首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mathematical elastodynamic model, Baseline I, consisting of eleven degrees of freedom and describing the human skull, brain, spinal cord, neck, arms and torso as a system of discrete masses, linear translational and torsional springs has been developed. Forced response solutions to the governing equations of motion, which contain selected nonlinear terms, are carried out on the IBM 7094 computer. A parametric study of the effects of location and force-time history of a blow to the head and variations in.neck stiffness was conducted. The significance of these perturbations is determined by comparison with selected response measures.  相似文献   

2.
Kinematic data on primate head and neck posture were collected by filming 29 primate species during locomotion. These were used to test whether head and neck posture are significant influences on basicranial flexion and whether the Frankfurt plane can legitimately be employed in paleoanthropological studies. Three kinematic measurements were recorded as angles relative to the gravity vector, the inclination of the orbital plane, the inclination of the neck, and the inclination of the Frankfurt plane. A fourth kinematic measurement was calculated as the angle between the neck and the orbital plane (the head-neck angle [HNA]). The functional relationships of basicranial flexion were examined by calculating the correlations and partial correlations between HNA and craniometric measurements representing basicranial flexion, orbital kyphosis, and relative brain size (Ross and Ravosa [1993] Am. J. Phys. Anthropol. 91:305–324). Significant partial correlations were observed between relative brain size and basicranial flexion and between HNA and orbital kyphosis. This indicates that brain size, rather than head and neck posture, is the primary influence on flexion, while the degree of orbital kyphosis may act to reorient the visual field in response to variation in head and neck posture. Regarding registration planes, the Frankfurt plane was found to be horizontal in humans but inclined in all nonhuman primates. In contrast, nearly all primates (including humans) oriented their orbits such that they faced anteriorly and slightly inferiorly. These results suggest that for certain functional craniometric studies, the orbital plane may be a more suitable registration plane than Frankfurt “Horizontal.” Am J Phys Anthropol 108:205–222, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

3.
The ability to measure and interpret variables associated with feeding behavior and food intake is essential to a variety of nonhuman primate study modalities. The development of a technique to accurately and efficiently measure food intake and meal patterning in captivity will enhance both the interpretation of foraging behavior in the wild as well as our ability to model clinically relevant human feeding pathologies. In this study, we successfully developed the use of a rodent lickometer system to monitor meal patterning in captive common marmosets. We describe the modifications necessary for this type of instrumentation to be used successfully with marmosets. We define variables of interest that relate to both previous rodent literature and human clinical measures. Finally, we relate our findings to potential translational value for both primate field research and biomedical applications. Am. J. Primatol. 74:901‐914, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
The thickness of the inferior and superior cortices of the femoral neck was measured on X-rays of 181 strepsirhine primate femora representing 24 species. Neck length, neck depth and neck-shaft angle were also measured. The strength of the femoral neck in frontal bending was estimated by modeling the neck as a hollow cylinder, with neck depth as the outer diameter and cortical thickness representing the superior and inferior shell dimensions. Results indicate that the inferior cortex is always thicker than the superior cortex. The ratio of superior to inferior cortical thickness is highly variable but distinguishes two of the three locomotor groups in the sample. Vertical clingers and leapers have higher ratios (i.e., a more even distribution of cortical bone) than quadrupeds. The slow climbers tend to have the lowest ratios, although they do not differ significantly from the leapers and quadrupeds. These results do not confirm prior theoretical expectations and reported data for anthropoid primates that link greater asymmetry of the cortical shell to more stereotypical hip excursions. The ratio of superior to inferior cortical thickness is unrelated to body mass, femoral neck length, and neck-shaft angle, calling into question whether the short neck of strepsirhine primates acts as a cantilever beam in bending. On the other hand, the estimated section moduli are highly correlated with body mass and neck length, a correlation that is driven primarily by body mass. In conclusion, we believe that an alternative interpretation to the cantilever beam model is needed to explain the asymmetry in bone distribution in the femoral neck, at least in strepsirhine primates (e.g., a thicker inferior cortex is required to reinforce the strongly curved inferior surface). As in prior studies of cross-sectional geometry of long bones, we found slightly positive allometry of cortical dimensions with body mass.  相似文献   

