首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Current influenza vaccines based on the hemagglutinin protein are strain specific and do not provide good protection against drifted viruses or emergence of new pandemic strains. An influenza vaccine that can confer cross-protection against antigenically different influenza A strains is highly desirable for improving public health.

Methodology/Principal Findings

To develop a cross protective vaccine, we generated influenza virus-like particles containing the highly conserved M2 protein in a membrane-anchored form (M2 VLPs), and investigated their immunogenicity and breadth of cross protection. Immunization of mice with M2 VLPs induced anti-M2 antibodies binding to virions of various strains, M2 specific T cell responses, and conferred long-lasting cross protection against heterologous and heterosubtypic influenza viruses. M2 immune sera were found to play an important role in providing cross protection against heterosubtypic virus and an antigenically distinct 2009 pandemic H1N1 virus, and depletion of dendritic and macrophage cells abolished this cross protection, providing new insight into cross-protective immune mechanisms.

Conclusions/Significance

These results suggest that presenting M2 on VLPs in a membrane-anchored form is a promising approach for developing broadly cross protective influenza vaccines.  相似文献   

2.
We performed experiments to determine whether parenteral immunization with SA11 rotavirus can induce active protective immunity in a rabbit model of rotavirus infection. After one or two intramuscular injections of 1 ml of live or formalin-inactivated SA11 virus, we evaluated the mucosal and serologic immune response and protection from challenge with a high dose of live, virulent rabbit (Ala) rotavirus. Inactivated SA11 virus preparations, evaluated by enzyme-linked immunosorbent assay (ELISA) with a panel of VP4- and VP7-specific neutralizing and nonneutralizing monoclonal antibodies, did not show a loss of epitopes from the inactivation procedure compared with live virus. Administration of two doses of vaccine, one at zero days postvaccination (DPV) and a booster shot at 49 DPV, followed by challenge at 71 DPV with 3.5 x 10(5) PFU of Ala virus resulted in protection from challenge. None of the two-dose virus-vaccinated rabbits shed virus after challenge, while virus shedding was detected in all control rabbits (P = 0.001, Fisher's exact two-tailed test). Differences in total serum immunoglobulin (Ig) antirotavirus ELISA titers (P < 0.05, Wilcoxon's rank sum test) were observed between groups vaccinated with virus in aluminum phosphate or Freund's adjuvant but not between groups vaccinated with live or inactivated virus in either adjuvant. All rabbits given two doses of vaccine had detectable antirotavirus intestinal antibody of the IgG, but not IgA, isotype. After challenge, fourfold or greater increases in intestinal IgG antibody responses were observed in three rabbits, whereas all controls and all but one virus-vaccinated rabbit had an intestinal IgA antibody response. In contrast, vaccination of rabbits with one dose of SA11 followed by challenge at 21 DPV did not protect from challenge; no difference in the mean number of days of virus shedding between any of the vaccinated groups and controls was observed. A serologic, but not a mucosal, antibody response was observed after the one-dose vaccination regimen. Differences in serologic antibody titers were not observed between any of the one-dose virus-vaccinated groups. These data indicate that parenteral vaccination with two, but not one, doses of rotavirus in either Freund's adjuvant or aluminum phosphate can induce active protection from challenge.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The use of chimeric virus-like particles represents a new strategy for delivering tumor antigens to the immune system for the initiation of antitumor immune responses. Immunization of DBA/2 mice with the P1A peptide derived from the P815 tumor-associated antigen P1A induced specific T-cell tolerance, resulting in progression of a regressor P815 cell line in all animals. However, immunization with a human papillomavirus type 16 L1 virus-like particle containing the P1A peptide in the absence of adjuvant induced a protective immune response in mice against a lethal tumor challenge with a progressor P815 tumor cell line. Additionally, we demonstrated that these chimeric virus-like particles could be used therapeutically to suppress the growth of established tumors, resulting in a significant survival advantage for chimeric virus-like particle-treated mice compared with untreated control mice. Chimeric virus-like particles can thus be used as a universal delivery vehicle for both tolerizing and antigenic peptides to induce a strong protective and therapeutic antigen-specific antitumor immune response.  相似文献   

4.
Foot-and-mouth disease (FMD) is an acute and highly contagious disease caused by foot-and-mouth disease virus (FMDV) that can affect cloven-hoofed animal species, leading to severe economic losses worldwide. Therefore, the development of a safe and effective new vaccine to prevent and control FMD is both urgent and necessary. In this study, we developed a chimeric virus-like particle (VLP) vaccine candidate for serotype O FMDV and evaluated its protective immunity in guinea pigs. Chimeric VLPs were formed by the antigenic structural protein VP1 from serotype O and segments of the viral capsid proteins (VP2, VP3, and VP4) from serotype A. The chimeric VLPs elicited significant humoral and cellular immune responses with a higher level of anti-FMDV antibodies and cytokines than the control group. Furthermore, four of the five guinea pigs vaccinated with the chimeric VLPs were completely protected against challenge with 100 50% guinea pig infectious doses (GPID50) of the virulent FMDV strain O/MAY98. These data suggest that chimeric VLPs are potential candidates for the development of new vaccines against FMDV.  相似文献   

