首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major core protein (p28) of MMC-1, an endogenous type C virus of the rhesus monkey (Macaca mulatta), was purified and subjected to structural and immunological analyses. The NH2-terminal amino acid sequence of MMC-1 p28 showed extensive homology to the sequences of the major structural proteins (p30) of known mammalian type C viruses. Similarly, interspecies antigenic determinants shared by all the above viral proteins were detected in MMC-1 p28. Competition radioimmunoassays together with the results of statistical analysis of the primary structure data provided evidence that MMC-1 p28 is not more closely related to primate type C viruses of the Papio genus than to those isolated from rodents, cats, or New World monkeys. MMC-1 p28 was found to be closely related structurally to the p30 protein of the avian reticuloendotheliosis virus (REV-A), a horizontally transmitted type C virus of putative mammalian origin. In addition, MMC-1 p28 and REV-A p30 shared a specific subset of antigenic determinants not present in any of the other avian or mammalian type C viruses studied. These findings suggest that MMC-1 and REV may have a common evolutionary origin.  相似文献   

2.
Reticuloendotheliosis viruses have been shown to be causative of tumors in a variety of avian species. The major structural protein of these non-genetically transmitted viruses is demonstrated to possess antigenic determinants common to those of all known mammalian type C viruses. These findings establish a mammalian origin for this oncogenic avian retrovirus group. None of the known mammalian type C virus groups demonstrated a closer immunological relationship to avian reticuloendotheliosis viruses. These results suggest that reticuloendotheliosis viruses have been non-genetically transmitted for a long period of evolution or that these viruses may have arisen by relatively recent infection of birds with an as yet undiscovered mammalian type C retrovirus.  相似文献   

3.
Genetically transmitted retroviruses of Old and New World monkeys include type C viruses isolated from baboons (M7), macaque (MAC-1), and owl monkeys (OMC-1) and type D viruses from langurs (PO-1-Lu) and squirrel monkeys (SMRV, M534). Each of these isolates is unrelated to the others by nucleic acid hybridization criteria and contains a unique array of virion-associated proteins which can be resolved by agarose gel filtration and polyacrylamide gel electrophoresis under denaturing conditions. The major structural protein of each virus has a distinct primary structure, as determined by two-dimensional tryptic peptide analysis, and is antigenically different from the others. The major virion phosphoproteins of endogenous primate type C viruses (pp15) are also different from those of type D viruses (pp13-pp14). Immunological and structural analyses show that the endogenous langur virus and the horizontally transmitted Mason-Pfizer virus of rhesus monkeys are closely related to one another, consistent with the sequence homology detected in their RNA genomes. Although certain radioimmunoassays detect interspecies antigenic determinants common to either the p30 or gp70 proteins of some of these viruses, no one assay has yet been designed which can detect all groups of endogenous primate retroviridae. The data lead to the conclusion that primates contain a minimum of three different sets of genetically transmitted type C and type D retroviral genes.  相似文献   

4.
Several 50 to 70S tumor viral RNAs have previously been shown by electron microscopy to be dimers, with the two monomer subunits joined near their 5' ends. Five additional naturally occurring type C RNA tumor viruses have now been examined: AKR, and endogenous murine ecotropic virus; NZB, an endogenous murine xenotropic virus; and ecotropic and an amphotropic virus isolated from a wild mouse; and the avian reticuloendotheliosis virus (REV). All five 50 to 70S RNAs have similar 5'-to-5' dimer structures. Therefore, the observations support the hypothesis that the dimer linkage is a structural feature common to all type C mammalian viruses. REV is the first example of an avian virus with a clear 5'-to 5' dimer linkage. All of the mammalian viral RNAs, but not REV, showed symmetrically placed loops in each subunit of the dimer. Possible molecular structures and biological functions of the dimer linkages and loops are discussed.  相似文献   

