首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An in-vitro assay for ecdysteroid synthesis by the prothoracic glands (PGs) of fifth instar Rhodnius prolixus has been employed to evaluate the actions of prothoracicotropic neuropeptides from the silkmoth, Bombyx mori. Crude prothoracicotropic hormone (PTTH) extracts of recently emerged adult brain complexes of Bombyx induced a dose-dependent stimulation of ecdysteroid synthesis by Rhodnius PGs, which was similar to that obtained using crude Rhodnius PTTH. In both cases, maximum stimulation was obtained with one brain equivalent. Rhodnius PGs were then challenged with incremental doses of recombinant Bombyx PTTH and synthetic bombyxin-II. Dose-response curves for the action of both peptides on Rhodnius PGs were very similar to those obtained for their action on the pupal PGs of Bombyx in vitro. Bombyx PTTH stimulated the PGs of Rhodnius at concentrations comparable to those effective on Bombyx. The curve for Bombyx PTTH showed a steep ascending region from 3 to 8ng/ml and a sharp peak. For bombyxin, concentrations 40-fold higher were required to elicit the same amount of stimulation as obtained using Bombyx PTTH. Therefore, Rhodnius PGs possess recognition sites for both Bombyx PTTH and bombyxin. This is the first study of the ecdysteroidogenic properties of the Bombyx peptides on a heterologous species. It is suggested that the function and conformation of PTTH may be conserved between distantly related insect groups.  相似文献   

2.
The ability of recombinant prothoracicotropic hormone (rPTTH) or crude brain extract (cBRAIN) of Bombyx mori to stimulate ecdysteroid secretion from prothoracic glands (PGs) was investigated throughout the fifth instar and the first day of the pupal stage. Crude brain extracts could stimulate much higher ecdysteroid secretion than rPTTH during a 2h incubation. Recombinant PTTH did not increase the level of glandular cyclic AMP, except on days 4 and 5 of the fifth instar. Glandular cAMP levels were increased by cBRAIN from day 0 until day 5 of the fifth instar with the highest increase on day 3. On this day, rPTTH could not stimulate any increase of ecdysteroid secretion from the PGs during a 30min incubation. On the contrary, PGs incubated with cBRAIN for 30min showed increased secretory activity. Furthermore, on day 3 and in the absence of extracellular Ca(2+), rPTTH did not increase the glandular cAMP levels but cBRAIN did. Recombinant PTTH-stimulated ecdysteroid secretion from day 3 PGs was dependent on extracellular Ca(2+) in a dose-dependent manner. However, cBRAIN could stimulate ecdysteroid secretion even in the absence of extracellular Ca(2+). Taken together, the results of these experiments suggest the presence of a previously unknown cerebral prothoracicotropic factor that can stimulate glandular cAMP levels and ecdysteroid secretion from the PGs of Bombyx mori.  相似文献   

3.
Fenoxycarb application from 0 h until 60 h of the 5th instar of Bombyx mori induced 100% dauer larvae. Between the 60 and 78 h, the ratio of fenoxycarb-induced dauer larvae decreased, and the ratio of supernumerary instar moulting larvae increased. After application of fenoxycarb at the 48 h of the 5th instar, the haemolymph prothoracicotropic hormone (PTTH) titer was higher in fenoxycarb-treated larvae than in control larvae. Furthermore, brain-corpora cardiaca-corpora allata (Br-CC-CA) complexes from fenoxycarb-treated larvae released higher amounts of PTTH in vitro than the Br-CC-CA complexes of control larvae. Prothoracic glands (PGs) of fenoxycarb-treated larvae at the 48 h of the 5th instar exhibited basal and PTTH-stimulated secretory activities similar to that of control PGs until the 72 h of the 5th instar. After that time point, both basal and PTTH-stimulated secretory activity of PGs from fenoxycarb-treated larvae significantly decreased and remained low for the rest of the investigated period. The combined results suggest that the application of fenoxycarb affects the ability of the PGs to be stimulated by PTTH and the induction of dauer larvae in Bombyx mori is not due to inhibition of PTTH release from Br-CC-CA complexes.  相似文献   

