首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sensitization of vagal lung C fibers has been postulated to contribute to the development of asthma, but support for this notion is still lacking. We investigated the characteristics and function of pulmonary C fibers (PCFs) in ovalbumin (OVA)-sensitized Brown Norway rats, an established animal model of asthma. Rats were sensitized with intraperitoneal injection of OVA or were treated with saline (control). In study 1, with the use of open-chest and artificially ventilated rats, inhalation of 5% OVA aerosol evoked an augmented increase in total lung resistance in the OVA-sensitized rats, compared with the control rats. Bilateral vagotomy or subcutaneous pretreatment with a high-dose of capsaicin for blocking of C-fiber function equally attenuated this augmented total lung resistance response, suggesting the involvement of PCFs. In study 2, with the use of anesthetized, spontaneously breathing rats, right atrial injection of capsaicin (1 microg/kg; a PCF stimulant) evoked an augmented apneic response in the OVA-sensitized rats, compared with the control rats. In study 3, with the use of open-chest, paralyzed, and artificially ventilated rats, the afferent PCF responses to right atrial injection of capsaicin (0.5 and 1.0 microg/kg), phenylbiguanide (8 microg/kg; a PCF stimulant), or adenosine (0.2 mg/kg; a PCF stimulant) were enhanced in the OVA-sensitized rats, compared with the control rats. However, the baseline activities of PCFs and their afferent responses to mechanical stimulation by lung hyperinflation in the OVA-sensitized and control rats were comparable. Our results suggested that OVA-sensitized Brown Norway rats possess sensitized vagal PCFs, which may participate in the development of the airway hyperreactivity observed in these animals.  相似文献   

2.
Airway hyperresponsiveness is a cardinal feature of asthma. Lung C-fiber activation induces central and local defense reflexes that may contribute to airway hyperresponsiveness. Initial studies show that substance P (SP) activates C fibers even though it is produced and released by these same C fibers. SP may induce release of other endogenous mediators. Bradykinin (BK) is an endogenous mediator that activates C fibers. The hypothesis was tested that SP activates C fibers via BK release. Guinea pigs were anesthetized, and C-fiber activity (FA), pulmonary insufflation pressure (PIP), heart rate, and arterial blood pressure were monitored before and after intravenous injection of capsaicin (Cap), SP, and BK. Identical agonist challenges were repeated after infusion of an antagonist cocktail of des-Arg9-[Leu8]-BK (10(-3) M, B1 antagonist), and HOE-140 (10(-4) M, B2 antagonist). After antagonist administration, BK increased neither PIP nor FA. Increases in neither PIP nor FA were attenuated after Cap or SP challenge. In a second series of experiments, Cap and SP were injected before and after infusion of indomethacin (1 mg/kg iv) to determine whether either agent activates C fibers through release of arachidonic acid metabolites. Indomethacin administration decreased the effect of SP challenge on FA but not PIP. The effect of Cap on FA or PIP was not altered by indomethacin. In subsequent experiments, C fibers were activated by prostaglandin E2 and F2alpha. Therefore, exogenously applied SP stimulates an indomethacin-sensitive pathway leading to C-fiber activation.  相似文献   

3.
Tobacco smoke (TS) exposure induces bronchoconstriction and increases airway secretions and plasma extravasation in certain sensitive individuals, particularly those with asthma. C-fiber activation also induces these effects. Although the mechanism by which chronic TS exposure induces airway dysfunction is not well understood, TS exposure may enhance C-fiber responsiveness. To investigate the effect of chronic TS exposure on C-fiber responsiveness to capsaicin and bradykinin, especially in atopic individuals, we exposed ovalbumin (OA)-sensitized guinea pigs to TS (5 mg/l air, 30 min/day for 7 days/wk) or to compressed air. Nonsensitized guinea pigs were also exposed to either compressed air or TS. Beginning after 120 days of exposure, C fibers and rapidly adapting receptors (RARs) were challenged with capsaicin and bradykinin. TS exposure enhanced sensory receptor and airway responsiveness to both intravenous capsaicin and bradykinin challenge. C-fiber, RAR, and airway responsiveness to capsaicin challenge was greatest in OA-sensitized guinea pigs exposed to TS. OA alone induced capsaicin hyperresponsiveness at 5 microg. Airway responsiveness to bradykinin was also greatest in OA-sensitized guinea pigs exposed to TS. OA alone enhanced C-fiber responsiveness to bradykinin at 5 and 10 microg. C-fiber activation by either agonist appeared direct, whereas RAR activation appeared indirect. Therefore, a mechanism of airway hyperirritability induced by the combination of OA sensitization and chronic TS exposure may include hyperirritability of lung C fibers.  相似文献   

