首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Oil sands exploration fragments the boreal landscape by constructing numerous drilling pads to assess underground petroleum reserves. Reclamation of these pads is challenging and slow, particularly for forest understory species. We investigated the feasibility of accelerated forest understory restoration on these temporary pads by taking advantage of the propagule bank and clonal regeneration strategy of many boreal plants. We covered and protected the forest floor (FF) with subsoil during winter pad construction. This forest floor protection (FFP) method was then compared with the current practice of stripping off, stockpiling, and then replacing the FF during the reclamation phase (rollback, RB) and to conventional clearcut (CC) harvesting. In the first growing season, surface disturbance as well as richness and cover of plant regeneration was evaluated; vegetation assessment was repeated in the fifth growing season. Although there were some slight differences between the communities in the FFP and CC treatments, likely associated with varying levels of residual slash and subsoil material, there were striking differences between the communities in the RB and FFP treatments. In addition, while establishment of deciduous tree species was similar between the FFP and CC treatments, there were very few trees found in the RB treatment. The study indicates that protection and careful uncovering of the FF during temporary drilling pad construction should be a technique of choice for forest reclamation used in the boreal forest. However, as RB will still play a part in the reclamation of these sites, management intervention will be required to achieve reclamation goals.  相似文献   

2.
Semiarid ecosystems of Western North America are experiencing a boom in natural gas development. However, these systems are slow to recover from the disturbances created. The purpose of this study was to develop improved restoration techniques on natural gas well pads in Western Colorado. This study examined effects and interactions of seedbed modifications, soil amendments, seed mixtures, and seeding methods. The experiment was conducted in pinyon‐juniper and semidesert shrub plant communities on five natural gas well pads beginning in 2006. Soil and plant cover data were collected to assess the effectiveness of 16 different treatment combinations. After two growing seasons, we found that patches of soil salinity (>4 dS/m) reduced plant cover to less than 20% on 55 of our 240 experimental plots. These patches of salinity, such as where reserve pits were buried, may need to be treated to completely restore cover on the total gas pad area, although causes of salinity patches needs further investigation. After removing the 55 saline plots from our data analyses, we found that wood chips (WC) as a soil amendment increased organic matter content and reduced non‐native species. Rough seedbed modifications increased the establishment of native species, especially during years of below average precipitation. Island broadcasting resulted in an increase of noxious plant cover during the second growing season. From these findings we recommend that disturbed well pads in a similar environment be restored by seeding native species on sites that are amended with WC and physically modified to create a roughened seedbed.  相似文献   

3.
Recent surveys of peatland initiation that occurred over the past 10,000 years in northeastern Alberta have revealed that most peatlands initiated by paludification, or swamping of upland soils. Peatland ecologists have long known the importance of the paludification process, but it has not been transferred to peatland restoration methodologies. We initiated this study to determine if wetland structure and function could be re-established on two well sites established with mineral fill within a peatland complex. At two well sites near Peace River, AB, the mineral material was lowered to near the water level of the surrounding peatland. We placed 288 plots of 2 m × 2 m in size using a series of fertilizer, water level, cultivation, and amendment treatments and then introduced a suite of wetland plants. Four questions are addressed: - (1) Will locally available peatland vascular plant species establish on these wet, compacted, mineral soils? If so: (2) are species responses affected by these treatments? (3) are plants that we did not introduce in the planting regime (weeds) a concern? and (4) will the surrounding bog water chemistry have an effect on water in contact with mineral soils? Results after two growing seasons are - (1) Carex aquatilis and Salix lutea have all successfully established at both well sites; (2) C. aquatilis plants (ramets) have increased to an average of 58.5 per plot, up from the 16 original genets planted; (3) the plant responses to amendments are not significantly different from the control plots; (4) weed abundance is significantly different among some amendment types; and (5) pad ditch water chemistry is affected by the surrounding bog waters.  相似文献   