4.
Measurements of Ca(2+) influx in Fura-2/AM loaded prothoracic glands (PGs) of the silkworm, Bombyx mori, after application of forskolin or the cAMP analogue, 8-bromo-cAMP, showed a steady increase in [Ca(2+)](i), which was of extracellular origin and was inhibited, in both cases, by the dihydropyridine (DHP) derivative, nitrendipine. Nitrendipine also inhibited the abrupt S(-).Bay K 8644-mediated increase in [Ca(2+)](i) and its effects were mimicked by a myoinhibitory/prothoracicostatic peptide (Mas-MIP I/PTSP), which was isolated from Manduca sexta and was found to possess ecdysteroidostatic activity in Bombyx mori PGs. This peptide blocked both the forskolin and S(-).Bay K 8644-mediated increase in [Ca(2+)](i) of PG cells. It was ineffective, however, in blocking the recombinant prothoracicotropic hormone (rPTTH)-stimulated high increase in [Ca(2+)](i) of PG cells suggesting that distinct and independently regulated Ca(2+) influx mechanisms operate in the PG cells of Bombyx mori. The dependence of DHP-sensitive Ca(2+) channels on the cAMP-signalling cascade was further corroborated by the inabilitity of nitrendipine to block the thapsigargin-stimulated high increase in [Ca(2+)](i) after depletion of Ca(2+) from the intracellular stores. This, together with the inability of thapsigargin to stimulate the cAMP levels of PG cells suggest that there is a tightly regulated cross-talk mechanism between the two signalling cascades of Ca(2+) and cAMP. The combined results suggest a cAMP-mediated regulation of the opening-state of DHP-sensitive Ca(2+) channels and stimulation of [Ca(2+)](i) increases and ecdysteroid secretion by a positive feedback mechanism. Mas-MIP I/PTSP interferes with this mechanism by blocking DHP-sensitive Ca(2+) channels. This regulatory mechanism appears to be autonomously stimulating ecdysteroidogenesis by the PGs, it is regulated by Mas-MIP I/PTSPS, and it is not involved in other Ca(2+) influx mechanisms that operate within the PG cells of Bombyx mori.  相似文献   

5.
Dedos SG  Fugo H 《Zoological science》2001,18(9):1245-1251
The objective of this study was to determine which intracellular second messenger systems are activated by prothoracicotropic hormone in the prothoracic glands (PGs) of Bombyx mori. Recombinant prothoracicotropic hormone (rPTTH) could stimulate ecdysteroid synthesis and secretion from day 6 PGs of the 5th instar of Bombyx mori within 30 min of in vitro incubation. However, rPTTH did not stimulate any increases in the glandular content of inositol 1,4,5-trisphosphate and cAMP during this short incubation period. Extracellular Ca2+ influenced the basal and rPTTH-stimulated ecdysteroid synthesis and release in a dose-dependent manner. The L-type Ca2+ channel antagonist, nitrendipine, inhibited the rPTTH-stimulated ecdysteroid synthesis and secretion (IC50-28 microM). The phospholipase C inhibitor, 2-nitro-4-carboxyphenyl-N, N-diphenylcarbamate, inhibited the rPTTH-stimulated ecdysteroid synthesis (IC50-19 microM). The protein kinase C inhibitor, chelerythrine chloride, inhibited the rPTTH-stimulated ecdysteroid synthesis (IC50-14 microM). The protein kinase C activator, phorbol-12-myristate 13-acetate (PMA), could stimulate basal ecdysteroid synthesis and secretion (EC50-1 microM) and its inactive alpha-isomer (4 alpha-PMA) was ineffective. The combined results suggest that the PTTH-stimulated ecdysteroid synthesis and release in the PGs of Bombyx is dependent on extracellular Ca2+ and the bifurcating second messenger signalling cascade of inositol 1,4,5-triphosphate and diacylglycerol.  相似文献   

6.
7.
应用无细胞放射实验技术,逐日测定了家蚕末龄幼虫发育期间前胸腺和脂肪体匀浆液内蜕皮素20单氧酶(E-20-M)的活性。结果发现前胸腺内E-20-M活性特点是:从蜕皮到第3天幼虫前胸腺缺乏或具较低水平E-20-M活性;第4天前胸腺E-20-M活性开始升高;到第5天前胸腺E-20-M活性达到高峰。然而,与前胸腺相比,脂肪体E-20-M活性要高的多。  相似文献   

8.
Abstract Using cell free radioassay, activities of ecdysone 20-monooxygenase (E-20-M) were determined in homogenates of prothoracic glands (PGs) and fat bodies at 24 h intervals during last instar larval development of Bombyx mori. It was found that the profile of E-20-M activity in PG homogenates was characterized by a basal line from day 0 to day 3 which begins to rise on 4th day and reaches a peak on 5th day. Nevertheless, in comparison with PGs, E-20-M activity in fat body was much higher.  相似文献   

