共查询到20条相似文献,搜索用时 15 毫秒
1.
A system for the random mutagenesis of the two-peptide lantibiotic lacticin 3147: analysis of mutants producing reduced antibacterial activities 总被引:1,自引:0,他引:1
Field D Collins B Cotter PD Hill C Ross RP 《Journal of molecular microbiology and biotechnology》2007,13(4):226-234
Lantibiotics are antimicrobial peptides that contain several unusual amino acids resulting from a series of enzyme-mediated posttranslational modifications. As a consequence of being gene-encoded, the implementation of peptide bioengineering systems has the potential to yield lantibiotic variants with enhanced chemical and physical properties. Here we describe a functional two-plasmid expression system which has been developed to allow random mutagenesis of the two-component lantibiotic, lacticin 3147. One of these plasmids contains a randomly mutated version of the two structural genes, ltnA1 and ltnA2, and the associated promoter, Pbac, while the other encodes the remainder of the proteins required for the biosynthesis of, and immunity to, lacticin 3147. To test this system, a bank of approximately 1,500 mutant strains was generated and screened to identify mutations that have a detrimental impact on the bioactivity of lacticin 3147. This strategy established/confirmed the importance of specific residues in the structural peptides and their associated leaders and revealed that a number of alterations which mapped to the -10 or -35 regions of Pbac abolished promoter activity. 相似文献
2.
Gardiner GE Rea MC O'Riordan B O'Connor P Morgan SM Lawlor PG Lynch PB Cronin M Ross RP Hill C 《Applied and environmental microbiology》2007,73(21):7103-7109
The component peptides of lacticin 3147 were degraded by alpha-chymotrypsin in vitro with a resultant loss of antimicrobial activity. Activity was also lost in ileum digesta. Following oral ingestion, neither of the lacticin 3147 peptides was detected in the gastric, jejunum, or ileum digesta of pigs, and no lacticin 3147 activity was found in the feces. These observations suggest that lacticin 3147 ingestion is unlikely to have adverse effects, since it is probably inactivated during intestinal transit. 相似文献
3.
The ability and frequency at which target organisms can develop resistance to bacteriocins is a crucial consideration in designing and implementing bacteriocin-based biocontrol strategies. Lactococcus lactis ssp. lactis IL1403 was used as a target strain in an attempt to determine the frequency at which spontaneously resistant mutants are likely to emerge to the lantibiotic lacticin 3147. Following a single exposure to lacticin 3147, resistant mutants only emerged at a low frequency (10(-8)-10(-9)) and were only able to withstand low levels of the bacteriocin (100 AU mL(-1)). However, exposure to increasing concentrations, in a stepwise manner, resulted in the isolation of eight mutants that were resistant to moderately higher levels of lacticin 3147 (up to 600 AU mL(-1)). Interestingly, in a number of cases cross-resistance to other lantibiotics such as nisin and lacticin 481 was observed, as was cross-resistance to environmental stresses such as salt. Finally, reduced adsorption of the bacteriocin in to the cell was documented for all resistant mutants. 相似文献
4.
5.
Ryan MP Jack RW Josten M Sahl HG Jung G Ross RP Hill C 《The Journal of biological chemistry》1999,274(53):37544-37550
Lacticin 3147 is a two-component bacteriocin produced by Lactococcus lactis subspecies lactis DPC3147. In order to further characterize the biochemical nature of the bacteriocin, both peptides were isolated which together are responsible for the antimicrobial activity. The first, LtnA1, is a 3,322 Da 30-amino acid peptide and the second component, LtnA2, is a 29-amino acid peptide with a mass of 2,847 Da. Conventional amino acid analysis revealed that both peptides contain the thioether amino acid, lanthionine, as well as an excess of alanine to that predicted from the genetic sequence of the peptides. Chiral phase gas chromatography coupled with mass spectrometry of amino acid composition indicated that both LtnA1 and LtnA2 contain D-alanine residues and amino acid sequence analysis of LtnA1 confirmed that the D-alanine results from post-translational modification of a serine residue in the primary translation product. Taken together, these results demonstrate that lacticin 3147 is a novel, two-component, D-alanine containing lantibiotic that undergoes extensive post-translational modification which may account for its potent antimicrobial activity against a wide range of Gram-positive bacteria. 相似文献
6.
