首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Shete S  Zhou X 《Human heredity》2005,59(1):26-33
Genomic imprinting is a mechanism by which only one copy of a gene pair is expressed, and this expression is determined by the parental origin of the copy. The deregulation of imprinted genes has been implicated in a number of human diseases. The Imprinted Gene Catalogue now has more than 200 genes listed, and estimates based on mouse models suggest many more may exist in humans. Therefore, the development of methods to identify such genes is important. In this communication, we present a parametric model-based approach to analyzing arbitrary-sized pedigree data for genomic imprinting. We have modified widely used LINKAGE program to incorporate our proposed approach. In addition, our approach allows for the use of sex-specific recombinations in the analysis, which is of particular importance in a genome-wide analysis for imprinted genes. We compared our imprinting analysis approach to that implemented in the GENEHUNTER-IMPRINT program using simulation studies as well as by analyzing causal genes in Angelman's syndrome families, which are known to be imprinted. These analyses showed that the proposed approach is very powerful for detecting imprinted genes in large pedigrees.  相似文献   

2.
Family studies suggest that genetic variation may influence birth weight. We have assessed linkage of birth weight in a genome-wide scan in 269 Pima Indian siblings (334 sibling pairs, 92 families). As imprinting (expression of only a single copy of a gene depending on parent-of-origin), is commonly found in genes that affect fetal growth, we used a recently described modification of standard multipoint variance-component methods of linkage analysis of quantitative traits. This technique allows for comparison of linkage models that incorporate imprinting effects (in which the strength of linkage is expressed as LOD(IMP)) and models where parent-of-origin effects are not included (LOD(EQ)). Where significant evidence of linkage was present, separate contributions of alleles derived from father (LOD(FA)) or mother (LOD(MO)) to the imprinting model were estimated. Significant evidence of linkage was found on chromosome 11 (at map position 88 cM, LOD(IMP)=3.4) with evidence for imprinting (imprinting model superior, P<0.001). In this region, birth weight was linked predominantly to paternally derived alleles (LOD(FA)=4.1, LOD(MO)=0.0). An imprinted gene on chromosome 11 may influence birth weight in the Pima population. This chromosome contains one of the two major known clusters of imprinted genes in the human genome, lending biological plausibility to our findings.  相似文献   

3.
Prader-Willi (PWS) and Angelman (AS) syndromes illustrate a disease paradigm of genomic imprinting, an epigenetic modification of DNA that results in parent-of-origin specific expression during embryogenesis and in the adult. From genetic data, at least two imprinted genes may be required for the classical PWS phenotype, whereas AS probably involves a single imprinted gene, and rare familial forms of both disorders involve imprinting mutations. In addition, the nonimprinted P gene is associated with pigmentation disorders in PWS, AS and oculocutaneous albinism. Identification of new genes, delineation of small deletions in unique patients, and direct screening for imprinted sequences, should soon identify candidate genes for PWS and AS. The mechanism of imprinting involves DNA methylation and replication timing, and appears to include multiple imprinted genes within a large imprinted domain. Imprinting of these genes may be regulated in cis, by an imprinting control element (ICE). Future studies can be expected to unravel the gene identities and imprinting mechanisms involved in these fascinating disorders; ultimately it may be possible to reactivate imprinted gene expression as a therapeutic approach.  相似文献   

