首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Next‐generation sequencing and the collection of genome‐wide data allow identifying adaptive variation and footprints of directional selection. Using a large SNP data set from 259 RAD‐sequenced European eel individuals (glass eels) from eight locations between 34 and 64oN, we examined the patterns of genome‐wide genetic diversity across locations. We tested for local selection by searching for increased population differentiation using FST‐based outlier tests and by testing for significant associations between allele frequencies and environmental variables. The overall low genetic differentiation found (FST = 0.0007) indicates that most of the genome is homogenized by gene flow, providing further evidence for genomic panmixia in the European eel. The lack of genetic substructuring was consistent at both nuclear and mitochondrial SNPs. Using an extensive number of diagnostic SNPs, results showed a low occurrence of hybrids between European and American eel, mainly limited to Iceland (5.9%), although individuals with signatures of introgression several generations back in time were found in mainland Europe. Despite panmixia, a small set of SNPs showed high genetic differentiation consistent with single‐generation signatures of spatially varying selection acting on glass eels. After screening 50 354 SNPs, a total of 754 potentially locally selected SNPs were identified. Candidate genes for local selection constituted a wide array of functions, including calcium signalling, neuroactive ligand–receptor interaction and circadian rhythm. Remarkably, one of the candidate genes identified is PERIOD, possibly related to differences in local photoperiod associated with the >30° difference in latitude between locations. Genes under selection were spread across the genome, and there were no large regions of increased differentiation as expected when selection occurs within just a single generation due to panmixia. This supports the conclusion that most of the genome is homogenized by gene flow that removes any effects of diversifying selection from each new generation.  相似文献   

2.
The screening of 2,735 eels from European waters and aquaculture farms was conducted using mitochondrial Cytochrome b and 16S rRNA gene fragments amplified by polymerase chain reaction. Reaction products were either sequenced directly or subjected to analysis using restriction fragment length polymorphism which resulted in species-specific restriction patterns. Beside the expected European eel, Anguilla anguilla (Linnaeus, 1758), the American eel, Anguilla rostrata (Le Sueur, 1817), was also identified in samples from both aquaculture (N = 40 out of 1,025) and from natural waters (N = 44 out of 1,710). The life stages of American eels identified from several German waters draining to either the Baltic Sea and the North Sea ranged from elver to silver eels. This indicates that stocking with glass eels or elvers must have occurred several times most likely in the period from 1998 to 2002. The application of a fast and precise method for species identification and genetic monitoring of eels delivered for stocking is therefore essential for maintaining the autochthonous species composition in future. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Ark shells are commercially important clam species that inhabit in muddy sediments of shallow coasts in East Asia. For a long time, the lack of genome resources has hindered scientific research of ark shells. Here, we report a high-quality chromosome-level genome assembly of Scapharca kagoshimensis, with an aim to unravel the molecular basis of heme biosynthesis, and develop genomic resources for genetic breeding and population genetics in ark shells. Nineteen scaffolds corresponding to 19 chromosomes were constructed from 938 contigs (contig N50 = 2.01 Mb) to produce a final high-quality assembly with a total length of 1.11 Gb and scaffold N50 around 60.64 Mb. The genome assembly represents 93.4% completeness via matching 303 eukaryota core conserved genes. A total of 24,908 protein-coding genes were predicted and 24,551 genes (98.56%) of which were functionally annotated. The enrichment analyses suggested that genes in heme biosynthesis pathways were expanded and positive selection of the haemoglobin genes was also found in the genome of S. kagoshimensis, which gives important insights into the molecular mechanisms and evolution of the heme biosynthesis in mollusca. The valuable genome assembly of Skagoshimensis would provide a solid foundation for investigating the molecular mechanisms that underlie the diverse biological functions and evolutionary adaptations of Skagoshimensis.  相似文献   