9.
Fenoxycarb application at 48 h (day 2) of the 5th instar of Bombyx mori induced permanent larvae with prothoracic glands (PGs) exhibiting weak ecdysteroidogenic activity. Although glands from control and fenoxycarb-treated larvae exhibited similar responses to dibutyl cAMP and forskolin on day 2, forskolin could not stimulate ecdysteroid secretion from PGs of fenoxycarb-treated larvae on day 3. Glands from control larvae incubated with cholera toxin (CTX) on day 3 had increased cAMP content and enhanced ecdysteroid secretion. Cholera toxin did not stimulate ecdysteroid secretion and marginally increased cAMP content in day 3 PGs of fenoxycarb-treated larvae. After application of fenoxycarb on day 2, crude brain extracts (cBRAIN) could not increase the glandular cAMP content throughout the rest of the 5th instar of the treated larvae. Fenoxycarb did not affect the basal or cBRAIN-stimulated cAMP accumulation in control PGs on day 2 and day 3 in vitro. Application of fenoxycarb on day 2 did not affect the recombinant PTTH (rPTTH)-stimulated ecdysteroid secretion on day 3, but reduced the cBRAIN-stimulated ecdysteroid secretion on day 3 to levels similar to that of rPTTH. The combined results suggest that the cAMP signalling cascade in the PGs of B. mori becomes nonfunctional after fenoxycarb application on day 2 of the 5th instar.  相似文献   

10.
The endocrine mechanisms that regulate prothoracic gland (PG) activity in early stages of final larval instar of the silkworm Bombyx mori were investigated using a newly developed long-term cultivation system of the gland. The PGs dissected from day-0 fifth instar larvae did not secrete detectable amounts of ecdysone for the first 24 h in culture but started secretion within the next 2 days. The amount of secreted ecdysone increased day by day. When day-0 PGs were co-cultivated with corpora allata, however, they remained inactive for at least 8 days. PGs dissected from 1-day younger larvae (day-3 fourth instar larvae) secreted ecdysone for the first 24 h but stopped secretion for the next 24 h, followed by recovery of ecdysone secretory activity. By contrast, PGs from day-1 fourth instar larvae remained active throughout a cultivation period without any sign of inactivation. However, when the same glands were exposed to a high titer of 20-hydroxyecdysone for the second 24h in culture, they gradually lost their activity. These results indicate that PGs of fourth instar larvae are inactivated by ecdysteroid through a negative feedback mechanism and that thus inactivated PGs spontaneously recover ecdysone secretory activity in the early fifth instar unless inhibited by juvenile hormone.  相似文献   

11.
Diapause, a programmed developmental arrest at a specific stage, is common in insects and is regulated by hormones. It is well established that in pupal diapause, cessation of ecdysteroid secretion from the prothoracic glands (PGs) after pupal ecdysis leads to diapause initiation, while resumption of its secretion induces post-diapause development. However, what regulates the activity of the glands is poorly understood, especially for the glands of diapause-terminated pupae. In the present study, we investigate the mechanisms by which post-diapause development is regulated in the cabbage armyworm Mamestra brassicae. We demonstrate that the brain is necessary for the initiation of post-diapause development and that the factor in the brain responsible for the activation of the PGs is the prothoracicotropic hormone (PTTH). Further, through measuring the hemolymph PTTH titers by time-resolved fluoroimmunoassay, we show that PTTH is actually released into the hemolymph prior to the activation of the PGs. Although its peak titer is much lower than expected, this low concentration of PTTH is most likely still effective to activate the PGs of post-diapause pupae, because the responsiveness to PTTH of the glands at this stage is very high compared to that of nondiapause pupal PGs. These results strongly suggest that in M. brassicae, PTTH serves as a trigger to initiate pupa-adult development after diapause termination by stimulating the PGs to secrete ecdysteroid.  相似文献   

12.
The prothoracic glands (PGs) of Lymantria dispar (day-5 female, last-stage larvae) produce both ecdysone and an ecdysteroid which has the same retention time on reverse-phase liquid chromatography (RPLC) as a known standard of 3-dehydroecdysone. The latter ecdysteroid can be converted by a heat-labile factor in extracts of post-diapause, pre-hatch L. dispar eggs to an ecdysteroid which has the same retention time on RPLC as ecdysone. Purified 3-dehydroecdysone, similarly treated with egg extract, also gives the same retention time on RPLC as ecdysone. Taken together, these data suggest that, like Manduca sexta, a major product of the PGs in L. dispar is 3-dehydroecdysone. Furthermore, these data suggest that L. dispar eggs, which contain mature embryos, possess ecdysteroid ketoreductase activity capable of converting 3-dehydroecdysone to ecdysone. This is the first report of ecdysteroid ketoreductase activity in embryonated eggs.  相似文献   