4.
Aphodius fossor (L.) (Coleoptera: Scarabaeidae), a common endocoprid dung beetle in southeastern Wyoming, may have a survival strategy to maintain dung pad integrity and moisture crucial to larval survival in an arid climate (annual precipitation <30 cm). Typically, A. fossor seems to contribute little to dung pad decomposition, because inhabited dung pads seem to be intact and weigh approximately the same as uninhabited pads, even after 1 yr on pasture. To assess the role of A. fossor in dung pad decomposition and nutrient recycling, artificially formed bovine dung pads were inoculated with five pairs of adult A. fossor. After 40 d, A. fossor activity had no measurable effect on external surface area or moisture retention within the dung pad cores. Pads inhabited by A. fossor weighed significantly more than did control pads on most weigh dates of the experiment, possibly because of incorporation of soil particles at the dung/soil interface. Externally, A. fossor-inhabited dung pads seemed intact; however extensive tunneling was evident throughout the core of the pad leaving an intact, protective crust. A. fossor activity increased microbial biomass carbon in the soil beneath the dung pad. Levels of total nitrogen (N) and carbon (C) decreased in the pads but increased in soil beneath the pads. Dung in the core and in the crust of pads with A. fossor had significantly less total N than pads with no beetles and total C was significantly lower in the crust.  相似文献   

5.
Exotic invasive plants can show strong plant–soil feedback responses, but little is known about time scales for significant changes in soil microbial communities to occur after invasion. Previous work has suggested that plant invasions can modify arbuscular mycorrhizal (AM) fungal community structure. However, there is a lack of understanding about how long it takes for these changes to develop. To test this we investigated temporal changes in AM fungal communities colonising the invasive plant Vincetoxicum rossicum (Apocynaceae). We hypothesised that AM fungal community structure would change in a particular direction during the invasion process. We collected soil from two sites with a long history of invasion by this plant, with each site having paired invaded and uninvaded plots. Soil from these plots was used in a glasshouse experiment to characterise AM fungal community structure in the roots of V. rossicum at different times throughout a simulated growing season. AM fungal community structure differed between invaded and uninvaded plots. However, contrasting with our hypothesis, AM fungal communities colonising V. rossicum growing in soil from uninvaded plots did not change towards those in plants growing in previously invaded soil. Our data suggest that changes to AM fungal communities in the presence of V. rossicum require longer than the first growing season after establishment to develop.  相似文献   

6.
Arbuscular mycorrhizal fungal (AMF) spore communities were surveyed in a long-term field fertilization experiment in Switzerland, where different amounts of phosphorus (P) were applied to soil. Plots receiving no P as well as plots systematically fertilized in excess to plant needs for 31 years were used to test the hypothesis that application of P fertilizer changes the composition and diversity of AMF communities. AMF spores were isolated from the field soil, identified, and counted so as to quantify the effect of P fertilization on AMF spore density, composition, and diversity. Trap cultures were established from field soil with four host plants (sunflower, leek, maize, and Crotalaria grahamiana), and the spore communities were then analyzed in substrate samples from the pots. Altogether, nine AMF species were detected in the soil. No evidence has been acquired for effect of P fertilization on spore density, composition, and diversity of AMF in both the field soil and in trap cultures. On the other hand, we observed strong effect of crop plant species on spore densities in the soil, the values being lowest under rapeseed and highest under Phacelia tanacetifolia covercrop. The identity of plant species in trap pots also significantly affected composition and diversity of associated AMF communities, probably due to preferential establishment of symbiosis between certain plant and AMF species. AMF spore communities under mycorrhizal host plants (wheat and Phacelia in the fields and four host plant species in trap pots) were dominated by a single AMF species, Glomus intraradices. This resulted in exceptionally low AMF spore diversity that seems to be linked to high clay content of the soil.Electronic supplementary material Supplementary material is available for this article at and accessible for authorised users.  相似文献   

7.
土壤微生物对植物生长的负面影响只延续到最初几周 土壤微生物群落可以显著影响植物的生长表现。在本文中,我们提出一个问题:土壤微生物群落对植物生长的影响可以持续多久。我们监测了早期、中期和晚期3个阶段的植物生长速率,在无菌土壤或活土壤中对一种菊科植物疆千里光(Jacobaea vulgaris)进行了两次分别为49天和63天的生长实验。在第3个实验中,我们用4种不同的时间处理方法研究了种植前土壤接种时间对该植物相对生长速率的影响。研究结果表明,3个实验中,在无菌土壤和活土壤中生长的植物的生物量差异都增加了。此外,在前2–3周,灭菌土壤中植物的相对生长速率仅显著高于活土壤中植物的相对生长速率。在第3个实验中,植物生物量随着接种和种植之间时间的增加而减少。总体而言,这些结果表明,疆千里光在无菌土壤中的生长优于在活土壤中。土壤接种对植物生物量的负面影响似乎可以延伸到整个生长期,但源于最初几周发生的对相对生长速率的负面影响。  相似文献   