Ltnα and Ltnβ are individual components of the two-peptide lantibiotic lacticin 3147 and are unusual in that, although ribosomally synthesized, they contain d-amino acids. These result from the dehydration of l-serine to dehydroalanine by LtnM and subsequent stereospecific hydrogenation to d-alanine by LtnJ. Homologues of LtnJ are rare but have been identified in silico in Staphylococcus aureus C55 (SacJ), Pediococcus pentosaceus FBB61 (PenN), and Nostoc punctiforme PCC73102 (NpnJ, previously called NpunJ [P. D. Cotter et al., Proc. Natl. Acad. Sci. U. S. A. 102:18584-18589, 2005]). Here, the ability of these enzymes to catalyze d-alanine formation in the lacticin 3147 system was assessed through heterologous enzyme production in a ΔltnJ mutant. PenN successfully incorporated d-alanines in both peptides, and SacJ modified Ltnα only, while NpnJ was unable to modify either peptide. Site-directed mutagenesis was also employed to identify residues of key importance in LtnJ. The most surprising outcome from these investigations was the generation of peptides by specific LtnJ mutants which exhibited less bioactivity than those generated by the ΔltnJ strain. We have established that the reduced activity of these peptides is due to the inability of the associated LtnJ enzymes to generate d-alanine residues in a stereospecific manner, resulting in the presence of both d- and l-alanines at the relevant locations in the lacticin 3147 peptides. 相似文献
7.
Martínez-Cuesta MC Buist G Kok J Hauge HH Nissen-Meyer J Peláez C Requena T 《Journal of applied microbiology》2000,89(2):249-260
The lactic acid bacterium Lactococcus lactis IFPL105 secretes a broad spectrum bacteriocin produced from the 46 kb plasmid pBAC105. The bacteriocin was purified to homogeneity by ionic and hydrophobic exchange and reverse-phase chromatography. Bacteriocin activity required the complementary action of two distinct peptides (alpha and beta) with average molecular masses of 3322 and 2848 Da, respectively. The genes encoding the two peptides were cloned and sequenced and were found to be identical to the ltnAB genes from plasmid pMRC01 of L. lactis DPC3147. LtnA and LtnB contain putative leader peptide sequences similar to the known 'double glycine' type. The predicted amino acid sequence of mature LtnA and LtnB differed from the amino acid content determined for the purified alpha and beta peptides in the residues serine, threonine, cysteine and alanine. Post-translational modification, and the formation of lanthionine or methyllanthionine rings, could partly explain the difference. Hybridization experiments showed that the organization of the gene cluster in pBAC105 responsible for the production of the bacteriocin is similar to that in pMRC01, which involves genes encoding modifying enzymes for lantibiotic biosynthesis and dual-function transporters. In both cases, the gene clusters are flanked by IS946 elements, suggesting an en bloc transposition. The findings from the isolation and molecular characterization of the bacteriocin provide evidence for the lantibiotic nature of the two peptides. 相似文献
8.
Des Field Evelyn M. Molloy Catalin Iancu Lorraine A. Draper Paula M. O' Connor Paul D. Cotter Colin Hill R. Paul Ross 《Microbial biotechnology》2013,6(5):564-575
The lantibiotic lacticin 3147 consists of two ribosomally synthesized and post‐translationally modified antimicrobial peptides, Ltnα and Ltnβ, which act synergistically against a wide range of Gram‐positive microorganisms. We performed saturation mutagenesis of specific residues of Ltnα to determine their functional importance. The results establish that Ltnα is more tolerant to change than previously suggested by alanine scanning mutagenesis. One substitution, LtnαH23S, was identified which improved the specific activity of lacticin 3147 against one pathogenic strain, Staphylococcus aureus NCDO1499. This represents the first occasion upon which the activity of a two peptide lantibiotic has been enhanced through bioengineering. 相似文献
9.