4.
Nitzschia palea is a common freshwater diatom used as a bioindicator because of its tolerance of polluted waterways. There is also evidence it may be the tertiary endosymbiont within the “dinotom” dinoflagellate Durinskia baltica. A putative strain of N. palea was collected from a pond on the University of Virginia's College at Wise campus and cultured. For initial identification, three markers were sequenced—nuclear 18S rDNA, the chloroplast 23S rDNA, and rbcL. Morphological characteristics were determined using light and scanning electron microscopy; based on these observations the cells were identified as N. palea and named strain “Wise.” DNA from N. palea was deep sequenced and the chloroplast and mitochondrial genomes assembled. Single gene phylogenies grouped N. palea—Wise within a clearly defined N. palea clade and showed it was most closely related to the strain “SpainA3.” The chloroplast genome of N. palea is 119,447 bp with a quadripartite structure, 135 protein‐coding, 28 tRNA, and 3 rRNA genes. The mitochondrial genome is 37,754 bp with a single repeat region as found in other diatom chondriomes, 37 protein‐coding, 23 tRNA, and 2 rRNA genes. The chloroplast genomes of N. palea and D. baltica have identical gene content, synteny, and a 92.7% pair‐wise sequence similarity with most differences occurring in intergenic regions. The N. palea mitochondrial genome and D. baltica's endosymbiont mitochondrial genome also have identical gene content and order with a sequence similarity of 90.7%. Genome‐based phylogenies demonstrated that D. baltica is more similar to N. palea than any other diatom sequence currently available. These data provide the genome sequences of two organelles for a widespread diatom and show they are very similar to those of Durinskia baltica's endosymbiont.  相似文献   

5.
6.
American eel Anguilla rostrata populations are declining over much of their native range. Since American eels spend extended periods in freshwater, understanding their habitat requirements while freshwater residents is important for the management and conservation of this species. As there is little information on American eel habitat use in streams, the ontogenetic, diel, and seasonal habitat use as well as habitat selectivity of three size groups (i.e. ≤199 mm total length, 200–399 mm, ≥400 mm) of eel were examined in a tributary of the Hudson River. American eels in Hannacroix Creek exhibited ontogenetic, diel, and seasonal variation in habitat use as well as habitat selection. During both summer and autumn all sizes of American eels used larger substrate and more cover during the day. American eels ≤199 mm exhibited the strongest habitat selection, whereas eels 200–399 mm exhibited the least. During the autumn all sizes of American eels occupied slower depositional areas where deciduous leaf litter accumulated and provided cover. This may have important implications for in‐stream and riparian habitat management of lotic systems used by American eel.  相似文献   

7.
The ladybird beetle Propylea japonica is an important natural enemy in agro‐ecological systems. Studies on the strong tolerance of P. japonica to high temperatures and insecticides, and its population and phenotype diversity have recently increased. However, abundant genome resources for obtaining insights into stress‐resistance mechanisms and genetic intra‐species diversity for P. japonica are lacking. Here, we constructed the P. japonica genome maps using Pacific Bioscience (PacBio) and Illumina sequencing technologies. The genome size was 850.90 Mb with a contig N50 of 813.13 kb. The Hi‐C sequence data were used to upgrade draft genome assemblies; 4,777 contigs were assembled to 10 chromosomes; and the final draft genome assembly was 803.93 Mb with a contig N50 of 813.98 kb and a scaffold N50 of 100.34 Mb. Approximately 495.38 Mb of repeated sequences was annotated. The 18,018 protein‐coding genes were predicted, of which 95.78% were functionally annotated, and 1,407 genes were species‐specific. The phylogenetic analysis showed that P. japonica diverged from the ancestor of Anoplophora glabripennis and Tribolium castaneum ~ 236.21 million years ago. We detected that some important gene families involved in detoxification of pesticides and tolerance to heat stress were expanded in P. japonica, especially cytochrome P450 and Hsp70 genes. Overall, the high‐quality draft genome sequence of P. japonica will provide invaluable resource for understanding the molecular mechanisms of stress resistance and will facilitate the research on population genetics, evolution and phylogeny of Coccinellidae. This genome will also provide new avenues for conserving the diversity of predator insects.  相似文献   