5.
6.
Recombinant Norwalk virus-like particles (rNV VLPs) were administered to BALB/c mice by the intranasal (i.n.) route to evaluate the induction of mucosal antibody responses. The results were compared to systemic and mucosal responses observed in new and previous studies (J. M. Ball, M. E. Hardy, R. L. Atmar, M. E. Connor, and M. K. Estes, J. Virol. 72:1345-1353, 1998) after oral administration of rNV VLPs. Immunizations were given in the presence or absence of a mucosal adjuvant, mutant Escherichia coli heat-labile toxin LT(R192G). rNV-specific immunoglobulin G (IgG) and fecal IgA were evaluated by enzyme-linked immunosorbent assay. The i.n. delivery of rNV VLPs was more effective than the oral route at inducing serum IgG and fecal IgA responses to low doses of rNV particles. Vaginal responses of female mice given VLPs by the i.n. and oral routes were also examined. All mice that received two immunizations with low doses i.n. (10 or 25 microg) of rNV VLPs and the majority of mice that received two high doses orally (200 microg) in the absence of adjuvant had rNV-specific serum IgG, fecal, and vaginal responses. Additional experiments evaluated whether rNV VLPs can function as a mucosal adjuvant by evaluating the immune responses to two soluble proteins, keyhole limpet hemocyanin and chicken egg albumin. Under the conditions tested, rNV VLPs did not enhance the serum IgG or fecal IgA response to these soluble proteins when coadministered by the i.n. or oral route. Low doses of nonreplicating rNV VLPs are immunogenic when administered i.n. in the absence of adjuvant, and addition of adjuvant enhanced the magnitude and duration of these responses. Recombinant NV VLPs represent a candidate mucosal vaccine for NV infections in humans.  相似文献   

7.
DNA rich in nonmethylated CG motifs (CpGs) greatly facilitates induction of immune responses against coadministered Ags. CpGs are therefore among the most promising adjuvants known to date. Nevertheless, CpGs are characterized by two drawbacks. They have unfavorable pharmacokinetics and may exhibit systemic side effects, including splenomegaly. We show in this study that packaging CpGs into virus-like particles (VLPs) derived from the hepatitis B core Ag or the bacteriophage Qbeta is a simple and attractive method to reduce these two problems. CpGs packaged into VLPs are resistant to DNase I digestion, enhancing their stability. In addition, and in contrast to free CpGs, packaging CpGs prevents splenomegaly in mice, without affecting their immunostimulatory capacity. In fact, vaccination with CpG-loaded VLPs was able to induce high frequencies of peptide-specific CD8(+) T cells (4-14%), protected from infection with recombinant vaccinia viruses, and eradicated established solid fibrosarcoma tumors. Thus, packaging CpGs into VLPs improves both their immunogenicity and pharmacodynamics.  相似文献   

8.
The in vitro self-assembly properties of the entire hepatitis C virus core protein (HCcAg) obtained from Pichia pastoris cells and the induction of specific antibody immune response were studied. HCcAg was purified as a low-molecular-weight species by electroelution under denaturing conditions for confirmation of its self-assembly properties. After renaturalization, electron microscopy showed that HCcAg assembled into spherical particles of 30 nm. HCcAg also showed homogeneity and was specifically recognized by serum from a chronic HCV carrier patient. The data indicated that in vitro assembly of HCcAg, into virus-like particles resembling HCV nucleocapsid particles at a mature stage, is an intrinsic quality of this protein. Finally, HCcAg generated a strong antibody immune response in sheep, suggesting its usefulness for stimulating the host immune response against HCV.  相似文献   

9.
We investigated the rotavirus-specific lymphocyte responses induced by intranasal immunization of adult BALB/c mice with rotavirus 2/6 virus-like particles (2/6-VLPs) of the bovine RF strain, by assessing the profile of cytokines produced after in vitro restimulation and serum and fecal antibody responses. The cytokines produced by splenic cells were first evaluated. Intranasal immunization with 50 microg of 2/6-VLPs induced a high serum antibody response, including immunoglobulin G1 (IgG1) and IgG2a, a weak fecal antibody response, and a mixed Th1/Th2-like profile of cytokines characterized by gamma interferon and interleukin 10 (IL-10) production and very low levels of IL-2, IL-4, and IL-5. Intranasal immunization with 10 microg of 2/6-VLPs coadministered with the mucosal adjuvants cholera toxin and Escherichia coli heat-labile toxin (LT) considerably enhanced the Th1/Th2-like response; notably, significant levels of IL-2, IL-4, and IL-5 were observed. Since rotavirus is an enteric pathogen, we next investigated the production of IL-2 and IL-5, as being representative of Th1 and Th2 responses, by Peyer's patch and mesenteric lymph node cells from mice immunized intranasally with 2/6-VLPs and LT. The results were compared to those obtained from splenic and cervical lymph node cells. We found that both cytokines were produced by cells from each of these lymphoid tissues. These results confirm the Th1/Th2-like response observed at the systemic level and show, on the assumption that T cells are the primary cells producing the cytokines after in vitro restimulation, that rotavirus-specific T lymphocytes are present in the intestine after intranasal immunization with 2/6-VLPs and LT.  相似文献   