Lacticin 3147 is a broad-spectrum, two-component, lanthionine-containing bacteriocin produced by Lactococcus lactis DPC3147 which has widespread food and biomedical applications as a natural antimicrobial. Other two-component lantibiotics described to date include cytolysin and staphylococcin C55. Interestingly, cytolysin, produced by Enterococcus faecalis, has an associated haemolytic activity. The objective of this study was to compare the biological activity of lacticin 3147 with cytolysin. The lacticin 3147-encoding determinants were heterologously expressed in Ent. faecalis FA2-2, a plasmid-free strain, to generate Ent. faecalis pOM02, thereby facilitating a direct comparison with Ent. faecalis FA2-2.pAD1, a cytolysin producer. Both heterologously expressed lacticin 3147 and cytolysin exhibited a broad spectrum of activity against bacterial targets. Furthermore, enterococci expressing active lacticin 3147 did not exhibit a haemolytic activity against equine blood cells. The results thus indicate that the lacticin 3147 biosynthetic machinery can be heterologously expressed in an enterococcal background resulting in the production of the bacteriocin with no detectable haemolytic activity. 相似文献
10.
Sawa N Wilaipun P Kinoshita S Zendo T Leelawatcharamas V Nakayama J Sonomoto K 《Applied and environmental microbiology》2012,78(3):900-903
Enterococcus faecalis NKR-4-1 isolated from pla-ra produces a novel two-peptide lantibiotic, termed enterocin W, comprising Wα and Wβ. The structure of enterocin W exhibited similarity with that of plantaricin W. The two peptides acted synergistically, and their order of binding to the cell membrane was important for their inhibitory activity. 相似文献
11.
The efficacy of using a lacticin 3147-producing starter as a protective culture to improve the safety of cottage cheese was investigated. This involved the manufacture of cottage cheese using Lactococcus lactis DPC4268 (control) and L. lactis DPC4275, a bacteriocin-producing transconjugant strain derived from DPC4268. A number of Listeria monocytogenes strains, including a number of industrial isolates, were assayed for their sensitivity to lacticin 3147. These strains varied considerably with respect to their sensitivity to the bacteriocin. One of the more tolerant strains, Scott A, was used in the cottage cheese study; the cheese was subsequently inoculated with approximately 10(4) L. monocytogenes Scott A g-1. The bacteriocin concentration in the curd was measured at 2560 AU ml-1, and bacteriocin activity could be detected throughout the 1 week storage period. In cottage cheese samples held at 4 degrees C, there was at least a 99.9% reduction in the numbers of L. monocytogenes Scott A in the bacteriocin-containing cheese within 5 d, whereas in the control cheeses, numbers remained essentially unchanged. At higher storage temperatures, the kill rate was more rapid. These results demonstrate the effectiveness of lacticin 3147 as an inhibitor of L. monocytogenes in a food system where post-manufacture contamination by this organism could be problematic. 相似文献
12.
IS1675, a novel lactococcal insertion element, forms a transposon-like structure including the lacticin 481 lantibiotic operon
下载免费PDF全文

Two copies of IS1675, a novel lactococcal insertion element from the IS4 family, are present on a 70-kb plasmid, where they frame the lantibiotic lacticin 481 operon. The whole structure could be a composite transposon designated Tn5721. This study shows that the lacticin 481 operon does not include any regulatory gene and provides a new example of a transposon-associated bacteriocin determinant. We identified five other IS1675 copies not associated with the lacticin 481 operon. The conservation of IS1675 flanking sequences suggested a 24-bp target site. 相似文献
13.
Continuous production of lacticin 3147 and nisin using cells immobilized in calcium alginate 总被引:1,自引:0,他引:1
Scannell AG Hill C Ross RP Marx S Hartmeier W Arendt EK 《Journal of applied microbiology》2000,89(4):573-579
Bacteriocinogenic strains, Lactococcus lactis subsp. lactis DPC 3147 and L. lactis DPC 496, producing lacticin 3147 and nisin, respectively, were immobilized in double-layered calcium alginate beads. These beads were inoculated into MRS broth at a ratio of 1:4 and continuously fermented for 180 h. Free cells were used to compare the effect of immobilization on bacteriocin production. After equilibrium was reached, a flow rate of 580 ml h(-1) was used in the immobilized cell (IC), and 240 ml h(-1) in free-cell (FC) bioreactors. Outgrowth from beads was observed after 18 h. Bacteriocin production peaked at 5120 AU ml(-1) in both IC and FC bioreactors. However, FC production declined after 80 h to 160 AU ml(-1) at the end of the fermentation. Results of this study indicate that immobilization offers the possibility of a more stable and long-term means of producing lacticin 3147 in laboratory media than with free cells. 相似文献
14.