5.
6.
7.
Several low molecular weight proteins of endogenous type C viruses of the RD114/baboon group are compared with the gag gene translational products of endogenous type C viruses of murine origin. The p10 proteins of each virus group are shown to be immunologically and biochemically related, while the p12 proteins of RD114/baboon viruses are demonstrated to share antigenic determinants with murine viral p15. Moreover, highly type-specific phosphoproteins, p15 of RD114/baboon viruses and p12 of murine viruses, are shown to possess very similar biochemical properties. These findings, along with previous studies indicating immunologic cross-reactivity between their major internal antigens, p30, demonstrate that each of the gag gene-coded proteins of murine type C viruses has a analogue in viruses of the RD114/baboon group. The immunologic and biochemical relatedness of their gag gene translational products supports the concept of a common progenitor in the evolution of these endogenous viruses.  相似文献   

8.
An endogenous type C virus recently isolated from the Columbian black-tailed deer (Odocoileus hemionus) was used as a molecular probe to study the distribution of virus-related nucleotide sequences in cellular DNAs of mammalian species. By DNA-DNA hybridization, the most extensive homology was demonstrated between the viral complementary DNA and cellular DNA isolated from Odocoileus species. DNAs of representatives of other genera within the same family, Cervidae, were partially related to the virus, consistent with the phylogenetic relationship of these species to Odocoileus. O. hemionus viral sequences were also detected within cellular DNAs of members of a more distantly related artiodactyl family, Bovidae. These findings suggest the genetic transmission of type C viral genes within cervids and bovids for a period of at least 25 to 30 million years. There was no detectable nucleotide sequence homology between O. hemionus virus and representatives of other major groups of mammalian type C viruses. These results indicate that despite the known antigenic relatedness of mammalian type C viruses, the O. hemionus virus has diverged sufficiently to be considered the prototype of a separate group. By radioimmunological techniques, it was possible to detect and partially purify, from normal tissues of cervid species, antigens related to the major structural protein of the O. hemionus virus. The present findings, that O. hemionus virus has been genetically transmitted for millions of years and yet has maintained the ability to be expressed as infectious virus, argue for positive evolutionary selective pressures for the maintenance of type C viral genes.  相似文献   

9.
10.
The relatedness of the RNAs of the three avian systems, including six avian leukosis-sarcoma viruses, four reticuloendotheliosis viruses, and the microsome fraction of normal uninfected chicken embryo cells, containing RNA and a DNA polymerase have been studied by nucleic acid hybridization. All six avian leukosis-sarcoma viruses have closely related nucleotide sequences; and all four reticuloendotheliosis viruses have closely related nucleotide sequences. But, almost no similarities were detected between the RNAs of avian leukosis-sarcoma viruses and reticuloendotheliosis viruses. The RNA template of the endogenous RNA-directed DNA polymerase activity of normal uninfected chicken cells had no detectable relationship to RNAs of avian leukosis-sarcoma and reticuloendotheliosis viruses.  相似文献   

11.
Arup Sen  George J. Todaro 《Cell》1977,10(1):91-99
A structural protein purified from the Rous sarcoma virus (RSV) can specifically bind in vitro to purified avian, but not mammalian, type C viral RNA. Following ultraviolet irradiation of viral particles under conditions which stabilize the polyploid 70S viral RNA, the same polypeptide can be directly purified from the RSV genome. Based on its electrophoretic mobility in polyacrylamide gels containing sodium dodecylsulfate, the RNA binding protein has been identified as the major phosphoprotein (p19) of avian type C viruses. Similar experiments show that the major phosphoproteins of mammalian type C viruses (p12 for murine viruses and p16 for endogenous primate viruses) are also the specific RNA binding proteins and, similarly, are found closely associated with the 70S RNA genomes in the intact viral particles.  相似文献   

