draft genome sequence assemblies and whole‐genome resequencing data from population samples, molecular ecology studies will be able to take truly genome‐wide approaches. This now applies to an avian model system in ecological and evolutionary research: Old World flycatchers of the genus Ficedula, for which we recently obtained a 1.1 Gb collared flycatcher genome assembly and identified 13 million single‐nucleotide polymorphism (SNP)s in population resequencing of this species and its sister species, pied flycatcher. Here, we developed a custom 50K Illumina iSelect flycatcher SNP array with markers covering 30 autosomes and the Z chromosome. Using a number of selection criteria for inclusion in the array, both genotyping success rate and polymorphism information content (mean marker heterozygosity = 0.41) were high. We used the array to assess linkage disequilibrium (LD) and hybridization in flycatchers. Linkage disequilibrium declined quickly to the background level at an average distance of 17 kb, but the extent of LD varied markedly within the genome and was more than 10‐fold higher in ‘genomic islands’ of differentiation than in the rest of the genome. Genetic ancestry analysis identified 33 F1 hybrids but no later‐generation hybrids from sympatric populations of collared flycatchers and pied flycatchers, contradicting earlier reports of backcrosses identified from much fewer number of markers. With an estimated divergence time as recently as <1 Ma, this suggests strong selection against F1 hybrids and unusually rapid evolution of reproductive incompatibility in an avian system.  相似文献   

11.
Triplophysa is an endemic fish genus of the Tibetan Plateau in China. Triplophysa tibetana, which lives at a recorded altitude of ~4,000 m and plays an important role in the highland aquatic ecosystem, serves as an excellent model for investigating high‐altitude environmental adaptation. However, evolutionary and conservation studies of T. tibetana have been limited by scarce genomic resources for the genus Triplophysa. In the present study, we applied PacBio sequencing and the Hi‐C technique to assemble the T. tibetana genome. A 652‐Mb genome with 1,325 contigs with an N50 length of 3.1 Mb was obtained. The 1,137 contigs were further assembled into 25 chromosomes, representing 98.7% and 80.47% of all contigs at the base and sequence number level, respectively. Approximately 260 Mb of sequence, accounting for ~39.8% of the genome, was identified as repetitive elements. DNA transposons (16.3%), long interspersed nuclear elements (12.4%) and long terminal repeats (11.0%) were the most repetitive types. In total, 24,372 protein‐coding genes were predicted in the genome, and ~95% of the genes were functionally annotated via a search in public databases. Using whole genome sequence information, we found that T. tibetana diverged from its common ancestor with Danio rerio ~121.4 million years ago. The high‐quality genome assembled in this work not only provides a valuable genomic resource for future population and conservation studies of T. tibetana, but it also lays a solid foundation for further investigation into the mechanisms of environmental adaptation of endemic fishes in the Tibetan Plateau.  相似文献   

12.
Introgression of genomic variation between and within related crop species is a significant evolutionary approach for population differentiation, genome reorganization and trait improvement. Using the Illumina Infinium Brassica 60K SNP array, we investigated genomic changes in a panel of advanced generation new‐type Brassica napus breeding lines developed from hundreds of interspecific crosses between 122 Brassica rapa and 74 Brassica carinata accessions, and compared them with representative accessions of their three parental species. The new‐type B. napus population presented rich genetic diversity and abundant novel genomic alterations, consisting of introgressions from B. rapa and B. carinata, novel allelic combinations, reconstructed linkage disequilibrium patterns and haplotype blocks, and frequent deletions and duplications (nonrandomly distributed), particularly in the C subgenome. After a much shorter, but very intensive, selection history compared to traditional B. napus, a total of 15 genomic regions with strong selective sweeps and 112 genomic regions with putative signals of selective sweeps were identified. Some of these regions were associated with important agronomic traits that were selected for during the breeding process, while others were potentially associated with restoration of genome stability and fertility after interspecific hybridization. Our results demonstrate how a novel method for population‐based crop genetic improvement can lead to rapid adaptation, restoration of genome stability and positive responses to artificial selection.  相似文献   