Combination of hydrostatic pressure and lacticin 3147 causes increased killing of Staphylococcus and Listeria 总被引:1,自引:0,他引:1
The use of hydrostatic pressure and lacticin 3147 treatments were evaluated in milk and whey with a view to combining both treatments for improving the quality of minimally processed dairy foods. The system was evaluated using two foodborne pathogens: Staphylococcus aureus ATCC6538 and Listeria innocua DPC1770. Trials against Staph. aureus ATCC6538 were performed using concentrated lacticin 3147 prepared from culture supernatant. The results demonstrated a more than additive effect when both treatments were used in combination. For example, the combination of 250 MPa (2.2 log reduction) and lacticin 3147 (1 log reduction) resulted in more than 6 logs of kill. Similar results were obtained when a foodgrade powdered form of lacticin 3147 (developed from a spray dried fermentatation of reconstituted demineralized whey powder) was evaluated for the inactivation of L. innocua DPC1770. Furthermore, it was observed that treatment of lacticin 3147 preparations with pressures greater than 400 MPa yielded an increase in bacteriocin activity (equivalent to a doubling of activity). These results indicate that a combination of high pressure and lacticin 3147 may be suitable for improving the quality of minimally processed foods at lower hydrostatic pressure levels. 相似文献
15.
Maturation by LctT is required for biosynthesis of full-length lantibiotic lacticin 481 总被引:1,自引:0,他引:1
Uguen P Hindré T Didelot S Marty C Haras D Le Pennec JP Vallée-Réhel K Dufour A 《Applied and environmental microbiology》2005,71(1):562-565
In lantibiotic lacticin 481 biosynthesis, LctT cleaves the precursor peptide and exports mature lantibiotic. Matrix-assisted laser desorption ionization-time of flight mass spectrometry revealed that a truncated form of lacticin 481 is produced in the absence of LctT or after cleavage site inactivation. Production of truncated lacticin 481 is 4-fold less efficient, and its specific activity is about 10-fold lower. 相似文献
16.
An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. 总被引:11,自引:2,他引:11
下载免费PDF全文

Lactococcus lactis DPC3147, a strain isolated from an Irish kefir grain, produces a bacteriocin with a broad spectrum of inhibition. The bacteriocin produced is heat stable, particularly at a low pH, and inhibits nisin-producing (Nip+) lactococci. On the basis of the observation that the nisin structural gene (nisA) does not hybridize to DPC3147 genomic DNA, the bacteriocin produced was considered novel and designated lacticin 3147. The genetic determinants which encode lacticin 3147 are contained on a 63-kb plasmid, which was conjugally mobilized to a commercial cheese starter, L. lactis subsp. cremoris DPC4268. The resultant transconjugant, DPC4275, both produces and is immune to lacticin 3147. The ability of lacticin 3147-producing lactococci to perform as cheddar cheese starters was subsequently investigated in cheesemaking trials. Bacteriocin-producing starters (which included the transconjugant strain DPC4275) produced acid at rates similar to those of commercial strains. The level of lacticin 3147 produced in cheese remained constant over 6 months of ripening and correlated with a significant reduction in the levels of nonstarter lactic acid bacteria. Such results suggest that these starters provide a means of controlling developing microflora in ripened fermented products. 相似文献
17.