8.
The role of intracontinental migration patterns of European eel (Anguilla anguilla) receives more and more recognition in both ecological studies of the European eel and possible management measures, but small-scale patterns proved to be challenging to study. We experimentally investigated the suitability of fatty acid trophic markers to elucidate the utilization of feeding habitats. Eight groups of juvenile European eels were fed on eight different diets in a freshwater recirculation system at 20°C for 56 days. Three groups were fed on freshwater diets (Rutilus rutilus, Chironomidae larvae, and Gammarus pulex) and four groups were reared on diets of a marine origin (Clupea harengus, Crangon crangon, Mysis spec., and Euphausia superba) and one on commercial pellets used in eel aquaculture. Fatty acid composition (FAC) of diets differed significantly with habitat. FAC of eel muscle tissue seemed to be rather insensitive to fatty acids supplied with diet, but the general pattern of lower n3:n6 and EPA:ARA ratios in freshwater prey organisms could be traced in the respective eels. Multivariate statistics of the fatty acid composition of the eels resulted in two distinct groups representing freshwater and marine treatments. Results further indicate the capability of selectively restraining certain fatty acids in eel, as e.g. the n3:n6 ratio in all treatments was <4, regardless of dietary n3:n6. In future studies on wild eel, these measures can be used to elucidate the utilization of feeding habitats of individual European eel.  相似文献   

9.
Antheraea pernyi is a semi‐domesticated lepidopteran insect species valuable to the silk industry, human health, and ecological tourism. Owing to its economic influence and developmental properties, it serves as an ideal model for investigating divergence of the Bombycoidea super family. However, studies on the karyotype evolution and functional genomics of A. pernyi are limited by scarce genomic resource. Here, we applied PacBio sequencing and chromosome structure capture technique to assemble the first high‐quality A. pernyi genome from a single male individual. The genome is 720.67 Mb long with 49 chromosomes and a 13.77‐Mb scaffold N50. Approximately 441.75 Mb, accounting for 60.74% of the genome, was identified as repeats. The genome comprises 21,431 protein‐coding genes, 85.22% of which were functionally annotated. Comparative genomics analysis suggested that A. pernyi diverged from its common ancestor with A. yamamai ~30.3 million years ago, and that chromosome fission contributed to the increased chromosome number. The genome assembled in this work will not only facilitate future research on A. pernyi and related species but also help to progress comparative genomics analyses in Lepidoptera.  相似文献   

10.
Genomes of varying sizes have been sequenced with next‐generation sequencing platforms. However, most reference sequences include draft unordered scaffolds containing chimeras caused by mis‐scaffolding. A BioNano genome (BNG) optical map was constructed to improve the previously sequenced flax genome (Linum usitatissimum L., 2n = 30, about 373 Mb), which consisted of 3852 scaffolds larger than 1 kb and totalling 300.6 Mb. The high‐resolution BNG map of cv. CDC Bethune totalled 317 Mb and consisted of 251 BNG contigs with an N50 of 2.15 Mb. A total of 622 scaffolds (286.6 Mb, 94.9%) aligned to 211 BNG contigs (298.6 Mb, 94.2%). Of those, 99 scaffolds, diagnosed to contain assembly errors, were refined into 225 new scaffolds. Using the newly refined scaffold sequences and the validated bacterial artificial chromosome‐based physical map of CDC Bethune, the 211 BNG contigs were scaffolded into 94 super‐BNG contigs (N50 of 6.64 Mb) that were further assigned to the 15 flax chromosomes using the genetic map. The pseudomolecules total about 316 Mb, with individual chromosomes of 15.6 to 29.4 Mb, and cover 97% of the annotated genes. Evidence from the chromosome‐scale pseudomolecules suggests that flax has undergone palaeopolyploidization and mesopolyploidization events, followed by rearrangements and deletions or fusion of chromosome arms from an ancient progenitor with a haploid chromosome number of eight.  相似文献   