8.
Ecological restoration of mined peatlands in North America involves active reintroduction of bog plant species. Animals are not actively reintroduced, thus the re‐establishment of peatland fauna must occur either by inoculation along with introduced plant material or by dispersal. We examined the extent to which insects are reintroduced to restored sites with plant material by rearing insects from shredded vegetation collected in three donor sites. We assessed differences in abundance, diversity, and composition of taxonomic and trophic groups among seasons and sites. Abundance and species richness did not differ by season, but species assemblages did. The three sites were significantly different in abundance, but not in species richness and assemblages. Few insects emerged from the vegetation, suggesting that shredded plant material may not be the primary source of insect colonists. Insects likely recolonize by active or passive dispersal from the surrounding area. The species pool was similar among donor sites; consequently a mined site could be inoculated with vegetation from another peatland in the same region and this would not affect the insect assemblages at the initial stage of establishment. Diapause may be a major factor for emergence success among seasons of collection. Knowledge of how restoration techniques influence establishment of insect communities will help predict longer‐term outcomes of restoration on biotic communities in peatlands.  相似文献   

9.
Soil organisms can strongly affect competitive interactions and successional replacements of grassland plant species. However, introduction of whole soil communities as management strategy in grassland restoration has received little experimental testing. In a 5-year field experiment at a topsoil-removed ex-arable site ( receptor site ), we tested effects of (1) spreading hay and soil, independently or combined, and (2) transplanting intact turfs on plant and soil nematode community development. Material for the treatments was obtained from later successional, species-rich grassland ( donor site ). Spreading hay affected plant community composition, whereas spreading soil did not have additional effects. Plant species composition of transplanted turfs became less similar to that in the donor site. Moreover, most plants did not expand into the receiving plots. Soil spreading and turf transplantation did not affect soil nematode community composition. Unfavorable soil conditions (e.g., low organic matter content and seasonal fluctuations in water level) at the receptor site may have limited plant and nematode survival in the turfs and may have precluded successful establishment outside the turfs. We conclude that introduction of later successional soil organisms into a topsoil-removed soil did not facilitate the establishment of later successional plants, probably because of the "mismatch" in abiotic soil conditions between the donor and the receptor site. Further research should focus on the required conditions for establishment of soil organisms at restoration sites in order to make use of their contribution to grassland restoration. We propose that introduction of organisms from "intermediate" stages will be more effective as management strategy than introduction of organisms from "target" stages.  相似文献   

10.
Aims Changes in soil microbial communities after occupation by invasive alien plants can represent legacy effects of invasion that may limit recolonization and establishment of native plant species in soils previously occupied by the invader. In this study, for three sites in southern Germany, we investigated whether invasion by giant goldenrod (Solidago gigantea) leads to changes in soil biota that result in reduced growth of native plants compared with neighbouring uninvaded soils.Methods We grew four native plant species as a community and treated those plants with soil solutions from invaded or uninvaded soils that were sterilized, or live, with live solutions containing different fractions of the soil biota using a decreasing sieve mesh-size approach. We measured aboveground biomass of the plants in the communities after a 10-week growth period.Main Findings Across all three sites and regardless of invasion, communities treated with <20 μm soil biota or sterilized soil solutions had significantly greater biomass than communities treated with the complete soil biota solution. This indicates that soil biota>20 μm are more pathogenic to the native plants than smaller organisms in these soils. Across all three sites, there was only a non-significant tendency for the native community biomass to differ among soil solution types, depending on whether or not the soil was invaded. Only one site showed significant differences in community biomass among soil solution types, depending on whether or not the soil was invaded; community biomass was significantly lower when treated with the complete soil biota solution than with soil biota <20 μm or sterilized soil solutions, but only for the invaded soil. Our findings suggest that efforts to restore native communities on soils previously invaded by Solidago gigantea are unlikely to be hindered by changes in soil microbial community composition as a result of previous invasion.  相似文献   

11.