13.
Autocrine activation of DNA synthesis in prothoracic gland cells in last instar larvae of the silkworm, Bombyx mori, was studied using both a long-term in vitro organ culture system and immunocytochemical labeling with 5-bromo-2'-deoxyuridine (BrdU). When prothoracic glands were incubated in a small volume of culture medium (10 microl/gland), the numbers of DNA-synthesizing cells per gland increased significantly, and DNA synthesis was stimulated less by hemolymph, as compared with glands incubated in a large volume (50 microl/gland). Moreover, glands cultured in groups (6 glands per group in a 50-microl drop) also resulted in much higher levels of DNA synthesis than those cultured individually in a 50-microl drop. The mechanism by which alternation of the volume of the incubation medium results in changes in the levels of DNA synthesis was further examined. When prothoracic glands were incubated in medium (50-microl drop per gland) that was preconditioned with glands (in a 10-microl drop individually), a dramatic increase in DNA synthesis activity was also observed, indicating that prothoracic glands may release a factor that stimulates their own DNA synthesis. The growth-promoting factor was further characterized and it was found that the factor is heat stable, and its molecular weight was estimated to be between 1,000 and 3,000 Da. Moreover, the factor also stimulated corpus allatum cell DNA synthesis in vitro. Injection of concentrated putative growth-promoting factor into day 4 last instar-ligated larvae greatly increased cell DNA synthesis of the prothoracic glands, indicating the in vivo function of the present autocrine factor.  相似文献   

14.
Measurements of Ca2+ influx in Fura-2/AM loaded steroidogenic cells (prothoracic glands; PGs) of the silkworm, Bombyx mori showed that application of the neuropeptide prothoracicotropic hormone (PTTH) can increase the intracellular [Ca2+]i. This PTTH-mediated Ca2+ influx in PG cells had kinetic patterns and pharmacological characteristics similar to those induced by thapsigargin. Namely, it produced increases in intracellular Ca2+ levels only in the presence of extracellular Ca2+, it was blocked by Gd3+ and 2-Aminoethoxydiphenylborate (2-APB), and it was unaffected by several toxins or compounds that block voltage-activated Ca2+ channels. Moreover, the PTTH-stimulated increase of Ca2+ levels was eliminated in the presence of heparin (an IP3 receptor blocker), and by TMB-8 which also blocked any PTTH-dependent increase of ecdysteroid secretion. The PTTH-mediated increase of Ca2+ levels was not affected by the non-hydrolysable GDP analogue, GDPbetaS, an indication that a G protein is not downstream of the PTTH receptor. These results argue strongly in favor of gating by the PTTH receptor of capacitative Ca2+ entry (CCE) channels (or store-operated Ca2+ channels (SOCs)) by a mechanism that does not involve any G proteins but requires the presence of functional IP3 receptors. Because the ability of PTTH to stimulate the [Ca2+]i levels of PG cells was completely mimicked by thapsigargin and exhibited a pharmacological profile similar to CCE mechanisms, we believe that PTTH directly regulates a CCE pathway in PG cells thereby activating a plethora of downstream regulators responsible for ecdysteroid secretion by the PGs of Bombyx mori.  相似文献   

15.
16.
In the present study, we investigated the modulatory effects of ecdysteroidogenesis of prothoracic glands (PGs) by bombyxin, an endogenous insulin-like peptide in the silkworm, Bombyx mori. The results showed that bombyxin stimulated ecdysteroidogenesis during a long-term incubation period and in a dose-dependent manner. Moreover, the injection of bombyxin into day 4-last instar larvae increased ecdysteroidogenesis 24 h after the injection, indicating its possible in vivo function. Phosphorylation of the insulin receptor and Akt, and the target of rapamycin (TOR) signaling were stimulated by bombyxin, and stimulation of Akt phosphorylation and TOR signaling appeared to be dependent on phosphatidylinositol 3-kinase (PI3K). Bombyxin inhibited the phosphorylation of adenosine 5′-monophosphate-activated protein kinase (AMPK), and the inhibition appeared to be PI3K-independent. Bombyxin-stimulated ecdysteroidogenesis was blocked by either an inhibitor of PI3K (LY294002) or a chemical activator of AMPK (5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside, AICAR), indicating involvement of the PI3K/Akt and AMPK signaling pathway. Bombyxin did not stimulate extracellular signal-regulated kinase (ERK) signaling of PGs. Bombyxin, but not prothoracicotropic hormone (PTTH) stimulated cell viability of PGs. In addition, bombyxin treatment also affected mRNA expression levels of insulin receptor, Akt, AMPKα, -β, and -γ in time-dependent manners. These results suggest that bombyxin modulates ecdysteroidogenesis in B. mori PGs during development.  相似文献   