4.
Bergren DR  Rendell MS 《Life sciences》2004,75(17):2103-2116
Diabetic sensory neuropathy is an affliction that decreases sensory perception in a number of organ systems. Although little is known of its pulmonary effects certain diabetic patients have reduced airway reactivity to cold air and elevated cough threshold to irritant inhalation, reflexes reported to be mediated by pulmonary C-fibers. Therefore we studied the effects the selective C-fiber activator capsaicin (0.01% aerosol, 30 s) on variables of ventilation using a whole-body plethysmograph in age-matched rats treated with streptozotocin (STZ) or its vehicle at 6 and 12 weeks after treatment. Body weight increased and plasma glucose and glycosylated hemoglobin were stable in vehicle-treated rats. In STZ-treated rats body weight decreased and plasma glucose and glycosylated hemoglobin increased. Capsaicin challenge decreased tidal volume, respiratory rate and therefore minute ventilation in non-treated and vehicle-treated rats. However capsaicin challenge increased tidal volume thereby altering minute ventilation in STZ-treated rats. Specific airway resistance increased in both groups after capsaicin challenge. Changes in ventilation in response to capsaicin challenge in STZ-treated rats may involve C-fiber sensory neuropathy.  相似文献   

5.
Late response of the upper airway of the rat to inhaled antigen   总被引:1,自引:0,他引:1  
We studied the magnitude and time course of changes in upper airway resistance (Ruaw) of actively sensitized Brown-Norway rats after aerosol challenge with ovalbumin (OA). Two weeks after sensitization, eight rats were challenged by inhalation of aerosolized OA through the nose. The airway responses of these rats 5-10 h after OA challenge were compared with those of seven animals challenged with saline. Seven of eight test rats had increased Ruaw, and six displayed discrete late responses (LR). Ruaw during expiration was highly alinear so analysis was confined to Ruaw during inspiration (Ruaw,I). The Ruaw,I averaged over 5 h was 1.262 +/- 0.09 (SE) cmH2O.ml-1.s, 2.6 times the value for saline-challenged animals (0.476 +/- 0.143 cmH2O.ml-1.s), and it reached a peak value of 3.454 +/- 0.45 cmH2O.ml-1.s. The time to the peak of the LR was 446 +/- 37.3 min. The duration of the LR in the upper airway was 146 +/- 34.9 min. At the time corresponding to the peak value of Ruaw,I, the lung elastance in the test rats was double the value preceding the peak. Lung elastance was unchanged in the control group. We conclude that inhalation of antigen through the upper airway of the sensitized rat results in a substantial increase in upper airway resistance and a distinct LR. The predominant site of the change in respiratory system resistance is in the upper airway.  相似文献   

6.
Airway hyperresponsiveness (AHR) is a hallmark of bronchial asthma. Important features of this exaggerated response to bronchoconstrictive stimuli have mostly been investigated in vivo in intact animals or in vitro in isolated tracheal or bronchial tissues. Both approaches have important advantages but also certain limitations. Therefore, the aim of our study was to develop an ex vivo model of isolated lungs from sensitized mice for the investigation of airway responsiveness (AR). BALB/c mice were sensitized by intraperitoneal ovalbumin (Ova) and subsequently challenged by Ova inhalation. In vivo AR was measured in unrestrained animals by whole body plethysmography after stimulation with aerosolized methacholine (MCh) with determination of enhanced pause (P(enh)). Twenty-four hours after each P(enh) measurement, airway resistance was continuously registered in isolated, perfused, and ventilated lungs on stimulation with inhaled or intravascular MCh or nebulized Ova. In a subset of experiments, in vivo AR was additionally measured in orotracheally intubated, spontaneously breathing mice 24 h after P(enh) measurement, and lungs were isolated further 24 h later. Isolated lungs of allergen-sensitized and -challenged mice showed increased AR after MCh inhalation or infusion as well as after specific provocation with aerosolized allergen. AR was increased on days 2 and 5 after Ova challenge and had returned to baseline on day 9. AHR in isolated lungs after aerosolized or intravascular MCh strongly correlated with in vivo AR. Pretreatment of isolated lungs with the beta(2)-agonist fenoterol diminished AR. In conclusion, this model provides new opportunities to investigate mechanisms of AHR as well as pharmacological interventions on an intact organ level.  相似文献   