5.
The dynamic behavior of scalp potentials (EEG) is apparently due to some combination of global and local processes with important top-down and bottom-up interactions across spatial scales. In treating global mechanisms, we stress the importance of myelinated axon propagation delays and periodic boundary conditions in the cortical-white matter system, which is topologically close to a spherical shell. By contrast, the proposed local mechanisms are multiscale interactions between cortical columns via short-ranged non-myelinated fibers. A mechanical model consisting of a stretched string with attached nonlinear springs demonstrates the general idea. The string produces standing waves analogous to large-scale coherent EEG observed in some brain states. The attached springs are analogous to the smaller (mesoscopic) scale columnar dynamics. Generally, we expect string displacement and EEG at all scales to result from both global and local phenomena. A statistical mechanics of neocortical interactions (SMNI) calculates oscillatory behavior consistent with typical EEG, within columns, between neighboring columns via short-ranged non-myelinated fibers, across cortical regions via myelinated fibers, and also derives a string equation consistent with the global EEG model.  相似文献   

6.
We develop a simple model for insect locomotion in the horizontal (ground) plane. As in earlier work by Seipel et al. (Biol Cybern 91(0):76–90, 2004) we employ six actuated legs that also contain passive springs, but the legs, with “hip” and ‘knee’ joints, better represent insect morphology. Actuation is provided via preferred angle inputs at each joint, corresponding to zero torques in the hip and knee springs. The inputs are determined from estimates of foot forces in the cockroach Blaberus discoidalis via an inverse problem. The head–thorax–body is modeled as a single rigid body, and leg masses, inertia and joint dissipation are ignored. The resulting three degree-of-freedom dynamical system, subject to feedforward joint inputs, exhibits stable periodic gaits that compare well with observations over the insect’s typical speed range. The model’s response to impulsive perturbations also matches that of freely-running cockroaches (Jindrich and Full, J Exp Biol 205:2803–2823, 2002), and stability is maintained in the face of random foot touchdowns representative of real insects. We believe that this model will allow incorporation of realistic muscle models driven by a central pattern generator in place of the joint actuators, and that it will ultimately permit the study of proprioceptive feedback pathways involving leg force and joint angle sensing.  相似文献   

7.

Background

Lupus is an autoimmune disease with complex syndrome. Rodent models have limitations for recapitulating the spectrum of the disease. A more powerful translational model is desirable.

Method

Lupus‐associated model in cynomolgus monkeys was induced by two intraperitoneal injections of 2, 6, 10, 14‐tetramethylpentadecane (PRISTANE). Lupus‐specific biomarkers and manifestations over a 246‐day period were observed at multilevel. To visualize and quantify kidney function in real time, contrast‐enhanced ultrasound was used.

Results

The indicative biomarkers and manifestations fulfilled major diagnosis criteria according to the “Criteria of Lupus” of the American College of Rheumatology. Significant changes in time‐intensity curve parameters were observed, indicating impaired renal function and the method as a feasible, non‐invasive diagnostic method in primate model.

Conclusions

We successfully induced lupus‐associated model with systemic lupus syndrome. This primate model can be a valuable translational model for further pathogenesis and symptomology studies and for exploring therapeutic candidates.  相似文献   

