共查询到20条相似文献,搜索用时 0 毫秒
1.
It is hard to imagine a world without food‐associated microbes. The production of bread, wine, beer, salami, coffee, chocolate, cheese and many other foods and beverages all rely on specific microbes. In cheese, myriad microbial species collaborate to yield the complex organoleptic properties that are appreciated by millions of people worldwide. In the early days of cheese making, these complex communities emerged spontaneously from the natural flora associated with the raw materials, the equipment, the production environment or craftsmen involved in the production process. However, in some cases, the microbes shifted their natural habitat to the new cheese‐associated environment. The most obvious cause of this is backslopping, where part of a fermented product is used to inoculate the next batch. In addition, some microbes may simply adhere to the tools used in the production process. These microbial communities gradually adapted to the novel man‐made niches, a process referred to as “domestication.” Domestication is associated with specific genomic and phenotypic changes and ultimately leads to lineages that are genetically and phenotypically distinct from their wild ancestors. In this issue of Molecular Ecology, Dumas et al. have investigated a prime example of cheese‐associated microbes, the fungus Penicillium roqueforti. The authors identified several hallmarks of domestication in the genome and phenome of this species, allowing them to hypothesize about the origin of blue‐veined cheese fungi domestication, and the specific evolutionary processes involved in adaptation to the cheese matrix. 相似文献
2.
Theory predicts that structural genomic variants such as inversions can promote adaptive diversification and speciation. Despite increasing empirical evidence that adaptive divergence can be triggered by one or a few large inversions, the degree to which widespread genomic regions under divergent selection are associated with structural variants remains unclear. Here we test for an association between structural variants and genomic regions that underlie parallel host‐plant‐associated ecotype formation in Timema cristinae stick insects. Using mate‐pair resequencing of 20 new whole genomes we find that moderately sized structural variants such as inversions, deletions and duplications are widespread across the genome, being retained as standing variation within and among populations. Using 160 previously published, standard‐orientation whole genome sequences we find little to no evidence that the DNA sequences within inversions exhibit accentuated differentiation between ecotypes. In contrast, a formerly described large region of reduced recombination that harbours genes controlling colour‐pattern exhibits evidence for accentuated differentiation between ecotypes, which is consistent with differences in the frequency of colour‐pattern morphs between host‐associated ecotypes. Our results suggest that some types of structural variants (e.g., large inversions) are more likely to underlie adaptive divergence than others, and that structural variants are not required for subtle yet genome‐wide genetic differentiation with gene flow. 相似文献
3.
Mary B. O'Neill Abigail Shockey Alex Zarley William Aylward Vegard Eldholm Andrew Kitchen Caitlin S. Pepperell 《Molecular ecology》2019,28(13):3241-3256
Mycobacterium tuberculosis (M.tb) is a globally distributed, obligate pathogen of humans that can be divided into seven clearly defined lineages. An emerging consensus places the origin and global dispersal of M.tb within the past 6,000 years: identifying how the ancestral clone of M.tb spread and differentiated within this timeframe is important for identifying the ecological drivers of the current pandemic. We used Bayesian phylogeographic inference to reconstruct the migratory history of M.tb in Africa and Eurasia and to investigate lineage specific patterns of spread from a geographically diverse sample of 552 M.tb genomes. Applying evolutionary rates inferred with ancient M.tb genome calibration, we estimated the timing of major events in the migratory history of the pathogen. Inferred timings contextualize M.tb dispersal within historical phenomena that altered patterns of connectivity throughout Africa and Eurasia: trans‐Indian Ocean trade in spices and other goods, the Silk Road and its predecessors, the expansion of the Roman Empire, and the European Age of Exploration. We found that Eastern Africa and Southeast Asia have been critical in the dispersal of M.tb. Our results further reveal that M.tb populations have grown through range expansion, as well as in situ, and delineate the independent evolutionary trajectories of bacterial subpopulations underlying the current pandemic. 相似文献
4.