12.
Monospecific antiserum prepared against the isolated deoxyribonucleic acid (DNA) polymerase of avian myeloblastosis virus (AMV) neutralized the endogenous ribonucleic acid-instructed DNA polymerase activity of detergent-disrupted virus. The viral polymerase was serologically unrelated to the seven major structural polypeptides of AMV. Furthermore, the viral enzyme was distinguished from normal cellular DNA polymerases by serological criteria; thus, antiserum against the viral enzyme neutralized its homologous antigen but not normal cellular DNA polymerases. Neutralization by antibody of viral DNA polymerase activity was observed with all avian leukemia-sarcoma viruses tested, irrespective of viral antigenic subtype. The DNA polymerase activity of avian reticuloendotheliosis virus, and of a variety of mammalian oncornaviruses, was not neutralized by antisera against the AMV polymerase. Immunological analysis of the RSValpha(O) mutant, which is deficient in DNA polymerase activity, shows this mutant to lack demonstrable polymerase antigen. Viral polymerase was identified by immunofluorescence as a cytoplasmic constituent in virus-producing chicken cells; polymerase antigen was not detected in uninfected (gs(-)) chicken cells.  相似文献   

13.
The major 70,000- to 80,000-molecular-weight envelope glycoproteins of the squirrel monkey retrovirus, Mason-Pfizer monkey virus, and M7 baboon virus and the related endogenous feline virus, RD114, were isolated and immunologically characterized. Immunoprecipitation and competition immunoassay analysis revealed these viral envelope glycoproteins to possess several distinct classes of immunological determinants. These include species-specific determinants, group-specific antigenic determinants unique to endogenous primate type C viruses, and group-specific determinants for type D viruses such as Mason-Pfizer monkey virus and squirrel monkey retrovirus. In addition, a class of broadly reactive antigenic determinants shared by envelope glycoproteins of both type C viruses of the baboon/RD114 group and type D viruses of the Mason-Pfizer monkey virus/squirrel monkey virus group are described. Other mammalian oncornaviruses tested, including isolates of nonprimate origin and representative type B viruses, lacked these determinants. The demonstration of antigenic determinants specific to envelope glycoproteins of type C and type D primate viruses indicates either that these viruses are evolutionarily related or that genetic recombination occurred between their progenitors. Alternatively, endogenous type D oncornaviruses may be replication defective, and acquisition of endogenous type C viral genetic sequences coding for envelope glycoprotein determinants may be necessary for their isolation as infectious virus.  相似文献   

14.
15.
Antibodies against a large and a small DNA polymerase isolated from chicken embryos and against avian myeloblastosis virus DNA polymerase were used to study the serological relationships of the DNA polymerase activities of three avian systems with RNA and a DNA polymerase-avian leukosis-sarcoma viruses, reticuloendotheliosis viruses, and a fraction from uninfected chicken cells. The DNA polymerase activity of disrupted virions of all avian leukosis-sarcoma viruses tested was neutralized to the same extent by antibody against avian myeloblastosis virus DNA polymerase and was not neutralized by the antibodies against chicken cellular DNA polymerases. The viruses tested included induced leukosis viruses and Rous-associated virus-O. The DNA polymerase activity of disrupted virions of all of the reticuloendotheliosis viruses was not neutralized by any of the antibodies. The chicken endogenous RNA-directed DNA polymerase activity was neutralized partially or completely, in different experiments, by antibody against the small DNA polymerase isolated from chicken embryos, but was not neutralized by the other two antibodies.  相似文献   

16.
Immunoglobulin G directed against the DNA polymerase of Rauscher murine leukemia virus (R-MuLV) could bind to 125I-labeled DNA polymerase of spleen necrosis virus (SNV), a member of the reticuloendotheliosis virus (REV) species. Competition radioimmunoassays showed the specificity of this cross-reaction. The antigenic determinants common to SNV and R-MuLV DNA polymerases were shared completely by the DNA polymerases of Gross MuLV, Moloney MuLV, RD 114 virus, REV-T, and duck infectious anemia virus. Baboon endogenous virus and chicken syncytial virus competed partially for antibodies directed against the common antigenic determinants of SNV and R-MuLV DNA polymerases. DNA polymerases of avian leukosis viruses, pheasant viruses, and mammalian type B and D retroviruses and particles with RNA-dependent DNA polymerase activity from the allantoic fluid of normal chicken eggs and from the medium of a goose cell culture did not compete for the antibodies directed against the common antigenic determinants of SNV and R-MuLV DNA polymerases. We also present data about a factor in normal mammalian immunoglobulin G that specifically inhibits the DNA polymerases of REV and mammalian type C retrovirus DNA polymerases.  相似文献   