8.
We propose a partially flexible, double-helical model for describing the conformational and dynamic properties of DNA. In this model, each nucleotide is represented by one element (bead), and the known geometrical features of the double helix are incorporated in the equilibrium conformation. Each bead is connected to a few neighbor beads in both strands by means of stiff springs that maintain the connectivity but still allow for some extent of flexibility and internal motion. We have used Brownian dynamics simulation to sample the conformational space and monitor the overall and internal dynamics of short DNA pieces, with up to 20 basepairs. From Brownian trajectories, we calculate the dimensions of the helix and estimate its persistence length. We obtain translational diffusion coefficient and various rotational relaxation times, including both overall rotation and internal motion. Although we have not carried out a detailed parameterization of the model, the calculated properties agree rather well with experimental data available for those oligomers.  相似文献   

9.
In order to define relationships between the vibration stress and the strain of the human hand-arm system a biomechanical model was developed. The four masses of the model representing the hand, the forearm and the upper arm were connected by dampers and springs in two perpendicular directions. Simulating muscle activity, damped torsion springs were included additionally. The motions of the model were described by a differential matrix equation which was solved by using a ‘transfer matrix routine’ as well as by numerical integration. Thus, functions with harmonic or transient time courses could be selected as an excitation. The simulated vibrations were compared with those of other hand-arm models. The forces and torques transmitted between the masses, and the energy dissipated by the dampers were computed for several combinations of exciter frequencies and accelerations. The dependence of torques upon excitation agreed fairly well with the behaviour of the arm muscles under vibration as described by various investigators. At frequencies above 100 Hz the energy was dissipated mainly by the dampers between the masses near to the exciter. Transferring this result to the hand-arm system it shows that at high frequencies energy is dissipated by the hand and its palmar tissues and this might be one cause for the incidence of vibration-induced white finger disease.  相似文献   

10.
A computer simulation technique was applied to make clear the mechanical characteristics of primate bipedal walking. A primate body and the walking mechanism were modeled mathematically with a set of dynamic equations. Using a digital computer, the following were calculated from these equations by substituting measured displacements and morphological data of each segment of the primate: the acceleration, joint angle, center of gravity, foot force, joint moment, muscular force, transmitted force at the joint, electric activity of the muscle, generated power by the leg and energy expenditure in walking.The model was evaluated by comparing some of the calculated results with the experimental results such as foot force and electromyographic data, and improved in order to obtain the agreement between them.The level bipedal walking of man, chimpanzee and Japanese monkey and several types of synthesized walking were analyzed from the viewpoint of biomechanics.It is concluded that the bipedal walking of chimpanzee is nearer to that of man than to that of the Japanese monkey because of its propulsive mechanism, but it requires large muscular force for supporting the body weight.  相似文献   

11.
A coronal plane model of a distributed elastic sole has been proposed and analyzed with respect to the effects of different medial-lateral elasticity distribution on pronation under quasi-static conditions. The distributed model consists of an array of linear vertical line springs. Under minimum energy assumption, the behavior of the top surface of the interface under resultant force and moment loading was shown to be equivalent to that of a rigid-body mechanism under the same loading. The model was then combined with a rigid-link model of the lower limb. Expressions that describe the relationship of the interface aggregate parameters with pronation and the center of pressure were obtained. These expressions were confirmed by an experiment in which the elastic distribution in the interface was systematically varied and the pronation angle and the center of pressure measured. The model has the potential of being a useful analytical tool in the design of elastic soles in running shoes.  相似文献   

12.
A lumped parametric model of the human auditoria peripherals consisting of six masses suspended with six springs and ten dashpots was proposed. This model will provide the quantitative basis for the construction of a physical model of the human middle ear. The lumped model parameters were first identified using published anatomical data, and then determined through a parameter optimization process. The transfer function of the middle ear obtained from human temporal bone experiments with laser Doppler interferometers was used for creating the target function during the optimization process. It was found that, among 14 spring and dashpot parameters, there were five parameters which had pronounced effects on the dynamic behaviors of the model. The detailed discussion on the sensitivity of those parameters was provided with appropriate applications for sound transmission in the ear. We expect that the methods for characterizing the lumped model of the human ear and the model parameters will be useful for theoretical modeling of the ear function and construction of the ear physical model.Supported by Oklahoma Center for the Advancement of Science and Technology.  相似文献   