17.
Application of the tetradecapeptide mastoparan to the prothoracic glands (PGs) of the tobacco hornworm, Manduca sexta, and the silkworm, Bombyx mori, resulted in increases in intracellular Ca(2+) ([Ca(2+)](i)). In M. sexta, Gi proteins are involved in the mastoparan-stimulated increase in [Ca(2+)](i). However, there is no involvement of Gi proteins in the mastoparan-stimulated increase in [Ca(2+)](i) in prothoracic gland cells from B. mori. Unlike in M. sexta prothoracic glands, in B. mori prothoracic glands mastoparan increases [Ca(2+)](i) even in the absence of extracellular Ca(2+). Pharmacological manipulation of the Ca(2+) signalling cascades in the prothoracic glands of both insect species suggests that in M. sexta prothoracic glands, mastoparan's first site of action is influx of Ca(2+) through plasma membrane Ca(2+) channels while in B. mori prothoracic glands, mastoparan's first site of action is mobilization of Ca(2+) from intracellular stores. In M. sexta, the combined results indicate the presence of mastoparan-sensitive plasma membrane Ca(2+) channels, distinct from those activated by prothoracicotropic hormone or the IP(3) signalling cascade, that coordinate spatial increases in [Ca(2+)](i) in prothoracic gland cells. We propose that in B. mori, mastoparan stimulates Ca(2+) mobilization from ryanodine-sensitive intracellular Ca(2+) stores in prothoracic gland cells.  相似文献   

18.
It is generally accepted that the prothoracicotropic hormone (PTTH) is the stimulator of ecdysteroidogenesis by prothoracic glands in larval insects. In the present study, we investigated activation of ecdysteroidogenesis by bovine insulin in prothoracic glands of the silkworm, Bombyx mori. The results showed that the insulin stimulated ecdysteroidogenesis during a long-term incubation period and in a dose-dependent manner. In addition, insulin also stimulated both DNA synthesis and viability of prothoracic glands. Insulin-stimulated ecdysteroidogenesis was blocked by either LY294002 or wortmannin, indicating involvement of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Activation of ecdysteroidogenesis by insulin appeared to be developmentally regulated. Moreover, in vitro activation of ecdysteroidogenesis of prothoracic glands by insulin was also verified by in vivo experiments: injection of insulin into day 6 last instar larvae greatly increased both hemolymph ecdysteroid levels and ecdysteroidogenesis 24 h after the injection, indicating its possible in vivo function. Phosphorylation of Akt and the insulin receptor was stimulated by insulin, and stimulation of Akt phosphorylation appeared to be PI3K-dependent and developmentally regulated. Insulin did not stimulate extracellular signal-regulated kinase (ERK) signaling of the prothoracic glands. These results suggest that in silkworm prothoracic glands, in addition to the PTTH and an autocrine factor, ecdysteroidogenesis is also stimulated by insulin during development.  相似文献   

19.
The capacity of separated glandular and stromal cells from endometrium and first trimester decidua to release prostaglandins (PGs) was studied over 48 hours in culture. Glandular preparations released more PGs than stromal preparations in all tissues. Stromal release of PGs did not alter throughout the cycle or in early pregnancy but the capacity of glandular preparations to release PGs varied considerably. Proliferative glands released most PGF2 alpha and PGE2 followed by secretory glands and decidua. Histamine (10(-5)) stimulated PG release from endometrial and decidual glands but the response of proliferative glands was greatest. Actinomycin D stimulated release of PGF2 alpha and PGE2 from glandular cells of secretory endometrium and decidua. These results suggest that in vitro release of PGs is suppressed after ovulation and is in part due to inhibition of PG release by a protein or proteins synthesized in the glandular fraction of secretory endometrium or decidua.  相似文献   

20.
Synthesis and secretion of the insect molting hormone ecdysteroid in the prothoracic glands (PGs) are stimulated by the prothoracicotropic hormone (PTTH) secreted by the brain. Bombyxins, insulin-like peptides of the silkworm Bombyx mori, show prothoracicotropic activity when administered to the saturniid silkworm Samia cynthia ricini, but they are inactive to B. mori itself. Recently, the genes for the bombyxin homologs of S. cynthia ricini (referred to as Samia bombyxin-related peptides, SBRPs) were cloned. To examine the prothoracicotropic activity of SBRPs on S. cynthia ricini, we synthesized two representative molecules, SBRP-A1 and -B1. They promoted pupa-to-adult development with ED(50) of 50 and 10 ng/pupa (EC(50) of 5 and 1 nM), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号