13.
Chinese liquorice/licorice (Glycyrrhiza uralensis) is a leguminous plant species whose roots and rhizomes have been widely used as a herbal medicine and natural sweetener. Whole‐genome sequencing is essential for gene discovery studies and molecular breeding in liquorice. Here, we report a draft assembly of the approximately 379‐Mb whole‐genome sequence of strain 308‐19 of G. uralensis; this assembly contains 34 445 predicted protein‐coding genes. Comparative analyses suggested well‐conserved genomic components and collinearity of gene loci (synteny) between the genome of liquorice and those of other legumes such as Medicago and chickpea. We observed that three genes involved in isoflavonoid biosynthesis, namely, 2‐hydroxyisoflavanone synthase (CYP93C), 2,7,4′‐trihydroxyisoflavanone 4′‐O‐methyltransferase/isoflavone 4′‐O‐methyltransferase (HI4OMT) and isoflavone‐7‐O‐methyltransferase (7‐IOMT) formed a cluster on the scaffold of the liquorice genome and showed conserved microsynteny with Medicago and chickpea. Based on the liquorice genome annotation, we predicted genes in the P450 and UDP‐dependent glycosyltransferase (UGT) superfamilies, some of which are involved in triterpenoid saponin biosynthesis, and characterised their gene expression with the reference genome sequence. The genome sequencing and its annotations provide an essential resource for liquorice improvement through molecular breeding and the discovery of useful genes for engineering bioactive components through synthetic biology approaches.  相似文献   

14.
The related A genome species of the Oryza genus are the effective gene pool for rice. Here, we report draft genomes for two Australian wild A genome taxa: O. rufipogon‐like population, referred to as Taxon A, and O. meridionalis‐like population, referred to as Taxon B. These two taxa were sequenced and assembled by integration of short‐ and long‐read next‐generation sequencing (NGS) data to create a genomic platform for a wider rice gene pool. Here, we report that, despite the distinct chloroplast genome, the nuclear genome of the Australian Taxon A has a sequence that is much closer to that of domesticated rice (O. sativa) than to the other Australian wild populations. Analysis of 4643 genes in the A genome clade showed that the Australian annual, O. meridionalis, and related perennial taxa have the most divergent (around 3 million years) genome sequences relative to domesticated rice. A test for admixture showed possible introgression into the Australian Taxon A (diverged around 1.6 million years ago) especially from the wild indica/O. nivara clade in Asia. These results demonstrate that northern Australia may be the centre of diversity of the A genome Oryza and suggest the possibility that this might also be the centre of origin of this group and represent an important resource for rice improvement.  相似文献   

15.
Years of selection for desirable fruit quality traits in dessert watermelon (Citrullus lanatus) has resulted in a narrow genetic base in modern cultivars. Development of novel genomic and genetic resources offers great potential to expand genetic diversity and improve important traits in watermelon. Here, we report a high‐quality genome sequence of watermelon cultivar ‘Charleston Gray’, a principal American dessert watermelon, to complement the existing reference genome from ‘97103’, an East Asian cultivar. Comparative analyses between genomes of ‘Charleston Gray’ and ‘97103’ revealed genomic variants that may underlie phenotypic differences between the two cultivars. We then genotyped 1365 watermelon plant introduction (PI) lines maintained at the U.S. National Plant Germplasm System using genotyping‐by‐sequencing (GBS). These PI lines were collected throughout the world and belong to three Citrullus species, C. lanatus, C. mucosospermus and C. amarus. Approximately 25 000 high‐quality single nucleotide polymorphisms (SNPs) were derived from the GBS data using the ‘Charleston Gray’ genome as the reference. Population genomic analyses using these SNPs discovered a close relationship between C. lanatus and Cmucosospermus and identified four major groups in these two species correlated to their geographic locations. Citrullus amarus was found to have a distinct genetic makeup compared to C. lanatus and Cmucosospermus. The SNPs also enabled identification of genomic regions associated with important fruit quality and disease resistance traits through genome‐wide association studies. The high‐quality ‘Charleston Gray’ genome and the genotyping data of this large collection of watermelon accessions provide valuable resources for facilitating watermelon research, breeding and improvement.  相似文献   