Plasticity allows for changes in phenotype in response to environmental cues, often facilitating local adaptation to seasonal environments. Phenotypic plasticity alone, however, may not always be sufficient to ensure adaptation to new localities. In particular, changing cues associated with shifting seasonal regimes may no longer induce appropriate phenotypic responses in new environments ( Nicotra et al. 2010 ). Plastic responses must thus evolve to avoid being maladaptive. To date, the extent to which plastic responses can change and the genetic mechanisms by which this can happen have remained elusive. In this issue of Molecular Ecology, Blackman et al. (2011a) harness natural variation in flowering time among populations of the wild sunflower, Helianthus annuus, to demonstrate that plasticity has indeed evolved in this species. Remarkably, they are able to detect changes in gene expression that are associated with both a loss of plasticity and a reversal of the plastic response. These changes occur in two separate, but integrated, regulatory pathways controlling the transition to flowering, suggesting that complex regulatory networks that incorporate multiple environmental and developmental cues may facilitate the evolution of plastic responses. This study leverages knowledge from plant genetic models to provide a surprising level of insight into the evolution of an adaptive trait in a non‐model species. Through discoveries of the roles of gene duplication and network modularity in the evolution of plastic responses, the study raises questions about the degree to which species‐specific network architectures may act as a constraint to the potential of adaptation. 相似文献
5.
Combining experimental evolution with whole‐genome resequencing is a promising new strategy for investigating the dynamics of evolutionary change. Published studies that have resequenced laboratory‐selected populations of sexual organisms have typically focused on populations sampled at the end of an evolution experiment. These studies have attempted to associate particular alleles with phenotypic change and attempted to distinguish between different theoretical models of adaptation. However, neither the population used to initiate the experiment nor multiple time points sampled during the evolutionary trajectory are generally available for examination. In this issue of Molecular Ecology, Orozco‐terWengel et al. (2012) take a significant step forward by estimating genome‐wide allele frequencies at the start, 15 generations into and at the end of a 37‐generation Drosophila experimental evolution study. The authors identify regions of the genome that have responded to laboratory selection and describe the temporal dynamics of allele frequency change. They identify two common trajectories for putatively adaptive alleles: alleles either gradually increase in frequency throughout the entire 37 generations or alleles plateau at a new frequency by generation 15. The identification of complex trajectories of alleles under selection contributes to a growing body of literature suggesting that simple models of adaptation, whereby beneficial alleles arise and increase in frequency unimpeded until they become fixed, may not adequately describe short‐term response to selection. 相似文献
6.
Kevin D Murray Jasmine K Janes Ashley Jones Helen M Bothwell Rose L Andrew Justin O Borevitz 《Molecular ecology》2019,28(24):5232-5247
Spatial genetic patterns are influenced by numerous factors, and they can vary even among coexisting, closely related species due to differences in dispersal and selection. Eucalyptus (L'Héritier 1789; the “eucalypts”) are foundation tree species that provide essential habitat and modulate ecosystem services throughout Australia. Here we present a study of landscape genomic variation in two woodland eucalypt species, using whole‐genome sequencing of 388 individuals of Eucalyptus albens and Eucalyptus sideroxylon. We found exceptionally high genetic diversity (π ≈ 0.05) and low genome‐wide, interspecific differentiation (FST = 0.15) and intraspecific differentiation between localities (FST ≈ 0.01–0.02). We found no support for strong, discrete population structure, but found substantial support for isolation by geographic distance (IBD) in both species. Using generalized dissimilarity modelling, we identified additional isolation by environment (IBE). Eucalyptus albens showed moderate IBD, and environmental variables have a small but significant amount of additional predictive power (i.e. IBE). Eucalyptus sideroxylon showed much stronger IBD and moderate IBE. These results highlight the vast adaptive potential of these species and set the stage for testing evolutionary hypotheses of interspecific adaptive differentiation across environments. 相似文献
7.
Orr HA 《Evolution; international journal of organic evolution》2005,59(1):216-220
Abstract How often will natural selection drive parallel evolution at the DNA sequence level? More precisely, what is the probability that selection will cause two populations that live in identical environments to substitute the same beneficial mutation? Here I show that, under fairly general conditions, the answer is simple: if a wild‐type sequence can mutate to n different beneficial mutations, replicate populations will on average fix the same mutation with probability P= 2/(n + 1). This probability, which is derived using extreme value theory, is independent of most biological details, including the length of the gene in question and the precise distribution of fitness effects among alleles. I conclude that the probability of parallel evolution under natural selection is nearly twice as large as that under neutrality. 相似文献
8.
The seemingly eternal cycles of clonal growth in many tree species, with members of Populus (aspen, poplars, cottonwoods and the like) featuring most prominently, provoke a number of questions on the interface between ecology, genetics and forestry. In this issue, two groups present their approaches to clonal dynamics ( Ally et al. 2008 and Mock et al. 2008 ), using microsatellite (or simple sequence repeat, SSR) variation in P. tremuloides. Ally et al. developed and applied a model for using microsatellites to estimate clone age and infer other community characteristics. Mock et al. used fewer microsatellites but in more individuals, to examine clone size and distribution across the landscape. 相似文献
9.