4.
Wu MY  Jiang M  Zhai X  Beaudet AL  Wu RC 《PloS one》2012,7(4):e34348
Genomic imprinting is a phenomenon that some genes are expressed differentially according to the parent of origin. Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurobehavioral disorders caused by deficiency of imprinted gene expression from paternal and maternal chromosome 15q11-q13, respectively. Imprinted genes at the PWS/AS domain are regulated through a bipartite imprinting center, the PWS-IC and AS-IC. The PWS-IC activates paternal-specific gene expression and is responsible for the paternal imprint, whereas the AS-IC functions in the maternal imprint by allele-specific repression of the PWS-IC to prevent the paternal imprinting program. Although mouse chromosome 7C has a conserved PWS/AS imprinted domain, the mouse equivalent of the human AS-IC element has not yet been identified. Here, we suggest another dimension that the PWS-IC also functions in maternal imprinting by negatively regulating the paternally expressed imprinted genes in mice, in contrast to its known function as a positive regulator for paternal-specific gene expression. Using a mouse model carrying a 4.8-kb deletion at the PWS-IC, we demonstrated that maternal transmission of the PWS-IC deletion resulted in a maternal imprinting defect with activation of the paternally expressed imprinted genes and decreased expression of the maternally expressed imprinted gene on the maternal chromosome, accompanied by alteration of the maternal epigenotype toward a paternal state spread over the PWS/AS domain. The functional significance of this acquired paternal pattern of gene expression was demonstrated by the ability to complement PWS phenotypes by maternal inheritance of the PWS-IC deletion, which is in stark contrast to paternal inheritance of the PWS-IC deletion that resulted in the PWS phenotypes. Importantly, low levels of expression of the paternally expressed imprinted genes are sufficient to rescue postnatal lethality and growth retardation in two PWS mouse models. These findings open the opportunity for a novel approach to the treatment of PWS.  相似文献   

5.
Imprinting evolution and the price of silence   总被引:13,自引:0,他引:13  
In contrast to the biallelic expression of most genes, expression of genes subject to genomic imprinting is monoallelic and based on the sex of the transmitting parent. Possession of only a single active allele can lead to deleterious health consequences in humans. Aberrant expression of imprinted genes, through either genetic or epigenetic alterations, can result in developmental failures, neurodevelopmental and neurobehavioral disorders and cancer. The evolutionary emergence of imprinting occurred in a common ancestor to viviparous mammals after divergence from the egg-laying monotremes. Current evidence indicates that imprinting regulation in metatherian mammals differs from that in eutherian mammals. This suggests that imprinting mechanisms are evolving from those that were established 150 million years ago. Therefore, comparing genomic sequence of imprinted domains from marsupials and eutherians with those of orthologous regions in monotremes offers a potentially powerful bioinformatics approach for identifying novel imprinted genes and their regulatory elements. Such comparative studies will also further our understanding of the molecular evolution and phylogenetic distribution of imprinted genes.  相似文献   

6.
7.
In flowering plants, success or failure of seed development is determined by various genetic mechanisms. During sexual reproduction, double fertilization produces the embryo and endosperm, which both contain maternally and paternally derived genomes. In endosperm, a reproductive barrier is often observed in inter-specific crosses. Endosperm is a tissue that provides nourishment for the embryo within the seed, in a similar fashion to the placenta of mammals, and for the young seedling after germination. This review considers the relationship between the reproductive barrier in endosperm and genomic imprinting. Genomic imprinting is an epigenetic mechanism that results in mono-allelic gene expression that is parent-of-origin dependent. In Arabidopsis, recent studies of several imprinted gene loci have identified the epigenetic mechanisms that determine genomic imprinting. A crucial feature of genomic imprinting is that the maternally and paternally derived imprinted genes must carry some form of differential mark, usually DNA methylation and/or histone modification. Although the epigenetic marks should be complementary on maternally and paternally imprinted genes within a single species, it is possible that neither the patterns of epigenetic marks nor expression of imprinted genes are the same in different species. Moreover, in hybrid endosperm, the regulation of expression of imprinted genes can be affected by upstream regulatory mechanisms in the male and female gametophytes. Species-specific variations in epigenetic marks, the copy number of imprinted genes, and the epigenetic regulation of imprinted genes in hybrids might all play a role in the reproductive barriers observed in the endosperm of interspecific and interploidy crosses. These predicted molecular mechanisms might be related to earlier models such as the "endosperm balance number" (EBN) and "polar nuclei activation" (PNA) hypotheses.  相似文献   