16.
The ladybird beetle Propylea japonica is an important natural enemy in agro‐ecological systems. Studies on the strong tolerance of P. japonica to high temperatures and insecticides, and its population and phenotype diversity have recently increased. However, abundant genome resources for obtaining insights into stress‐resistance mechanisms and genetic intra‐species diversity for P. japonica are lacking. Here, we constructed the P. japonica genome maps using Pacific Bioscience (PacBio) and Illumina sequencing technologies. The genome size was 850.90 Mb with a contig N50 of 813.13 kb. The Hi‐C sequence data were used to upgrade draft genome assemblies; 4,777 contigs were assembled to 10 chromosomes; and the final draft genome assembly was 803.93 Mb with a contig N50 of 813.98 kb and a scaffold N50 of 100.34 Mb. Approximately 495.38 Mb of repeated sequences was annotated. The 18,018 protein‐coding genes were predicted, of which 95.78% were functionally annotated, and 1,407 genes were species‐specific. The phylogenetic analysis showed that P. japonica diverged from the ancestor of Anoplophora glabripennis and Tribolium castaneum ~ 236.21 million years ago. We detected that some important gene families involved in detoxification of pesticides and tolerance to heat stress were expanded in P. japonica, especially cytochrome P450 and Hsp70 genes. Overall, the high‐quality draft genome sequence of P. japonica will provide invaluable resource for understanding the molecular mechanisms of stress resistance and will facilitate the research on population genetics, evolution and phylogeny of Coccinellidae. This genome will also provide new avenues for conserving the diversity of predator insects.  相似文献   

17.
18.
Chromosomal inversions facilitate local adaptation of beneficial mutations and modulate genetic polymorphism, but the extent of their effects within the genome is still insufficiently understood. The genome of Anopheles funestus, a malaria mosquito endemic to sub‐Saharan Africa, contains an impressive number of paracentric polymorphic inversions, which are unevenly distributed among chromosomes and provide an excellent framework for investigating the genomic impacts of chromosomal rearrangements. Here, we present results of a fine‐scale analysis of genetic variation within the genome of two weakly differentiated populations of Anopheles funestus inhabiting contrasting moisture conditions in Cameroon. Using population genomic analyses, we found that genetic divergence between the two populations is centred on regions of the genome corresponding to three inversions, which are characterized by high values of FST, absolute sequence divergence and fixed differences. Importantly, in contrast to the 2L chromosome arm, which is collinear, nucleotide diversity is significantly reduced along the entire length of three autosome arms bearing multiple overlapping chromosomal rearrangements. These findings support the idea that interactions between reduced recombination and natural selection within inversions contribute to sculpt nucleotide polymorphism across chromosomes in An. funestus.  相似文献   

19.
Single nucleotide polymorphisms SNPs are rapidly replacing anonymous markers in population genomic studies, but their use in non model organisms is hampered by the scarcity of cost‐effective approaches to uncover genome‐wide variation in a comprehensive subset of individuals. The screening of one or only a few individuals induces ascertainment bias. To discover SNPs for a population genomic study of the Pyrenean rocket (Sisymbrium austriacum subsp. chrysanthum), we undertook a pooled RAD‐PE (Restriction site Associated DNA Paired‐End sequencing) approach. RAD tags were generated from the PstI‐digested pooled genomic DNA of 12 individuals sampled across the species distribution range and paired‐end sequenced using Illumina technology to produce ~24.5 Mb of sequences, covering ~7% of the specie's genome. Sequences were assembled into ~76 000 contigs with a mean length of 323 bp (N50 = 357 bp, sequencing depth = 24x). In all, >15 000 SNPs were called, of which 47% were annotated in putative genic regions based on homology with the Arabidopsis thaliana genome. Gene ontology (GO) slim categorization demonstrated that the identified SNPs covered extant genic variation well. The validation of 300 SNPs on a larger set of individuals using a KASPar assay underpinned the utility of pooled RAD‐PE as an inexpensive genome‐wide SNP discovery technique (success rate: 87%). In addition to SNPs, we discovered >600 putative SSR markers.  相似文献   

20.
We present draft genome assemblies of Beta patula, a critically endangered wild beet endemic to the Madeira archipelago, and of the closely related Beta vulgaris ssp. maritima (sea beet). Evidence‐based reference gene sets for B. patula and sea beet were generated, consisting of 25 127 and 27 662 genes, respectively. The genomes and gene sets of the two wild beets were compared with their cultivated sister taxon B. vulgaris ssp. vulgaris (sugar beet). Large syntenic regions were identified, and a display tool for automatic genome‐wide synteny image generation was developed. Phylogenetic analysis based on 9861 genes showing 1:1:1 orthology supported the close relationship of B. patula to sea beet and sugar beet. A comparative analysis of the Rz2 locus, responsible for rhizomania resistance, suggested that the sequenced B. patula accession was rhizomania susceptible. Reference karyotypes for the two wild beets were established, and genomic rearrangements were detected. We consider our data as highly valuable and comprehensive resources for wild beet studies, B. patula conservation management, and sugar beet breeding research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号