Dmitry A. Filatov 《Molecular ecology》2015,24(13):3217-3219
Sex chromosomes are a very peculiar part of the genome that have evolved independently in many groups of animals and plants (Bull 1983 ). Major research efforts have so far been focused on large heteromorphic sex chromosomes in a few animal and plant species (Chibalina & Filatov 2011 ; Zhou & Bachtrog 2012 ; Bellott et al. 2014 ; Hough et al. 2014 ; Zhou et al. 2014 ), while homomorphic (cytologically indistinguishable) sex chromosomes have largely been neglected. However, this situation is starting to change. In this issue, Geraldes et al. ( 2015 ) describe a small (~100 kb long) sex‐determining region on the homomorphic sex chromosomes of poplars (Populus trichocarpa and related species, Fig. 1 ). All species in Populus and its sister genus Salix are dioecious, suggesting that dioecy and the sex chromosomes, if any, should be relatively old. Contrary to this expectation, Geraldes et al. ( 2015 ) demonstrate that the sex‐determining region in poplars is of very recent origin and probably evolved within the genus Populus only a few million years ago. 相似文献
10.
Reconstructing the history of populations is a longstanding goal of molecular ecologists. In addition to a better understanding of the past, it is hoped that this knowledge would also facilitate predictions regarding species’ responses to future events such as climate change. The traditional way of doing this is through the fossil record, but these historical records are often incomplete. Inferring historical demography from patterns of nucleotide variability can help to fill these gaps. In this issue of Molecular Ecology, Holliday et al. (2010) glimpse into the demographic past of Sitka spruce, Picea sitchensis, an economically and ecologically important species native to northwestern United States and Canada, by examining the site frequency spectrum (SFS) of 153 loci in six populations covering the species entire range. 相似文献
11.
Yoosook Lee Clare D. Marsden Catelyn Nieman Gregory C. Lanzaro 《Molecular ecology resources》2014,14(2):297-305
The M and S forms of Anopheles gambiae have been the subject of intense study, but are morphologically indistinguishable and can only be identified using molecular techniques. PCR‐based assays to distinguish the two forms have been designed and applied widely. However, the application of these assays towards identifying hybrids between the two forms, and backcrossed hybrids in particular, has been problematic as the currently available diagnostic assays are based on single locus and/or are located within a multicopy gene. Here, we present an alternative genotyping method for detecting hybridization and introgression between M and S molecular forms based on a multilocus panel of single‐nucleotide polymorphisms (SNPs) fixed between the M and S forms. The panel of SNPs employed is located in so‐called islands of divergence leading us to describe this method as the ‘Divergence Island SNP’ (DIS) assay. We show this multilocus SNP genotyping approach can robustly and accurately detect F1 hybrids as well as backcrossed individuals. 相似文献
12.
Katalin Csilléry Alejandra Rodríguez‐Verdugo Christian Rellstab Frédéric Guillaume 《Molecular ecology》2018,27(3):606-612
Over the last decade, the genomic revolution has offered the possibility to generate tremendous amounts of data that contain valuable information on the genetic basis of phenotypic traits, such as those linked to human diseases or those that allow for species to adapt to a changing environment. Most ecologically relevant traits are controlled by a large number of genes with small individual effects on trait variation, but that are connected with one another through complex developmental, metabolic and biochemical networks. As a result, it has recently been suggested that most adaptation events in natural populations are reached via correlated changes at multiple genes at a time, for which the name polygenic adaptation has been coined. The current challenge is to develop methods to extract the relevant information from genomic data to detect the signature of polygenic evolutionary change. The symposium entitled “Detecting the Genomic Signal of Polygenic Adaptation and the Role of Epistasis in Evolution” held in 2017 at the University of Zürich aimed at reviewing our current state of knowledge. In this review, we use the talks of the invited speakers to summarize some of the most recent developments in this field. 相似文献
13.
Dylan J. Fraser 《Molecular ecology》2017,26(23):6499-6501
Is a key theory of evolutionary and conservation biology—that loss of genetic diversity can be predicted from population size—on shaky ground? In the face of increasing human‐induced species depletion and habitat fragmentation, this question and the study of genetic diversity in small populations are paramount to understanding the limits of species’ responses to environmental change and to providing remedies to endangered species conservation. Few empirical studies have investigated to what degree some small populations might be buffered against losses of genetic diversity. Even fewer studies have experimentally tested the potential underlying mechanisms. The study of Schou, Loeschcke, Bechsgaard, Schlotterer, and Kristensen ( 2017 ) in this issue of Molecular Ecology is elegant in combining classic common garden experimentation with population genomics on an iconic experimental model species (Drosophila melanogaster). The authors reveal a slower rate of loss of genetic diversity in small populations under varying thermal regimes than theoretically expected and hence an unexpected retention of genetic diversity. They are further able to hone in on a plausible mechanism: associative overdominance, wherein homozygosity of deleterious recessive alleles is especially disfavoured in genomic regions of low recombination. These results contribute to a budding literature on the varying mechanisms underlying genetic diversity in small populations and encourage further such research towards the effective management and conservation of fragmented or endangered populations. 相似文献
14.