13.
M Sugihara 《Biorheology》1985,22(1):1-19
The motion and deformation of a single red blood cell in a simple shear flow between two parallel walls is studied theoretically. A two-dimensional deformable microcapsule is adopted as a model for the cell, which has a thin moving membrane, like a tank-tread, around the interior and is deformed into an elliptical shape with a constant area. Applying the finite element method to the Stokes equations, the tank-tread motion and deformation is determined in a stationary motion, under fluid dynamic interaction between the cell and the walls. It is shown that the motion and deformation of the microcapsule crucially depends on the channel width between the two walls. As the width decreases, the microcapsule is more elongated and the frequency of tank-tread motion decreases at a constant shear rate. In addition, the angle of inclination decreases at the low range of the viscosity ratio of internal to external fluids and increases at the high range. The results obtained are compared with experimental observations and applied to the behavior of cells under mutual interaction.  相似文献   

14.
We present initial results regarding the existence, stability and interactionof linear and nonlinear vibrational modes in a system of two coupled, onedimensional lattices with unequal numbers of masses. The effects on thesenonlinear modes of coupling a near continuum system to a discrete systemusing a nonlinear coupling are examined. This numerical model is a firststep towards investigating the dynamical behavior of a flexible sheetcoupled nonlinearly to a semi-rigid support, a system which couldconceivably represent a biological cell membrane with a supporting proteinnetwork. General implications for the dynamical behavior of continuumsystems coupled nonlinearly to discrete systems are introduced.  相似文献   

15.
Wolf DP 《Theriogenology》2008,69(1):31-36
The role of the non-human primate (NHP) oocyte and embryo in translational research is considered here including both in vitro activities directly involving oocytes or embryos as well as animal studies that impact reproductive function. Reasons to consider NHPs as animal research models along with their limitations are summarized. A case is made that in limited instances, such as in the development and application of the assisted reproductive technologies or in the study of embryonic stem cells, the human oocyte and embryo have acted as models for the monkey. The development of strategies for the preservation of fertility is used as an example of ongoing research in the non-human primate that cannot be conducted in women for ethical reasons. In animal studies, monitoring reproductive potential, responses to embryonic stem cell transplantation, along with translational research in the field of contraceptive development for women are considered as subjects that benefit from the availability of a NHP model.  相似文献   

16.
A finite element/multi-body model of a newborn infant has been developed by researchers at the University of Windsor. The geometry of this model is derived from a Nita newborn hospital training mannequin. It consists of 17 parts: eight upper and lower limb segments, the torso, head, and a seven-segment neck with seven translational and eight rotational joints. Anthropometry is consistent with hospital growth charts, measurements requested from health professionals and data from the open literature. The biomechanical properties of the model (i.e. joint stiffnesses) are implementations of data identified in the open literature. The model has been validated with respect to studies of the biomechanics of shaken baby syndrome, infant falls and the Q0 anthropomorphic testing device. A significant conclusion of this study is that the kinetics of the Q0 neck is not biofidelic. This model is currently used in an analysis of airway patency for infants in modern automotive child restraints.  相似文献   

17.
We present here a model for the prediction of helix twist angles in B-DNA, a model composed of a collection of torsional springs. Statistically averaged conformational energy calculations show that, for a specified basepair step, the basepair-basepair conformational energy is quadratically dependent on the helix twist angle, so the calculations provide the spring parameters for the basepair-basepair interactions. Torsional springs can also be used to model the effects of the backbone on the helix twist, and the parameters for those springs are derived by fitting the model to experimental data. The model predicts a macroscopic torsional stiffness and a longitudinal compressibility (Young's modulus) which are both in good agreement with experiment. One biological consequence of the model is examined, the sequence specificity of the Eco RI restriction endonuclease, and it is shown that the discriminatory power of the enzyme receives a substantial contribution from the energetic cost of torsional deformations of the DNA when wrong sequences are forced into the enzyme binding site.  相似文献   