7.
This study investigated 1) whether pulmonary C fibers are activated by a transient increase in the CO2 concentration of alveolar gas; and 2) if the CO2 sensitivity of these afferents is altered during airway inflammation. Single-unit pulmonary C-fiber activity was recorded in anesthetized, open-chest rats. Transient alveolar hypercapnia (HPC) was induced by administering a CO2-enriched gas mixture (25-30% CO2, 21% O2, balance N2) for five to eight breaths, which increased alveolar CO2 concentration progressively to near or above 13% for 3-5 s and lowered the arterial pH transiently to 7.10 +/- 0.05. Our results showed the following. 1) HPC evoked only a mild stimulation in a small fraction (4/47) of pulmonary C fibers, and there was no significant change in fiber activity (change in fiber activity = 0.22 +/- 0.16 imp/s; P > 0.1, n = 47). 2) In sharp contrast, after airway exposure to poly-L-lysine, a cationic protein known to induce mucosal injury, the same challenge of transient HPC activated 87.5% of the pulmonary C fibers tested and evoked a distinct stimulatory effect on these afferents (change in fiber activity = 6.59 +/- 1.78 imp/s; P < 0. 01, n = 8). 3) Similar potentiation of the C-fiber response to HPC was also observed after acute exposure to ozone (n = 6) and during a constant infusion of inflammatory mediators such as adenosine (n = 15) or prostaglandin E2 (n = 12). 4) The enhanced C-fiber sensitivity to CO2 after poly-L-lysine was completely abrogated by infusion of NaHCO3 (1.82 mmol.kg(-1).min(-1)) that prevented the reduction in pH during HPC (n = 6). In conclusion, only a small percentage (<10%) of the bronchopulmonary C fibers exhibit CO2 sensitivity under control conditions, but alveolar HPC exerts a consistent and pronounced stimulatory effect on the C-fiber endings during airway inflammation. This effect of CO2 is probably mediated through the action of hydrogen ions.  相似文献   

8.
Although both asthmatics and allergic rhinitics develop an acute inflammatory response to lower airway allergen challenge, only asthmatics experience airway obstruction resulting from chronic environmental allergen exposure. Hypothesizing that asthmatic airways have an altered response to chronic allergic inflammation, we compared the effects of repeated low-level exposures to inhaled Alternaria extract in sensitized rats with preexisting chronic postbronchiolitis airway dysfunction versus sensitized controls with normal airways. Measurements of air space (bronchoalveolar lavage) inflammatory cells, airway goblet cells, airway wall collagen, airway wall eosinophils, airway alveolar attachments, and pulmonary physiology were conducted after six weekly exposures to aerosolized saline or Alternaria extract. Postbronchiolitis rats, but not those starting with normal airways, had persistent increases in airway wall eosinophils, goblet cell hyperplasia in small airways, and loss of lung elastic recoil after repeated exposure to aerosolized Alternaria extract. Despite having elevated airway wall eosinophils, the postbronchiolitis rats had no eosinophils in bronchoalveolar lavage at 5 days after the last allergen exposure, suggesting altered egression of tissue eosinophils into the air space. In conclusion, rats with preexisting airway pathology had altered eosinophil trafficking and allergen-induced changes in airway epithelium and lung mechanics that were absent in sensitized control rats that had normal airways before the allergen exposures.  相似文献   