Organisms often adapt to new conditions by means of beneficial mutations that become fixed in the population. Often, full adaptation requires several different mutations in the same cell, each of which may affect a different aspect of the behavior. Can one predict order in which these mutations become fixed? To address this, we experimentally studied evolution of Escherichia coli in a growth medium in which the effects of different adaptations can be easily classified as affecting growth rate or the lag‐phase duration. We find that adaptations are fixed in a defined and reproducible order: first reduction of lag phase, and then an increase of the exponential growth rate. A population genetics theory explains this order, and suggests growth conditions in which the order of adaptations is reversed. We experimentally find this order reversal under the predicted conditions. This study supports a view in which the evolutionary path to adaptation in a new environment can be captured by theory and experiment. 相似文献
15.
Kathleen G. Ferris 《Molecular ecology》2016,25(22):5605-5607
Identifying the individual loci and mutations that underlie adaptation to extreme environments has long been a goal of evolutionary biology. However, finding the genes that underlie adaptive traits is difficult for several reasons. First, because many traits and genes evolve simultaneously as populations diverge, it is difficult to disentangle adaptation from neutral demographic processes. Second, finding the individual loci involved in any trait is challenging given the respective limitations of quantitative and population genetic methods. In this issue of Molecular Ecology, Hendrick et al. (2016) overcome these difficulties and determine the genetic basis of microgeographic adaptation between geothermal vent and nonthermal populations of Mimulus guttatus in Yellowstone National Park. The authors accomplish this by combining population and quantitative genetic techniques, a powerful, but labour‐intensive, strategy for identifying individual causative adaptive loci that few studies have used (Stinchcombe & Hoekstra 2008 ). In a previous common garden experiment (Lekberg et al. 2012), thermal M. guttatus populations were found to differ from their closely related nonthermal neighbours in various adaptive phenotypes including trichome density. Hendrick et al. (2016) combine quantitative trait loci (QTL) mapping, population genomic scans for selection and admixture mapping to identify a single genetic locus underlying differences in trichome density between thermal and nonthermal M. guttatus. The candidate gene, R2R3 MYB, is homologous to genes involved in trichome development across flowering plants. The major trichome QTL, Tr14, is also involved in trichome density differences in an independent M. guttatus population comparison (Holeski et al. 2010) making this an example of parallel genetic evolution. 相似文献
16.
Justin C. Fay 《Molecular ecology》2012,21(22):5387-5389
Domesticated organisms demonstrate our capacity to influence wild species but also provide us with the opportunity to understand rapid evolution in the context of substantially altered environments and novel selective pressures. Recent advances in genetics and genomics have brought unprecedented insights into the domestication of many organisms and have opened new avenues for further improvements to be made. Yet, our ability to engineer biological systems is not without limits; genetic manipulation is often quite difficult. The budding yeast, Saccharomyces cerevisiae, is not only one of the most powerful model organisms, but is also the premier producer of fermented foods and beverages around the globe. As a model system, it entertains a hefty workforce dedicated to deciphering its genome and the function it encodes at a rich mechanistic level. As a producer, it is used to make leavened bread, and dozens of different alcoholic beverages, such as beer and wine. Yet, applying the awesome power of yeast genetics to understanding its origins and evolution requires some knowledge of its wild ancestors and the environments from which they were derived. A number of surprisingly diverse lineages of S. cerevisiae from both primeval and secondary forests in China have been discovered by Wang and his colleagues. These lineages substantially expand our knowledge of wild yeast diversity and will be a boon to elucidating the ecology, evolution and domestication of this academic and industrial workhorse. 相似文献
17.