11.
Sweet cherry (Prunus avium L.) trees are both economically important fruit crops but also important components of natural forest ecosystems in Europe, Asia and Africa. Wild and domesticated trees currently coexist in the same geographic areas with important questions arising on their historical relationships. Little is known about the effects of the domestication process on the evolution of the sweet cherry genome. We assembled and annotated the genome of the cultivated variety “Big Star*” and assessed the genetic diversity among 97 sweet cherry accessions representing three different stages in the domestication and breeding process (wild trees, landraces and modern varieties). The genetic diversity analysis revealed significant genome‐wide losses of variation among the three stages and supports a clear distinction between wild and domesticated trees, with only limited gene flow being detected between wild trees and domesticated landraces. We identified 11 domestication sweeps and five breeding sweeps covering, respectively, 11.0 and 2.4 Mb of the P. avium genome. A considerable fraction of the domestication sweeps overlaps with those detected in the related species, Prunus persica (peach), indicating that artificial selection during domestication may have acted independently on the same regions and genes in the two species. We detected 104 candidate genes in sweep regions involved in different processes, such as the determination of fruit texture, the regulation of flowering and fruit ripening and the resistance to pathogens. The signatures of selection identified will enable future evolutionary studies and provide a valuable resource for genetic improvement and conservation programs in sweet cherry.  相似文献   

12.
13.
Freshwater eels have fascinated biologists for centuries due to the spectacular long‐distance migrations between the eels’ freshwater habitats and their spawning areas far out in the ocean and the mysteries of their ecology. The spawning areas of Atlantic eels and Japanese eel were located far offshore in the Atlantic Ocean and the Pacific Ocean, respectively, and their reproduction took place thousands of kilometers away from their growth habitats. Phylogenetic studies have revealed that freshwater eels originated in the Indonesian region. However, remarkably little is known about the life histories of tropical freshwater eels despite the fact that tropical eels are key to understanding the nature of primitive forms of catadromous migration. This study found spawning‐condition tropical freshwater eels in Lake Poso, central Sulawesi, Indonesia, with considerably high gonadosomatic index values and with histologically fully developed gonads. This study provides the first evidence that under certain conditions, freshwater eels have conditions that are immediately able to spawn even in river downstream. The results suggest that, in contrast to the migrations made by the Atlantic and Japanese eels, freshwater eels originally migrated only short distances of <100 kilometers to local spawning areas adjacent to their freshwater growth habitats. Ancestral eels most likely underwent a catadromous migration from local short‐distance movements in tropical coastal waters to the long‐distance migrations characteristic of present‐day temperate eels, which has been well established as occurring in subtropical gyres in both hemispheres.  相似文献   

14.
Coffee species such as Coffea canephora P. (Robusta) and C. arabica L. (Arabica) are important cash crops in tropical regions around the world. C. arabica is an allotetraploid (2n = 4x = 44) originating from a hybridization event of the two diploid species C. canephora and C. eugenioides (2n = 2x = 22). Interestingly, these progenitor species harbour a greater level of genetic variability and are an important source of genes to broaden the narrow Arabica genetic base. Here, we describe the development, evaluation and use of a single‐nucleotide polymorphism (SNP) array for coffee trees. A total of 8580 unique and informative SNPs were selected from C. canephora and C. arabica sequencing data, with 40% of the SNP located in annotated genes. In particular, this array contains 227 markers associated to 149 genes and traits of agronomic importance. Among these, 7065 SNPs (~82.3%) were scorable and evenly distributed over the genome with a mean distance of 54.4 Kb between markers. With this array, we improved the Robusta high‐density genetic map by adding 1307 SNP markers, whereas 945 SNPs were found segregating in the Arabica mapping progeny. A panel of C. canephora accessions was successfully discriminated and over 70% of the SNP markers were transferable across the three species. Furthermore, the canephora‐derived subgenome of C. arabica was shown to be more closely related to C. canephora accessions from northern Uganda than to other current populations. These validated SNP markers and high‐density genetic maps will be useful to molecular genetics and for innovative approaches in coffee breeding.  相似文献   