9.
The purpose of this study was to assess the effects of corticosteroid therapy on a murine model of allergic asthma using hyperpolarized (3)He magnetic resonance imaging (MRI) and respiratory mechanics measurements before, during, and after methacholine (MCh) challenge. Three groups of mice were prepared, consisting of ovalbumin sensitized/ovalbumin challenged (Ova/Ova, n = 5), Ova/Ova challenged but treated with the corticosteroid dexamethasone (Ova/Ova+Dex, n = 3), and ovalbumin-sensitized/saline-challenged (Ova/PBS, n = 4) control animals. All mice underwent baseline 3D (3)He MRI, then received a MCh challenge while 10 2D (3)He MR images were acquired for 2 min, followed by post-MCh 3D (3)He MRI. Identically treated groups underwent respiratory mechanics evaluation (n = 4/group) and inflammatory cell counts (n = 4/group). Ova/Ova animals exhibited predominantly large whole lobar defects at baseline, with significantly higher ventilation defect percentage (VDP = 19 ± 4%) than Ova/PBS (+2 ± 1%, P = 0.01) animals. Such baseline defects were suppressed by dexamethasone (0%, P = 0.009). In the Ova/Ova group, MCh challenge increased VDP on both 2D (+30 ± 8%) and 3D MRI scans (+14 ± 2%). MCh-induced VDP changes were diminished in Ova/Ova+Dex animals on both 2D (+21 ± 9%, P = 0.63) and 3D scans (+7 ± 2%, P = 0.11) and also in Ova/PBS animals on 2D (+6 ± 3%, P = 0.07) and 3D (+4 ± 1%, P = 0.01) scans. Because MCh challenge caused near complete cessation of ventilation in four of five Ova/Ova animals, even as large airways remained patent, this implies that small airway (<188 μm) obstruction predominates in this model. This corresponds with respiratory mechanics observations that MCh challenge significantly increases elastance and tissue damping but only modestly affects Newtonian airway resistance.  相似文献   

10.
Compelling clinical evidence implicates the potential role of adenosine in development of airway hyperresponsiveness and suggests involvement of pulmonary sensory receptors. This study was carried out to determine the effect of a low dose of adenosine infusion on sensitivity of pulmonary C-fiber afferents in anesthetized open-chest rats. Infusion of adenosine (40 microg x kg-1x min-1 i.v. for 90 s) mildly elevated baseline activity of pulmonary C fibers. However, during adenosine infusion, pulmonary C-fiber responses to chemical stimulants and lung inflation (30 cmH2O tracheal pressure) were markedly potentiated; e.g., the response to right atrial injection of capsaicin (0.25 or 0.5 microg/kg) was increased by more than fivefold (change in fiber activity = 2.64 +/- 0.67 and 16.27 +/- 3.11 impulses/s at control and during adenosine infusion, n = 13, P < 0.05), and this enhanced response returned to control in approximately 10 min. The potentiating effect of adenosine infusion was completely blocked by pretreatment with 8-cyclopentyl-1,3-dipropylxanthine (100 microg/kg), a selective antagonist of the adenosine A1 receptor, but was not affected by 3,7-dimethyl-1-propargylxanthine (1 mg/kg), an A2-receptor antagonist, or 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (2 mg/kg), an A3-receptor antagonist. This potentiating effect was also mimicked by N6-cyclopentyladenosine (0.25 microg x kg-1 x min-1 for 90 s), a selective agonist of the adenosine A1 receptor. In conclusion, our results showed that infusion of adenosine significantly elevated the sensitivity of pulmonary C-fiber afferents in rat lungs and that this potentiating effect is likely mediated through activation of the adenosine A1 receptor.  相似文献   

11.
Clara cell secretory protein (CCSP) is synthesized by nonciliated bronchiolar cells in the lung and modulates lung inflammation to infection. To determine the role of CCSP in the host response to allergic airway disease, CCSP-deficient [(-/-)] mice were immunized twice with ovalbumin (Ova) and challenged by Ova (2 or 5 mg/m(3)) aerosol. After 2, 3, and 5 days of Ova aerosol challenge (6 h/day), airway reactivity was increased in CCSP(-/-) mice compared with wild-type [CCSP(+/+)] mice. Neutrophils were markedly increased in the bronchoalveolar lavage fluid of CCSP(-/-) Ova mice, coinciding with increased myeloperoxidase activity and macrophage inflammatory protein-2 levels. Lung histopathology and inflammation were increased in CCSP(-/-) compared with wild-type mice after Ova challenge. Mucus production, as assessed by histological staining, was increased in the airway epithelium of CCSP(-/-) Ova mice compared with that in CCSP(+/+) Ova mice. These data suggest a role for CCSP in airway reactivity and the host response to allergic airway inflammation and provide further evidence for the role of the airway epithelium in regulating airway responses in allergic disease.  相似文献   