Studying the movement of individuals in the wild has always been a challenge in ecology. However, estimating such movement is essential in life sciences as it is the base-line for evaluating connectivity, a major component in developing management and conservation plans. Furthermore, movement, or migration, is an essential parameter in population genetics, as it directly affects genetic differentiation. The development of highly variable markers has allowed genetic discrimination between individuals within populations and at larger scales, and the availability of high-throughput technologies means that many samples and hence many individuals can be screened. These advances mean that we can now use genetic identification for tracking individuals, and hence follow both survival and reproductive output through the life cycle. The paper by Morrissey & Ferguson (2011, this issue) is a demonstration of this new capability, as authors were able to infer the movement of salmonid fish initially captured as juveniles, and later as reproductively mature adults. 相似文献
18.
Polymorphism describes two or more distinct, genetically determined, phenotypes that co‐occur in the same population, where the rarest morph is maintained at a frequency above the mutation rate (Ford 1945; Huxley 1955). In a recent opinion piece, we explored a new idea regarding the role of genetic architectures and morph interactions in colour polymorphisms and how this can negatively affect population performance (Bolton et al. 2015). In this issue of Molecular Ecology, Forsman (2016) thoroughly discusses the current evidence for polymorphisms enhancing population performance and critiques the validity of the definitions of polymorphism we use in our original paper. We respond by clarifying that the negative consequences of polymorphisms that we discussed are likely to be most pertinent in species that have a particular set of characteristics, such as strong sexual or social interactions between morphs and discrete genetic architectures. Although it was not our intention to redefine polymorphism, we do believe that there should be further discussion about refining or characterizing balanced polymorphisms with respect to the degree of morph sympatry, discreteness of traits and their underlying genetic architecture, and the types of selection that drive and maintain the variation. The latter describes whether polymorphism is primarily maintained by external factors such as predation pressure or internal factors such as interactions with members of the same species. The contribution of Forsman (2016) is useful to this discussion, and we hope that our exchange of opinions will inspire new empirical and theoretical ideas on the origin and maintenance of colour polymorphisms. 相似文献
19.
R. C. MacLEAN 《Journal of evolutionary biology》2010,23(3):488-493
Epistatic interactions between mutations are thought to play a crucial role in a number of evolutionary processes, including adaptation and sex. Evidence for epistasis is abundant, but tests of general theoretical models that can predict epistasis are lacking. In this study, I test the ability of metabolic control theory to predict epistasis using a novel experimental approach that combines phenotypic and genetic perturbations of enzymes involved in gene expression and protein synthesis in the bacterium Pseudomonas aeruginosa. These experiments provide experimental support for two key predictions of metabolic control theory: (i) epistasis between genes involved in the same pathway is antagonistic; (ii) epistasis becomes increasingly antagonistic as mutational severity increases. Metabolic control theory is a general theory that applies to any set of genes that are involved in the same linear processing chain, not just metabolic pathways, and I argue that this theory is likely to have important implications for predicting epistasis between functionally coupled genes, such as those involved in antibiotic resistance. Finally, this study highlights the fact that phenotypic manipulations of gene activity provide a powerful method for studying epistasis that complements existing genetic methods. 相似文献
20.
JD Ramírez F Guhl LA Messenger MD Lewis M Montilla Z Cucunuba MA Miles MS Llewellyn 《Molecular ecology》2012,21(17):4216-4226
Clonal propagation is considered to be the predominant mode of reproduction among many parasitic protozoa. However, this assumption may overlook unorthodox, infrequent or cryptic sexuality. Trypanosoma cruzi, which causes Chagas disease, is known to undergo non‐Mendelian genetic exchange in the laboratory. In the field, evidence of extant genetic exchange is limited. In this study, we undertook intensive sampling of T. cruzi Discrete Typing Unit I in endemic eastern Colombia. Using Fluorescence‐activated cell sorting, we generated 269 biological clones from 67 strains. Each clone was genotyped across 24 microsatellite loci. Subsequently, 100 representative clones were typed using 10 mitochondrial sequence targets (3.76 Kbp total). Clonal diversity among humans, reservoir hosts and vectors suggested complex patterns of superinfection and/or coinfection in oral and vector‐borne Chagas disease cases. Clonal diversity between mother and foetus in a congenital case demonstrates that domestic TcI genotypes are infective in utero. Importantly, gross incongruence between nuclear and mitochondrial markers is strong evidence for widespread genetic exchange throughout the data set. Furthermore, a confirmed mosaic maxicircle sequence suggests intermolecular recombination between individuals as a further mechanism of genetic reassortment. Finally, robust dating based on mitochondrial DNA indicates that the emergence of a widespread domestic TcI clade that we now name TcIDOM (formerly TcIa/VENDom) occurred 23 000 ± 12 000 years ago and was followed by population expansion, broadly corresponding with the earliest human migration into the Americas. 相似文献