8.
Wang S  Yu Z  Miller RL  Tang D  Perera FP 《Human heredity》2011,71(3):196-208
Genomic imprinting is a form of epigenetic regulation in mammals in which the same allele of a gene is expressed differently depending on the parental origin of the allele. Traditionally, the detection of imprinted genes that affect complex diseases has been focused on linkage designs with pedigrees or case-parent designs with case-parent trios. In the past two decades, the birth cohort design with mother-offspring pairs has been applied to understand better the effect of environmental influences during pregnancy and beginning of life on the growth and development of children. No work has been done on the detection of imprinted genes using birth cohort designs. Moreover, although the importance of imprinting has been well recognized, no study has looked at how environmental exposures modify the effects of imprinted genes. In this study, we show that the proposed imprinting test using the birth cohort design with mother-offspring pairs is an efficient test for testing the interactions between imprinted genes and environmental exposures. Through extensive simulation studies and a real data application, the proposed imprinting test has demonstrated much improved power in detecting gene-environment interactions than that of a test assuming the Mendelian dominant model when the true underlying genetic model is imprinting.  相似文献   

9.
A number of imprinted genes have been observed in plants, animals and humans. They not only control growth and developmental traits, but may also be responsible for survival traits. Based on the Cox proportional hazards (PH) model, we constructed a general parametric model for dissecting genomic imprinting, in which a baseline hazard function is selectable for fitting the effects of imprinted quantitative trait loci (iQTL) genotypes on the survival curve. The expectation–maximisation (EM) algorithm is derived for solving the maximum likelihood estimates of iQTL parameters. The imprinting patterns of the detected iQTL are statistically tested under a series of null hypotheses. The Bayesian information criterion (BIC) model selection criterion is employed to choose an optimal baseline hazard function with maximum likelihood and parsimonious parameterisation. We applied the proposed approach to analyse the published data in an F2 population of mice and concluded that, among five commonly used survival distributions, the log-logistic distribution is the optimal baseline hazard function for the survival time of hyperoxic acute lung injury (HALI). Under this optimal model, five QTL were detected, among which four are imprinted in different imprinting patterns.  相似文献   

10.
The mammalian epigenetic phenomena of X inactivation and genomic imprinting are incompletely understood. X inactivation equalizes X-linked expression between males and females by silencing genes on one X chromosome during female embryogenesis. Genomic imprinting functionally distinguishes the parental genomes, resulting in parent-specific monoallelic expression of particular genes. N-ethyl-N-nitrosourea (ENU) mutagenesis was used in the mouse to screen for mutations in novel factors involved in X inactivation. Previously, we reported mutant pedigrees identified through this screen that segregate aberrant X-inactivation phenotypes and we mapped the mutation in one pedigree to chromosome 15. We now have mapped two additional mutations to the distal chromosome 5 and the proximal chromosome 10 in a second pedigree and show that each of the mutations is sufficient to induce the mutant phenotype. We further show that the roles of these factors are specific to embryonic X inactivation as neither genomic imprinting of multiple genes nor imprinted X inactivation is perturbed. Finally, we used mice bearing selected X-linked alleles that regulate X chromosome choice to demonstrate that the phenotypes of all three mutations are consistent with models in which the mutations have affected molecules involved specifically in the choice or the initiation of X inactivation.  相似文献   

11.
MOTIVATION: Genomic imprinting plays an important role in both normal development and diseases. Abnormal imprinting is strongly associated with several human diseases including cancers. Most of the imprinted genes were discovered in the neighborhood of the known imprinted genes. This approach is difficult to extend to analyze the whole genome. We have decided to take a computational approach to systematically search the whole genome for the presence of mono-allelic expressed genes and imprinted genes in human genome. RESULTS: A computational method was developed to identify novel imprinted or mono-allelic genes. Individuals represented in human cDNA libraries were genotyped using Bayesian statistics, and differential expression of polymorphic alleles was identified. A significant reduction in the number of libraries that expressed both alleles, measured by Z-statistics, is a strong indicator for an imprinted or a mono-allelic gene. AVAILABILITY: The data sets are available at http://leelab.nci.nih.gov/leelab/jsp/IGDM/IGDM.html  相似文献   

12.
Shete S  Yu R 《BMC genetics》2005,6(Z1):S161
Genomic imprinting, which is also known as the parent-of-origin effect, is a mechanism that only expresses one copy of a gene pair depending upon the parental origin. Although many chromosomal regions in the human genome are likely to be imprinted, imprinting is not accounted for in the usual linkage analysis. In this study, using a variance-components approach with a quantitative phenotype ttth-FP1, we found significant evidence of imprinting at two loci, D7S1790 and D1S1631, on chromosome 1 and chromosome 7, respectively. Our results suggest that allowing for the possibility of imprinting can increase the power to detect linkage for localizing genes for alcoholism.  相似文献   