Background

Changes in plant diversity may induce distinct changes in soil food web structure and accompanying soil feedbacks to plants. However, knowledge of the long-term consequences of plant community simplification for soil animal food webs and functioning is scarce. Nematodes, the most abundant and diverse soil Metazoa, represent the complexity of soil food webs as they comprise all major trophic groups and allow calculation of a number of functional indices.

Methodology/Principal Findings

We studied the functional composition of nematode communities three and five years after establishment of a grassland plant diversity experiment (Jena Experiment). In response to plant community simplification common nematode species disappeared and pronounced functional shifts in community structure occurred. The relevance of the fungal energy channel was higher in spring 2007 than in autumn 2005, particularly in species-rich plant assemblages. This resulted in a significant positive relationship between plant species richness and the ratio of fungal-to-bacterial feeders. Moreover, the density of predators increased significantly with plant diversity after five years, pointing to increased soil food web complexity in species-rich plant assemblages. Remarkably, in complex plant communities the nematode community shifted in favour of microbivores and predators, thereby reducing the relative abundance of plant feeders after five years.

Conclusions/Significance

The results suggest that species-poor plant assemblages may suffer from nematode communities detrimental to plants, whereas species-rich plant assemblages support a higher proportion of microbivorous nematodes stimulating nutrient cycling and hence plant performance; i.e. effects of nematodes on plants may switch from negative to positive. Overall, food web complexity is likely to decrease in response to plant community simplification and results of this study suggest that this results mainly from the loss of common species which likely alter plant – nematode interactions.  相似文献   

12.
K. Makoto  J. Klaminder 《Polar Biology》2012,35(11):1659-1667
Non-sorted circles (NSCs), also known as frost boils, are common soil frost features that create a small-scale mosaic of vegetation zones in periglacial landscapes. The causes of variation in plant diversity within NSCs are poorly understood. This lack of understanding hampers our ability to predict how arctic plant communities respond to changing soil frost conditions. We hypothesised that plant communities of different ages develop at a micro-site scale within NSCs as soil frost periodically exposes uncolonised soil or fatally offsets plant succession. To test this hypothesis, we investigated the species diversity of plant communities (vascular plants, bryophytes and lichens) from the sparsely vegetated centre of the circles to the densely vegetated outer domain in conjunction with estimates of the age of the plant communities (inferred using lichenometry). Our results suggest that the variation in species diversity and density can largely be explained by the occurrence of progressively older plant communities from the centre towards the vegetated rim. Here, the high species diversity was observed to occur in communities having the ages approximately around 150?years. Our findings suggest that soil frost disturbances are important for maintaining successional gradients several centuries long within the arctic landscape at a small spatial scale (<3?m). The termination of soil frost activity as a result of a warmer future winter climate is therefore most likely to result in a loss of micro-sites having young vegetation communities with high plant diversities and a subsequent establishment of mature shrub-dominated plant communities.  相似文献   

13.
We use computational simulations to compare the impact response of different football and U.S. Army helmet pad materials. We conduct experiments to characterise the material response of different helmet pads. We simulate experimental helmet impact tests performed by the U.S. Army to validate our methods. We then simulate a cylindrical impactor striking different pads. The acceleration history of the impactor is used to calculate the head injury criterion for each pad. We conduct sensitivity studies exploring the effects of pad composition, geometry and material stiffness. We find that (1) the football pad materials do not outperform the currently used military pad material in militarily relevant impact scenarios; (2) optimal material properties for a pad depend on impact energy and (3) thicker pads perform better at all velocities. Although we considered only the isolated response of pad materials, not entire helmet systems, our analysis suggests that by using larger helmet shells with correspondingly thicker pads, impact-induced traumatic brain injury may be reduced.  相似文献   