12.
To determine whether the excitabilities of pulmonary C fibers to chemical and mechanical stimuli are altered by CO(2)-induced acidosis, single-unit pulmonary C-fiber activity was recorded in anesthetized, open-chest rats. Transient alveolar hypercapnia (HPC) was induced by administering CO(2)-enriched gas mixture (15% CO(2), balance air) via the respirator inlet for 30 s, which rapidly lowered the arterial blood pH from a baseline of 7.40 +/- 0.01 to 7.17 +/- 0.02. Alveolar HPC markedly increased the responses of these C-fiber afferents to several chemical stimulants. For example, the C-fiber response to right atrial injection of the same dose of capsaicin (0.25-1.0 microg/kg) was significantly increased from 3.07 +/- 0.70 impulses/s at control to 8.48 +/- 1.52 impulses/s during HPC (n = 27; P < 0.05), and this enhanced response returned to control within approximately 10 min after termination of HPC. Similarly, alveolar HPC also induced significant increases in the C-fiber responses to right atrial injections of phenylbiguanide (4-8 microg/kg) and adenosine (0.2 mg/kg). In contrast, HPC did not change the response of pulmonary C fibers to lung inflation. Furthermore, the peak response of these C fibers to capsaicin during HPC was greatly attenuated when the HPC-induced acidosis was buffered by infusion of bicarbonate (1.36-1.82 mmol. kg(-1). min(-1) for 35 s). In conclusion, alveolar HPC augments the responses of these afferents to various chemical stimulants, and this potentiating effect of CO(2) is mediated through the action of hydrogen ions on the C-fiber sensory terminals.  相似文献   

13.
Microbial heat shock proteins (hsp) have been associated with the generation and induction of Th1-type immune responses. We tested the effects of treatment with five different microbial hsp (Mycobacterium leprae, Streptococcus pneumoniae, Helicobacter pylori, bacillus Calmette-Guérin, and Mycobacterium tuberculosis) in a murine model of allergic airway inflammation and airway hyperresponsiveness (AHR). Mice were sensitized to OVA by i.p. injection and then challenged by OVA inhalation. Hsp were administered to each group by i.p. injection before sensitization and challenge. Sensitized and challenged mice developed increased serum levels of OVA-specific IgE with significant airway eosinophilia and heightened responsiveness to methacholine when compared with nonsensitized animals. Administration of M. leprae hsp prevented both development of AHR as well as bronchoalveolar lavage fluid eosinophilia in a dose-dependent manner. Treatment with M. leprae hsp also resulted in suppression of IL-4 and IL-5 production in bronchoalveolar lavage fluid, while IL-10 and IFN-gamma production were increased. Furthermore, M. leprae hsp treatment significantly suppressed OVA-specific IgE production and goblet cell hyperplasia/mucin hyperproduction. In contrast, treatment with the other hsp failed to prevent changes in airway responsiveness, lung eosinophilia, or cytokine production. Depletion of gamma/delta T lymphocytes before sensitization and challenge abolished the effect of M. leprae hsp treatment on AHR. These results indicate selective and distinctive properties among the hsp, and that M. leprae hsp may have a potential therapeutic role in the treatment of allergic airway inflammation and altered airway function.  相似文献   

14.
The effect of O3 exposure (3 ppm, 1 h) on the in vivo and in vitro airway responsiveness, as well as the changes in cell contents in bronchoalveolar lavage (BAL) fluid, were evaluated 16-18 h after O3 exposure in sensitized and nonsensitized male guinea pigs. The sensitization procedure was performed through repeated inhalation of ovalbumin for 3 wk. Increase in pulmonary insufflation pressure produced by the excitatory nonadrenergic noncholinergic (eNANC) system, histamine, and antigen were assessed in in vivo conditions, whereas airway responsiveness to histamine and substance P was evaluated in in vitro conditions by use of tracheal chains with or without epithelium and lung parenchymal strips. We found that O3 exposure 1) increased the neutrophil content in BAL fluids in both sensitized and nonsensitized guinea pigs, 2) caused hyperresponsiveness to eNANC stimulation in nonsensitized guinea pigs (although combination of sensitization and O3 exposure paradoxically abolished the hyperresponsiveness to eNANC stimulation), 3) increased the in vivo bronchoconstrictor responses to histamine and antigen, 4) caused hyperresponsiveness to substance P in nonsensitized tracheae with or without epithelium and in sensitized tracheae with epithelium, 5) did not modify the responsiveness to histamine in tracheae with or without epithelium (and in addition, epithelium removal caused hyperresponsiveness to histamine even in those tracheae exposed to O3), and 6) produced hyperresponsiveness to histamine in lung parenchymal strips either from sensitized or nonsensitized guinea pigs.  相似文献   