15.
Bivalves, a highly diverse and the most evolutionarily successful class of invertebrates native to aquatic habitats, provide valuable molecular resources for understanding the evolutionary adaptation and aquatic ecology. Here, we reported a high‐quality chromosome‐level genome assembly of the razor clam Sinonovacula constricta using Pacific Bioscience single‐molecule real‐time sequencing, Illumina paired‐end sequencing, 10X Genomics linked‐reads and Hi‐C reads. The genome size was 1,220.85 Mb, containing scaffold N50 of 65.93 Mb and contig N50 of 976.94 Kb. A total of 899 complete (91.92%) and seven partial (0.72%) matches of the 978 metazoa Benchmarking Universal Single‐Copy Orthologs were determined in this genome assembly. And Hi‐C scaffolding of the genome resulted in 19 pseudochromosomes. A total of 28,594 protein‐coding genes were predicted in the S. constricta genome, of which 25,413 genes (88.88%) were functionally annotated. In addition, 39.79% of the assembled genome was composed of repetitive sequences, and 4,372 noncoding RNAs were identified. The enrichment analyses of the significantly expanded and contracted genes suggested an evolutionary adaptation of S. constricta to highly stressful living environments. In summary, the genomic resources generated in this work not only provide a valuable reference genome for investigating the molecular mechanisms of S. constricta biological functions and evolutionary adaptation, but also facilitate its genetic improvement and disease treatment. Meanwhile, the obtained genome greatly improves our understanding of the genetics of molluscs and their comparative evolution.  相似文献   

16.
Water buffalo (Bubalus bubalis), a large‐sized member of the Bovidae family, is considered as an important livestock species throughout Southeast Asia. In order to better understand the molecular basis of buffalo improvement and breeding, we sequenced and assembled the genome (2n=50) of a river buffalo species Bubalus bubalis from Bangladesh. Its genome size is 2.77 Gb, with a contig N50 of 25 kb and the scaffold N50 of 6.9 Mbp. Based on the assembled genome, we annotated 24,613 genes for future functional genomics studies. Phylogenetic tree analysis of cattle and water buffalo lineages showed that they diverged about 5.8–9.8 million years ago. Our findings provide an insight into the water buffalo genome which will contribute in further research on buffalo such as molecular breeding, understanding complex traits, conservation, and biodiversity.  相似文献   

17.
Drosophila simulans is a close relative of the genetic model D. melanogaster. Its worldwide distribution in combination with the absence of segregating chromosomal inversions makes this species an increasingly attractive model to study the molecular signatures of adaptation in natural and experimental populations. In an effort to improve the genomic resources for D. simulans, we assembled and annotated the genome of a strain originating from Madagascar (M252), the ancestral range of D. simulans. The comparison of the M252 genome to other available D. simulans assemblies confirmed its high quality, but also highlighted genomic regions that are difficult to assemble with NGS data. The annotation of M252 provides a clear improvement with alternative splicing for 52% of the multiple‐exon genes, UTRs for 70% of the genes, 225 novel genes and 781 pseudogenes being reported. We anticipate that the M252 genome will be a valuable resource for many research questions.  相似文献   