14.
Soil communities associated with specific plant species affect individual plants' growth and competitive ability. Limited evidence suggests that unique soil communities can also differentially influence growth and competition at the ecotype level. Previous work with Arabidopsis thaliana has shown that accessions produce distinct and reproducible rhizosphere bacterial communities, with significant differences in both species composition and relative abundance. We tested the hypothesis that soil communities uniquely affect the growth and reproduction of the plant accessions with which they are associated. Specifically, we examined the growth of four accessions when exposed to their own soil communities and the communities generated by each of the other three accessions. To do this we planted focal accessions inside a ring of six plants that created a "background" soil community. We grew focal plants in this design in three separate soil treatments: non-sterile soil, sterilized soil, and "preconditioned" soil. We preconditioned soil by growing accessions in non-sterile soil for six weeks before the start of the experiment. The main experiment was harvested after seven weeks of growth and we recorded height, silique number, and dry weight of each focal plant. Plants grown in the preconditioned soil treatment showed less growth relative to the non-sterile and sterile soil treatments. In addition, plants in the sterile soil grew larger than those in non-sterile soil. However, we saw no interaction between soil treatment and background accession. We conclude that the soil communities have a negative net impact on Arabidopsis thaliana growth, and that the unique soil communities associated with each accession do not differentially affect growth and competition of study species.  相似文献   

15.
Soil legacy effects are commonly highlighted as drivers of plant community dynamics and species co‐existence. However, experimental evidence for soil legacy effects of conditioning plant communities on responding plant communities under natural conditions is lacking. We conditioned 192 grassland plots using six different plant communities with different ratios of grasses and forbs and for different durations. Soil microbial legacies were evident for soil fungi, but not for soil bacteria, while soil abiotic parameters did not significantly change in response to conditioning. The soil legacies affected the composition of the succeeding vegetation. Plant communities with different ratios of grasses and forbs left soil legacies that negatively affected succeeding plants of the same functional type. We conclude that fungal‐mediated soil legacy effects play a significant role in vegetation assembly of natural plant communities.  相似文献   

16.
Some soil bacteria protect plants against soil-borne diseases by producing toxic secondary metabolites. Such beneficial biocontrol bacteria can be used in agricultural systems as alternative to agrochemicals. The broad spectrum toxins responsible for plant protection also inhibit predation by protozoa and nematodes, the main consumers of bacteria in soil. Therefore, predation pressure may favour biocontrol bacteria and contribute to plant health. We analyzed the effect of Acanthamoeba castellanii on semi-natural soil bacterial communities in a microcosm experiment. We determined the frequency of culturable bacteria carrying genes responsible for the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin (PRN) and hydrogen cyanide (HCN) in presence and absence of A. castellanii. We then measured if amoebae affected soil suppressiveness in a bioassay with sugar beet seedlings confronted to the fungal pathogen Rhizoctonia solani. Amoebae increased the frequency of both DAPG and HCN positive bacteria in later plant growth phases (2 and 3 weeks), as well as the average number of biocontrol genes per bacterium. The abundance of DAPG positive bacteria correlated with disease suppression, suggesting that their promotion by amoebae may enhance soil health. However, the net effect of amoebae on soil suppressiveness was neutral to slightly negative, possibly because amoebae slow down the establishment of biocontrol bacteria on the recently emerged seedlings used in the assay. The results indicate that microfaunal predators foster biocontrol bacterial communities. Understanding interactions between biocontrol bacteria and their predators may thus help developing environmentally friendly management practices of agricultural systems.  相似文献   

17.
Higher plant diversity is often associated with higher soil microbial biomass and diversity, which is assumed to be partly due to elevated root exudate diversity. However, there is little experimental evidence that diversity of root exudates shapes soil microbial communities. We tested whether higher root exudate diversity enhances soil microbial biomass and diversity in a plant diversity gradient, thereby negating significant plant diversity effects on soil microbial properties. We set up plant monocultures and two‐ and three‐species mixtures in microcosms using functionally dissimilar plants and soil of a grassland biodiversity experiment in Germany. Artificial exudate cocktails were added by combining the most common sugars, organic acids, and amino acids found in root exudates. We applied four different exudate cocktails: two exudate diversity levels (low‐ and high‐diversity) and two nutrient‐enriched levels (carbon‐ and nitrogen‐enriched), and a control with water only. Soil microorganisms were more carbon‐ than nitrogen‐limited. Cultivation‐independent fingerprinting analysis revealed significantly different soil microbial communities among exudate diversity treatments. Most notably and according to our hypothesis, adding diverse exudate cocktails negated the significant plant diversity effect on soil microbial properties. Our findings provide the first experimental evidence that root exudate diversity is a crucial link between plant diversity and soil microorganisms.  相似文献   

18.