15.
Smoke inhalation can produce acute pulmonary edema. Previous studies have shown that the bronchial arteries are important in acute pulmonary edema occurring after inhalation of a synthetic smoke containing acrolein, a common smoke toxin. We hypothesized that inhalation of smoke from burning cotton, known to contain acrolein, would produce in sheep acute pulmonary edema that was mediated by the bronchial circulation. We reasoned that occluding the bronchial arteries would eliminate smoke-induced pulmonary edema, whereas occlusion of the pulmonary artery would not. Smoke inhalation increased lung lymph flow from baseline from 2.4 +/- 0.7 to 5.6 +/- 1.2 ml/0.5 h at 30 min (P < 0.05) to 9.1 +/- 1 ml/0.5 h at 4 h (P < 0.05). Bronchial artery ligation diminished and delayed the rise in lymph flow with baseline at 2.8 +/- 0.7 ml/0.5 h rising to 3.1 +/- 0. 8 ml/0.5 h at 30 min to 6.5 +/- 1.5 ml/0.5 h at 240 min (P < 0.05). Wet-to-dry ratio was 4.1 +/- 0.2 in control, 5.1 +/- 0.3 in smoke inhalation (P < 0.05), and 4.4 +/- 0.4 in bronchial artery ligation plus smoke-inhalation group. Smoke inhalation after occlusion of the right pulmonary artery resulted in a wet-to-dry ratio after 4 h in the right lung of 5.5 +/- 0.8 (P < 0.05 vs. control) and in the left nonoccluded lung of 5.01 +/- 0.7 (P < 0.05). Thus the bronchial arteries may be major contributors to acute pulmonary and airway edema following smoke inhalation because the edema occurs in the lung with the pulmonary artery occluded but not in the lungs with bronchial arteries ligated.  相似文献   

16.
Allergic airway inflammation and hyperreactivity are modulated by gammadelta T cells, but different experimental parameters can influence the effects observed. For example, in sensitized C57BL/6 and BALB/c mice, transient depletion of all TCR-delta(+) cells just before airway challenge resulted in airway hyperresponsiveness (AHR), but caused hyporesponsiveness when initiated before i.p. sensitization. Vgamma4(+) gammadelta T cells strongly suppressed AHR; their depletion relieved suppression when initiated before challenge, but not before sensitization, and they suppressed AHR when transferred before challenge into sensitized TCR-Vgamma4(-/-)/6(-/-) mice. In contrast, Vgamma1(+) gammadelta T cells enhanced AHR and airway inflammation. In normal mice (C57BL/6 and BALB/c), enhancement of AHR was abrogated only when these cells were depleted before sensitization, but not before challenge, and with regard to airway inflammation, this effect was limited to C57BL/6 mice. However, Vgamma1(+) gammadelta T cells enhanced AHR when transferred before challenge into sensitized B6.TCR-delta(-/-) mice. In this study Vgamma1(+) cells also increased levels of Th2 cytokines in the airways and, to a lesser extent, lung eosinophil numbers. Thus, Vgamma4(+) cells suppress AHR, and Vgamma1(+) cells enhance AHR and airway inflammation under defined experimental conditions. These findings show how gammadelta T cells can be both inhibitors and enhancers of AHR and airway inflammation, and they provide further support for the hypothesis that TCR expression and function cosegregate in gammadelta T cells.  相似文献   

17.
Subsequent to observations that pulmonary responses to antigen challenge are of different magnitudes in sensitized rats that are anesthetized with different drugs, we conducted studies to test whether the alterations in responses were due to changes in airway responsiveness to cholinergic or serotonergic challenge, opioid-receptor mediated events, or changes in mast cell mediator release. Immunoglobulin E-sensitized rats anesthetized with ketamine/urethan had larger changes in lung resistance and plasma histamine after pulmonary antigen challenge compared with rats anesthetized with fentanyl-droperidol. Blockade of opioid receptors with naloxone did not affect the responses. In unsensitized rats, airway responses to aerosolized methacholine were similar for the two anesthetics, indicating unchanged smooth muscle responsiveness; however, airway responses to intravenous serotonin were enhanced by ketamine and ablated by droperidol. We conclude that ketamine- and droperidol-induced alterations of pulmonary allergic responses are due to changes in sensitivity to serotonin and in mast cell mediator release. We speculate that mast cell mediator release may be modulated by a serotonin receptor-linked mechanism.  相似文献   