18.
Glycine latifolia (Benth.) Newell & Hymowitz (2= 40), one of the 27 wild perennial relatives of soybean, possesses genetic diversity and agronomically favorable traits that are lacking in soybean. Here, we report the 939‐Mb draft genome assembly of G. latifolia (PI 559298) using exclusively linked‐reads sequenced from a single Chromium library. We organized scaffolds into 20 chromosome‐scale pseudomolecules utilizing two genetic maps and the Glycine max (L.) Merr. genome sequence. High copy numbers of putative 91‐bp centromere‐specific tandem repeats were observed in consecutive blocks within predicted pericentromeric regions on several pseudomolecules. No 92‐bp putative centromeric repeats, which are abundant in G. max, were detected in G. latifolia or Glycine tomentella. Annotation of the assembled genome and subsequent filtering yielded a high confidence gene set of 54 475 protein‐coding loci. In comparative analysis with five legume species, genes related to defense responses were significantly overrepresented in Glycine‐specific orthologous gene families. A total of 304 putative nucleotide‐binding site (NBS)‐leucine‐rich‐repeat (LRR) genes were identified in this genome assembly. Different from other legume species, we observed a scarcity of TIR‐NBS‐LRR genes in G. latifolia. The G. latifolia genome was also predicted to contain genes encoding 367 LRR‐receptor‐like kinases, a family of proteins involved in basal defense responses and responses to abiotic stress. The genome sequence and annotation of G. latifolia provides a valuable source of alternative alleles and novel genes to facilitate soybean improvement. This study also highlights the efficacy and cost‐effectiveness of the application of Chromium linked‐reads in diploid plant genome de novo assembly.  相似文献   

19.
The role of species divergence due to ecologically based divergent selection—or ecological speciation—in generating and maintaining biodiversity is a central question in evolutionary biology. Comparison of the genomes of phylogenetically related taxa spanning a selective habitat gradient enables discovery of divergent signatures of selection and thereby provides valuable insight into the role of divergent ecological selection in speciation. Tidal marsh ecosystems provide tractable opportunities for studying organisms' adaptations to selective pressures that underlie ecological divergence. Sharp environmental gradients across the saline–freshwater ecotone within tidal marshes present extreme adaptive challenges to terrestrial vertebrates. Here, we sequence 20 whole genomes of two avian sister species endemic to tidal marshes—the saltmarsh sparrow (Ammospiza caudacutus) and Nelson's sparrow (A. nelsoni)—to evaluate the influence of selective and demographic processes in shaping genome‐wide patterns of divergence. Genome‐wide divergence between these two recently diverged sister species was notably high (genome‐wide FST = 0.32). Against a background of high genome‐wide divergence, regions of elevated divergence were widespread throughout the genome, as opposed to focused within islands of differentiation. These patterns may be the result of genetic drift resulting from past tidal march colonization events in conjunction with divergent selection to different environments. We identified several candidate genes that exhibited elevated divergence between saltmarsh and Nelson's sparrows, including genes linked to osmotic regulation, circadian rhythm, and plumage melanism—all putative candidates linked to adaptation to tidal marsh environments. These findings provide new insights into the roles of divergent selection and genetic drift in generating and maintaining biodiversity.  相似文献   

20.
Onychostoma macrolepis is an emerging commercial cyprinid fish species. It is a model system for studies of sexual dimorphism and genome evolution. Here, we report the chromosome‐level assembly of the O.macrolepis genome obtained from the integration of nanopore long‐read sequencing with physical maps produced using Bionano and Hi‐C technology. A total of 87.9 Gb of nanopore sequence provided approximately 100‐fold coverage of the genome. The preliminary genome assembly was 883.2 Mb in size with a contig N50 size of 11.2 Mb. The 969 corrected contigs obtained from Bionano optical mapping were assembled into 853 scaffolds and produced an assembly of 886.5 Mb with a scaffold N50 of 16.5 Mb. Finally, using the Hi‐C data, 881.3 Mb (99.4% of genome) in 526 scaffolds were anchored and oriented in 25 chromosomes ranging in size from 25.27 to 56.49 Mb. In total, 24,770 protein‐coding genes were predicted in the genome, and ~96.85% of the genes were functionally annotated. The annotated assembly contains 93.3% complete genes from the BUSCO reference set. In addition, we identified 409 Mb (46.23% of the genome) of repetitive sequence, and 11,213 non‐coding RNAs, in the genome. Evolutionary analysis revealed that O. macrolepis diverged from common carp approximately 24.25 million years ago. The chromosomes of O. macrolepis showed an unambiguous correspondence to the chromosomes of zebrafish. The high‐quality genome assembled in this work provides a valuable genomic resource for further biological and evolutionary studies of O. macrolepis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号