13.
We present two extensions to linkage analysis for genetically complex traits. The first extension allows investigators to perform parametric (LOD-score) analysis of traits caused by imprinted genes-that is, of traits showing a parent-of-origin effect. By specification of two heterozygote penetrance parameters, paternal and maternal origin of the mutation can be treated differently in terms of probability of expression of the trait. Therefore, a single-disease-locus-imprinting model includes four penetrances instead of only three. In the second extension, parametric and nonparametric linkage analysis with two trait loci is formulated for a multimarker setting, optionally taking imprinting into account. We have implemented both methods into the program GENEHUNTER. The new tools, GENEHUNTER-IMPRINTING and GENEHUNTER-TWOLOCUS, were applied to human family data for sensitization to mite allergens. The data set comprises pedigrees from England, Germany, Italy, and Portugal. With single-disease-locus-imprinting MOD-score analysis, we find several regions that show at least suggestive evidence for linkage. Most prominently, a maximum LOD score of 4.76 is obtained near D8S511, for the English population, when a model that implies complete maternal imprinting is used. Parametric two-trait-locus analysis yields a maximum LOD score of 6.09 for the German population, occurring exactly at D4S430 and D18S452. The heterogeneity model specified for analysis alludes to complete maternal imprinting at both disease loci. Altogether, our results suggest that the two novel formulations of linkage analysis provide valuable tools for genetic mapping of multifactorial traits.  相似文献   

14.
15.
The conflict theory of genomic imprinting predicts that imprinted genes are growth enhancing when paternally expressed and growth suppressing when maternally expressed. The expression pattern of autosomal imprinted genes generally fits these predictions. However, the conflict theory cannot easily account for the pattern of X-linked imprinting in humans and mice. This has led us to propose a novel hypothesis that X-linked imprinting has evolved to control sex specific gene expression in early embryos. The hypothesis links paternal X-imprinting (i.e. paternal copy silencing) to random X-inactivation and the retention of Y-linked copies, and links maternal X-imprinting to escape from random X-inactivation and the loss of Y-linked copies.The hypothesis offers a good explanation of the existing data on X-imprinted genes.  相似文献   

16.
Recent advances in genome technology have led to mapping and subsequent isolation, by positional cloning, of a number of genes for common and/or complex human diseases. It therefore will be possible to utilize information about a known locus in the search for additional, perhaps less penetrant, genes for a particular disease. It is also unclear, under these situations, what the optimal sampling strategy should be. To address these questions, we have calculated the expected LOD score for localizing one locus in a variety of two-locus models of disease, for four different pedigree structures, and under three different scenarios regarding knowledge/testing of one of the two loci. These design considerations are evaluated by use of a cost function that incorporates the costs of ascertaining different family structures, the relative costs of genotyping and mutation testing family members, and the amount of information provided by each family structure and testing scenario. The results indicate that, in most cases, affected sib pairs are a particularly poor strategy, especially when linkage or mutation data are available at the known locus. We also demonstrate that prescreening the sample of families for mutations at known susceptibility loci is, in general, a cost-effective strategy.  相似文献   

17.
Non-equivalent expression of alleles at a locus results in genomic imprinting. In this article, a statistical framework for genome-wide scanning and testing of imprinted quantitative trait loci (iQTL) underlying complex traits is developed based on experimental crosses of inbred line species in backcross populations. The joint likelihood function is composed of four component likelihood functions with each of them derived from one of four backcross families. The proposed approach models genomic imprinting effect as a probability measure with which one can test the degree of imprinting. Simulation results show that the model is robust for identifying iQTL with various degree of imprinting ranging from no imprinting, partial imprinting to complete imprinting. Under various simulation scenarios, the proposed model shows consistent parameter estimation with reasonable precision and high power in testing iQTL. When a QTL shows Mendelian effect, the proposed model also outperforms traditional Mendelian model. Extension to incorporate maternal effect is also given. The developed model, built within the maximum likelihood framework and implemented with the EM algorithm, provides a quantitative framework for testing and estimating iQTL involved in the genetic control of complex traits.  相似文献   