Background

Invasions of natural communities by non-indigenous species are currently rated as one of the most important global-scale threats to biodiversity. Biodiversity itself is known to reduce invasions and increase stability. Disturbances by ecosystem engineers affect the distribution, establishment, and abundance of species but this has been ignored in studies on diversity-invasibility relationships.

Methodology/Principal Findings

We determined natural plant invasion into 46 plots varying in the number of plant species (1, 4, and 16) and plant functional groups (1, 2, 3, and 4) for three years beginning two years after the establishment of the Jena Experiment. We sampled subplots where earthworms were artificially added and others where earthworm abundance was reduced. We also performed a seed-dummy experiment to investigate the role of earthworms as secondary seed dispersers along a plant diversity gradient. Horizontal dispersal and burial of seed dummies were significantly reduced in subplots where earthworms were reduced in abundance. Seed dispersal by earthworms decreased with increasing plant species richness and presence of grasses but increased in presence of small herbs. These results suggest that dense vegetation inhibits the surface activity of earthworms. Further, there was a positive relationship between the number of earthworms and the number and diversity of invasive plants. Hence, earthworms decreased the stability of grassland communities against plant invasion.

Conclusions/Significance

Invasibility decreased and stability increased with increasing plant diversity and, most remarkably, earthworms modulated the diversity-invasibility relationship. While the impacts of earthworms were unimportant in low diverse (low earthworm densities) and high diverse (high floral structural complexity) plant communities, earthworms decreased the stability of intermediate diverse plant communities against plant invasion. Overall, the results document that fundamental processes in plant communities like plant seed burial and invader establishment are modulated by soil fauna calling for closer cooperation between soil animal and plant ecologists.  相似文献   

19.
Enviro–climatic changes are thought to be causing alterations in ecosystem processes through shifts in plant and microbial communities; however, how links between plant and microbial communities change with enviro–climatic change is likely to be less straightforward but may be fundamental for many ecological processes. To address this, we assessed the composition of the plant community and the prokaryotic community – using amplicon-based sequencing – of three European peatlands that were distinct in enviro–climatic conditions. Bipartite networks were used to construct site-specific plant–prokaryote co-occurrence networks. Our data show that between sites, plant and prokaryotic communities differ and that turnover in interactions between the communities was complex. Essentially, turnover in plant–microbial interactions is much faster than turnover in the respective communities. Our findings suggest that network rewiring does largely result from novel or different interactions between species common to all realised networks. Hence, turnover in network composition is largely driven by the establishment of new interactions between a core community of plants and microorganisms that are shared among all sites. Taken together our results indicate that plant–microbe associations are context dependent, and that changes in enviro–climatic conditions will likely lead to network rewiring. Integrating turnover in plant–microbe interactions into studies that assess the impact of enviro–climatic change on peatland ecosystems is essential to understand ecosystem dynamics and must be combined with studies on the impact of these changes on ecosystem processes.  相似文献   

20.
The spread of exotic earthworms (‘worming’) and rising temperatures are expected to alter the biological, chemical and physical properties of many ecosystems, yet little is known about their potential interactive effects. We performed a laboratory microcosm experiment to investigate the effects of earthworms (anecic, endogeic, epigeic, or all three together) and 4°C warming on soil water content, litter turnover and seedling establishment of four native and four exotic herbaceous plant species. Warming and worming exerted independent as well as interactive effects on soil processes and plant dynamics. Warming reduced the water content of the upper soil layer, but only in the presence of earthworms. Litter removal increased in the presence of earthworms, the effect being most pronounced in the presence of anecic earthworms at ambient temperature. Exotic plant species were most influenced by earthworms (lower seedling number but higher biomass), whereas natives were most sensitive to warming (higher seedling number). This differential response resulted in significant interaction effects of earthworms and warming on abundance and richness of native relative to exotic plants as well as related shifts in plant species composition. Structural equation modeling allowed us to address possible mechanisms: direct effects of earthworms primarily affected exotic plants, whereas earthworms and warming indirectly and differentially affected native and exotic plants through changes in soil water content and surface litter. Invasive earthworms and warming are likely to interactively impact abiotic and biotic ecosystem properties. The invasion of epigeic and anecic species could select for plant species able to germinate on bare soil and tolerate drought, with the latter becoming more important in a warmer world. Thus earthworm invasion may result in simplified plant communities of increased susceptibility to the invasion of exotic plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号