17.
To analyze the compatibility of avian influenza A virus hemagglutinins (HAs) and human influenza A virus matrix (M) proteins M1 and M2, we doubly infected Madin-Darby canine kidney cells with amantadine (1-aminoadamantane hydrochloride)-resistant human viruses and amantadine-sensitive avian strains. By using antisera against the human virus HAs and amantadine, we selected reassortants containing the human virus M gene and the avian virus HA gene. In our system, high virus yields and large, well-defined plaques indicated that the avian HAs and the human M gene products could cooperate effectively; low virus yields and small, turbid plaques indicated that cooperation was poor. The M gene products are among the primary components that determine the species specificities of influenza A viruses. Therefore, our system also indicated whether the avian HA genes effectively reassorted into the genome and replaced the HA gene of the prevailing human influenza A viruses. Most of the avian HAs that we tested efficiently cooperated with the M gene products of the early human A/PR/8/34 (H1N1) virus; however, the avian HAs did not effectively cooperate with the most recently isolated human virus that we tested, A/Nanchang/933/95 (H3N2). Cooperation between the avian HAs and the M proteins of the human A/Singapore/57 (H2N2) virus was moderate. These results suggest that the currently prevailing human influenza A viruses might have lost their ability to undergo antigenic shift and therefore are unable to form new pandemic viruses that contain an avian HA, a finding that is of great interest for pandemic planning.  相似文献   

18.
Turkeys inoculated with spleen extracts from lymphoproliferative disease (LPD)-affected birds developed viremia, followed by typical LPD lesions. Electron microscopy and biochemical characterization established that the virus present in the blood of infected turkeys is a type C retrovirus. The viral particles possess a buoyant density of 1.17 g/ml in sucrose gradients; they contain high-molecular-weight RNA and an RNA-instructed DNA polymerase with efficient exogenous and endogenous activity. The LPD virus polymerase is preferentially activated by magnesium ions. Cross nucleic acid hybridization assays revealed no sequence homology between the viral genome of LPD and avian myeloblastosis virus or reticuloendotheliosis virus, thus indicating that the LPD virus belongs to a distinct group unrelated to the avian leukosis-sarcoma virus complex or to the reticuloendotheliosis virus group.  相似文献   

19.
The reticuloendotheliosis viruses (REV) are a family of highly related retroviruses isolated from gallinaceous birds. On the basis of sequence comparison and overall genome organization, these viruses are more similar to the mammalian type C retroviruses than to the avian sarcoma/leukemia viruses. The envelope of a member of the REV family, spleen necrosis virus (SNV), is about 50% identical in amino acid sequence to the envelope of the type D simian retroviruses. Although SNV does not productively infect primate or murine cells, the receptor for SNV is present on a variety of human and murine cells. Moreover, interference assays show that the receptor for SNV is the same as the receptor for the type D simian retroviruses. We propose that adaptation of a mammalian type C virus to an avian host provided the REV progenitor.  相似文献   

20.
The reticuloendotheliosis viruses (REVs), originally isolated from avian species, constitute a group of retroviruses which are more closely related to mammalian retroviruses than to other avian retroviruses. The envelope glycoproteins of members of the REV group display a striking amino acid sequence identity with a group of primate oncoretroviruses which belong to a single receptor interference group and include all of the type D and some type C primate oncoretroviruses. Members of the REV group also have a broad host range which covers most avian cells and some mammalian cells, including those of simian and human origin. In view of this broad host range and the envelope sequence similarities, we investigated the cross-interference pattern between REV and primate virus groups to determine whether they utilized the same receptor. Superinfection experiments using a vector virus containing an Escherichia coli lacZ gene showed that reticuloendotheliosis and simian oncoretroviruses constitute a single receptor interference group on both human and canine cells and indicate that the viruses bind to the same receptor to initiate infection. These results suggest that this receptor binding specificity has been maintained over a wide range of retroviruses and may be responsible for the broad spread of these retroviruses between different orders of vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号