The aim of the present study was to develop adjunct strains which can grow in the presence of bacteriocin produced by lacticin 3147-producing starters in fermented products such as cheese. A Lactobacillus paracasei subsp. paracasei strain (DPC5336) was isolated from a well-flavored, commercial cheddar cheese and exposed to increasing concentrations (up to 4,100 arbitrary units [AU]/ml) of lantibiotic lacticin 3147. This approach generated a stable, more-resistant variant of the isolate (DPC5337), which was 32 times less sensitive to lacticin 3147 than DPC5336. The performance of DPC5336 was compared to that of DPC5337 as adjunct cultures in two separate trials using either Lactococcus lactis DPC3147 (a natural producer) or L. lactis DPC4275 (a lacticin 3147-producing transconjugant) as the starter. These lacticin 3147-producing starters were previously shown to control adventitious nonstarter lactic acid bacteria in cheddar cheese. Lacticin 3147 was produced and remained stable during ripening, with levels of either 1,280 or 640 AU/g detected after 6 months of ripening. The more-resistant adjunct culture survived and grew in the presence of the bacteriocin in each trial, reaching levels of 10(7) CFU/g during ripening, in contrast to the sensitive strain, which was present at levels 100- to 1,000-fold lower. Furthermore, randomly amplified polymorphic DNA-PCR was employed to demonstrate that the resistant adjunct strain comprised the dominant microflora in the test cheeses during ripening. 相似文献
18.
19.
Dobson A Crispie F Rea MC O'Sullivan O Casey PG Lawlor PG Cotter PD Ross P Gardiner GE Hill C 《FEMS microbiology ecology》2011,76(3):602-614
Gastrointestinal survival of the bacteriocin-producing strain, Lactococcus lactis DPC6520, was evaluated systematically in vitro and in vivo with a view to using this strain to deliver biologically active lacticin 3147, a broad-spectrum bacteriocin, to the gut. The activity of the lacticin 3147 producer was also evaluated against two clinically relevant pathogens: Clostridium difficile and Listeria monocytogenes. When suspended in an appropriate matrix, the lactococcal strain is capable of surviving simulated gastrointestinal juices similar to the porcine probiotic, Lactobacillus salivarius DPC6005. Upon administration of L. lactis DPC6520 to pigs (n=4), excretion rates of ~10(2) -10(5) CFU g(-1) faeces were observed by day 5. Although passage through the gastrointestinal tract (GIT) did not affect lacticin 3147 production by L. lactis DPC6520 isolates, activity was undetectable in faecal samples by an agar well diffusion assay. Furthermore, L. lactis DPC6520 had no inhibitory effect on C. difficile or other bacterial populations in a human distal colon model, while lactococcal counts declined 10,000-fold over 24 h. The lacticin 3147 producer failed to prevent L. monocytogenes infection in a mouse model, even though a mean L. lactis DPC6520 count of 4.7 × 10(4) CFU g(-1) faeces was obtained over the 5-day administration period. These data demonstrate that L. lactis DPC6520 is capable of surviving transit through the GIT, and yet lacks antimicrobial efficacy in the models of infection used. 相似文献
20.
Fujita K Ichimasa S Zendo T Koga S Yoneyama F Nakayama J Sonomoto K 《Applied and environmental microbiology》2007,73(9):2871-2877
Lactococcus lactis QU 5 isolated from corn produces a novel bacteriocin, termed lacticin Q. By acetone precipitation, cation-exchange chromatography, and reverse-phase high-performance liquid chromatography, lacticin Q was purified from the culture supernatant of this organism, and its molecular mass was determined to be 5,926.50 Da by mass spectrometry. Subsequent analyses of amino acid and DNA sequences revealed that lacticin Q comprised 53 amino acid residues and that its N-terminal methionine residue was formylated. In contrast to most bacteriocins produced by gram-positive bacteria, lacticin Q had no N-terminal extensions such as leader or signal sequences. It showed 66% and 48% identity to AucA, a hypothetical protein from Corynebacterium jeikeium plasmid pA501, and aureocin A53, a bacteriocin from Staphylococcus aureus A53, respectively. The characteristics of lacticin Q were determined and compared to those of nisin A. Similar to nisin A, lacticin Q exhibited antibacterial activity against various gram-positive bacteria. Lacticin Q was very stable against heat treatment and changes in pH; in particular, it was stable at alkaline pH values, while nisin A was inactivated. Moreover, lacticin Q induced ATP efflux from a Listeria sp. strain in a shorter time and at a lower concentration than nisin A, indicating that the former affected indicator cells in a different manner from that of the latter. The results described here clarified the fact that lacticin Q belongs to a new family of class II bacteriocins and that it can be employed as an alternative to or in combination with nisin A. 相似文献