18.
Genomic imprinting is an epigenetic process in which the copy of a gene inherited from one parent (maternal or paternal) is consistently silenced or expressed at a significantly lower level than the copy from the other parent. In an effort to begin a systematic genome-wide screen for imprinted genes, we assayed differential allelic expression (DAE) at 3,877 bi-allelic protein-coding sites located in 2,625 human genes in 67 unrelated individuals using genotyping microarrays. We used the presence of both over- and under-expression of the reference allele compared to the alternate allele to identify candidate-imprinted genes. We found 61 genes with at least twofold DAE plus “flipping” of the more highly expressed allele between reference and alternate across heterozygous samples. Sixteen flipping genes were genotyped and assayed for DAE in an independent data set of lymphoblastoid cell lines from two CEPH pedigrees. We confirmed that PEG10 is paternally expressed, identified one gene (ZNF331) with multiple lines of data indicating it is imprinted, and predicted several additional imprinting candidate genes. Our findings suggest that there are at most several hundred genes in the human genome that are universally imprinted. With samples of mRNA from appropriate tissues and a collection of informative cSNPs, a genome-wide search using this methodology could expand the list of genes that undergo genomic imprinting in a tissue- or temporal-specific manner. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Basal Cell Nevus Syndrome (BCNS) is an autosomal dominant disease. PTCH1 gene mutations have been found responsible in many but not all pedigrees. Inflammatory Bowel Disease (IBD) is a complex genetic disorder, disproportionate in Ashkenazim, and characterized by chronic intestinal inflammation. We revisited a large Ashkenazim pedigree, first reported in 1968, with multiple diagnoses of BCNS and IBD, and with a common genetic cause for both disorders proposed. We expanded the pedigree to four generations and performed a genome-wide linkage study for BCNS and IBD traits. Twelve members with BCNS, seven with IBD, five with both diagnoses and eight unaffected were genotyped. Both non-parametric (GENEHUNTER 2.1) and parametric (FASTLINK) linkage analyses were performed and a validation through simulation was performed. BCNS linked to chromosome 9q22 (D9S1120) just proximal to the PTCH1 gene (NPL=3.26, P=0.003; parametric two-point LOD=2.4, parametric multipoint LOD=3.7). Novel IBD linkage evidence was observed at chromosome 1p13 (D1S420, NPL 3.92, P=0.0047; parametric two-point LOD=1.9). Linkage evidence was also observed to previously reported IBD loci on 4q, (D4S2623, NPL 3.02, P=0.012; parametric two-point LOD=2.15), 10q23 (D10S1225 near DLG5, NPL 3.33, P=0.0085; parametric two-point LOD=1.3), 12 overlapping the IBD2 locus (D12S313, NPL 2.6, P=0.018; parametric two-point LOD=1.52), and 7q (D7S510 and D7S3046, NPL 4.06, P=0.0035; parametric two-point LOD=2.18). In this pedigree affected by both BCNS and IBD, the two traits and their respective candidate genetic loci segregate independently; BCNS maps to the PTCH1 gene and IBD maps to several candidate regions, mostly overlapping previously observed IBD loci.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.Carolien I. Panhuysen and Amir Karban contributed equally to this work  相似文献   

20.
Genomic imprinting and cancer   总被引:15,自引:0,他引:15  
Although we inherit two copies of all genes, except those that reside on the sex chromosomes, there is a subset of these genes in which only the paternal or maternal copy is functional. This phenomenon of monoallelic, parent-of-origin expression of genes is termed genomic imprinting. Imprinted genes are normally involved in embryonic growth and behavioral development, but occasionally they also function inappropriately as oncogenes and tumor suppressor genes. The evidence that imprinted genes play a role in carcinogenesis will be discussed in this review. Additional information about imprinted genes can be found on the Genomic Imprinting Website at: (http://www.geneimprint.com).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号