18.
A major challenge in systems biology is to develop a detailed dynamic understanding of the functions and behaviors in a particular cellular system, which depends on the elements and their inter-relationships in a specific network. Computational modeling plays an integral part in the study of network dynamics and uncovering the underlying mechanisms. Here we proposed a systematic approach that incorporates discrete dynamic modeling and experimental data to reconstruct a phenotype-specific network of cell signaling. A dynamic analysis of the insulin signaling system in liver cells provides a proof-of-concept application of the proposed methodology. Our group recently identified that double-stranded RNA-dependent protein kinase (PKR) plays an important role in the insulin signaling network. The dynamic behavior of the insulin signaling network is tuned by a variety of feedback pathways, many of which have the potential to cross talk with PKR. Given the complexity of insulin signaling, it is inefficient to experimentally test all possible interactions in the network to determine which pathways are functioning in our cell system. Our discrete dynamic model provides an in silico model framework that integrates potential interactions and assesses the contributions of the various interactions on the dynamic behavior of the signaling network. Simulations with the model generated testable hypothesis on the response of the network upon perturbation, which were experimentally evaluated to identify the pathways that function in our particular liver cell system. The modeling in combination with the experimental results enhanced our understanding of the insulin signaling dynamics and aided in generating a context-specific signaling network.  相似文献   

19.
Multivariate analysis as a technique for investigating locomotor differentiation among primates has proven its power and usefulness in many studies on various skeletal dimensions. In these analyses primate genera were distributed and sometimes clustered in a manner that was interpretable based on current knowledge of gross locomotor differences. In an effort to advance our understanding of arboreality and terrestriality in primates, the present research involves a careful look for the most subtle morphological differences in locomotor behavior. It is believed that by looking at such subtle shape differences an understanding of what it means morphologically for a primate to be either more or less arboreal may be achieved. The species within the primate genus Cercopithecus were analyzed. This genus includes species which may be placed along a habitat (ground-living to tree-dwelling) or activity spectrum. The different habitats or activity patterns clearly require slight variations in patterns of movement, which in turn may require subtle structural adaptations. Multivariate analyses of 67 postcranial variables on seven species within the genus allowed detection of slight degrees of morphological variation. However, when morphological differences are small, size variance among specimens may take on an inflated importance. A substantial amount of work was devoted to finding the least biased method of removing size variance from the variables while incorporating a discrete size variable into the study. Using these transformed skeletal variables, interspecific groupings were discovered. Much of this infrastructure is then related to differing locomotor behavior and provides an insight into the fine structure of primate locomotor adaptation in an arboreal habitat.  相似文献   

20.
The primary aim of this study was to implement a rheological model of the mechanical behavior of the passive musculo-articular complex (MAC). The second objective was to adapt this model to simulate changes in the passive MAC's mechanical properties induced by passive stretching protocols commonly performed in sport and rehabilitation programs. Nine healthy subjects performed passive ankle dorsi-flexion and plantar-flexion cycles at different velocities (from 0.035 to 2.09 rad s?1) on an isokinetic dynamometer. This procedure enabled the articular angle to be controlled and the passive torque developed by the MAC in resistance to stretch to be measured. Our rheological model, dependent on nine parameters, was composed of two non-linear (exponential) springs for both plantar- and dorsi-flexion, a linear viscoelastic component and a solid friction component. The model was implemented with the Simulink software package, and the nine parameters were identified, for each subject, by minimizing the square-difference between experimental torque–angle relationships and modeled curves. This model is in good agreement with experiment, whatever the considered stretching velocity. Finally, the model was adapted to incorporate static stretching (4×2.5 min) and cyclic stretching (five loading/unloading cycles) protocols. Our results indicate that the model could be used to simulate the effects of stretching protocols by adjusting a single (different) parameter for each protocol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号