18.
Age is an important factor in determining the quantity and quality of immune responses when challenged with allergen. In a model of allergen-induced airway hyperresponsiveness and inflammation, where the sensitization phase and challenge phases can be dissociated in time, we examined the impact of age on these two phases. Sensitization of young mice (1-20 wk), but not older animals (30-40 wk), led to the development of airway hyperresponsiveness, airway eosinophilia, Th2 cytokine responses, and allergen-specific IgE, regardless of the age when the challenge phase was conducted. Thus, age at the time of initial sensitization was shown to be the critical factor dictating the nature of the response to later allergen challenge, as older mice remained responsive to allergen challenge if sensitized at a young age. These effects were shown to be mediated by lung T cells from sensitized young mice. Moreover, the failure of old sensitized mice to mediate these effects was shown not to be the result of active suppression of the responses. These data define the importance of age at initial allergen exposure in dictating subsequent responses in the lung when exposed to allergen and may help to define why asthma, even in adults, is most often initiated in early childhood.  相似文献   

19.
Circulatory endotoxin can stimulate vagal pulmonary C fibers and rapidly adapting receptors (RARs) in rats, but the underlying mechanisms are not clear. We investigated the involvement of hydroxyl radicals and cyclooxygenase metabolites in the stimulation of C fibers and RARs by circulatory endotoxin (50 mg/kg) in 112 anesthetized, paralyzed, and artificially ventilated rats. In rats pretreated with the vehicle, endotoxin stimulated C fibers and RARs and caused a slight increase in total lung resistance (Rl) and a decrease in dynamic lung compliance. In rats pretreated with dimethylthiourea (a hydroxyl radical scavenger) alone, indomethacin (a cyclooxygenase inhibitor) alone, or a combination of the two, C-fiber and RAR responses [C fiber: change (Delta) = -62, -79, and -85%; RAR: Delta = -80, -84, and -84%, respectively] were reduced, and the Rl response was prevented. The suppressive effects of a combination of dimethylthiourea and indomethacin on the C-fiber and RAR responses were not superior to indomethacin alone. In rats pretreated with isoproterenol (a bronchodilator), the C-fiber response was not significantly affected (Delta = -26%), the RAR response was reduced (Delta = -88%), and the Rl response was prevented. None of these pretreatments affected the dynamic lung compliance response. These results suggest that 1) both hydroxyl radicals and cyclooxygenase metabolites are involved in the endotoxin-induced stimulation of C fibers and RARs, and 2) the involvement of these two metabolites in the C-fiber stimulation may be due to their chemical effects, whereas that in the RAR stimulation may be due to their bronchoconstrictive effects.  相似文献   

20.
Antibody-antigen interactions in the airway initiate inflammation in acute asthma exacerbations. This inflammatory response is characterized by the recruitment of granulocytes into the airways. In murine models of asthma, granulocyte recruitment into the lung contributes to the development of airway hyperresponsiveness (AHR), mucus production, and airway remodeling. Leukotriene B4 is a mediator released following antigen challenge that has chemotactic activity for granulocytes, mediated through its receptor, BLT1. We investigated the role of BLT1 in granulocyte recruitment following antigen challenge. Wild-type mice and BLT1-/- mice were sensitized and challenged with ovalbumin (OVA) to induce acute allergic airway inflammation. In addition, to explore the relevance to antibody-antigen interactions, we injected OVA bound to anti-OVA IgG1 or anti-OVA IgE intratracheally into na?ve wild-type and BLT1-/- mice. Cell composition of the lungs, cytokine levels, histology, and AHR were determined. After sensitization and challenge with ovalbumin, there was significantly reduced neutrophil and eosinophil recruitment into the airways of BLT1-/- mice compared with wild-type animals after one or two daily antigen challenges, but this difference was not seen after three or four daily antigen challenges. Mucus production and AHR were not affected. Intratracheal injection of OVA bound to IgG1 or IgE induced neutrophil recruitment into the airways in wild-type mice but not in the BLT1-/- mice. We conclude that BLT1 mediates early recruitment of granulocytes into the airway in response to antigen-antibody interactions in a murine model of acute asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号