10.
Infections by intracellular pathogens such as viruses, some bacteria and many parasites, are cleared in most cases after activation of specific T cellular immune responses that recognize foreign antigens and eliminate infected cells. Vaccines against those infectious organisms have been traditionally developed by administration of whole live attenuated or inactivated microorganisms. Nowadays, research is focused on the development of subunit vaccines, containing the most immunogenic antigens from the particular pathogen. However, when purified subunit vaccines are administered using traditional immunization protocols, the levels of cellular immunity induced are mostly low and not capable of eliciting complete protection against diseases caused by intracellular microbes. In this review, we present a promising alternative to those traditional protocols, which is the use of recombinant viruses encoding subunit vaccines as immunization tools. Recombinant viruses have several interesting features that make them extremely efficient at inducing immune responses mediated by T-lymphocytes. This cellular immunity has recently been demonstrated to be of key importance for protection against malaria and AIDS, both of which are major targets of the World Health Organization for vaccine development. Thus, this review will focus in particular on the development of new vaccination protocols against these diseases.  相似文献   

11.
12.
The objective of this study was to identify soluble protein antigens that would induce protective immunity against infective-stage larvae (L-3) of Strongyloides stercoralis in mice. Deoxycholate (DOC)-soluble proteins derived from L-3, adsorbed to aluminum hydroxide, induced protective immunity in BALB/c mice. The immunized mice generated parasite-specific IgG that could transfer passive immunity to na?ve animals. The protective antibodies bound to parasite antigens found in the muscles and nerve cords of the L-3. An IgG affinity chromatography column generated with IgG from the sera of DOC-immunized mice was used to purify specific larval antigens. Proteins were eluted from the affinity column with sizes of 80, 75, 61, 57, 43, and 32 kDa. This antigen pool stimulated both proliferation and IL-5 production by splenocytes recovered from mice immunized with live L-3. Vaccination of mice with the immunoaffinity-isolated antigens led to significant protective immunity, with 83% of challenge larvae killed. This study demonstrates that IgG-isolated proteins are candidate antigens for a vaccine against larval S. stercoralis.  相似文献   

13.
Recombinant virus-like particles (VLPs) have been shown to induce protective immunity. Despite their potential significance as promising vaccine candidates, the protein composition of VLPs produced in insect cells has not been well characterized. Here we report a proteomic analysis of influenza VLPs containing hemagglutinin (HA) and matrix M1 proteins from a human isolate of avian influenza H5N1 virus (H5 VLPs) produced in insect cells using the recombinant baculovirus expression system. Comprehensive proteomic analysis of purified H5 VLPs identified viral proteins and 37 additional host-derived proteins, many of which are known to be present in other enveloped viruses. Proteins involved in different cellular structures and functions were found to be present in H5 VLPs including those from the cytoskeleton, translation, chaperone, and metabolism. Immunization with purified H5 VLPs induced protective immunity, which was comparable to the inactivated whole virus containing all viral components. Unpurified H5 VLPs containing excess amounts of noninfluenza soluble proteins also conferred 100% protection against lethal challenge although lower immune responses were induced. These results provide important implications consistent with the idea that VLP production in insect cells may involve similar cellular machinery as other RNA enveloped viruses during synthesis, assembly, trafficking, and budding processes.  相似文献   

14.
15.
16.
Polymeric linear peptide chimeras (LPCs) that incorporate Plasmodium vivax promiscuous T cell epitopes and the P. falciparum circumsporozoite protein B cell epitope have been shown to induce a high level of immunogenicity and overcome genetic restriction when tested as vaccine immunogens in BALB/c mice. The present study evaluates the biological relevance of several LPCs using a well characterized rodent malaria model. Polymeric peptide constructs based on P. berghei and P. yoelii sequences, and orthologous to the human malaria sequences included in the original LPCs, were designed and tested for immunogenicity in mice of different H-2 haplotypes. We demonstrate that robust immune responses are induced and that peptides containing the orthologous rodent Plasmodium sequences exhibited similar immunogenic capabilities. Unique to this report, we show that LPCs can also prime MHC class I-restricted cytotoxic T lymphocytes (CTLs) and, most relevantly, that a peptide construct prototype incorporating single B, T and CTL epitopes induced protection against an experimental challenge with P. berghei or P. yoelii sporozoites. Collectively, these results suggest that polymeric polypeptide chimeras can be used as a platform to deliver subunit vaccines.  相似文献   

17.
Rotavirus diarrhea is caused by nonreplicating viral particles.   总被引:3,自引:2,他引:1       下载免费PDF全文
R D Shaw  S J Hempson    E R Mackow 《Journal of virology》1995,69(10):5946-5950
  相似文献   

18.
Theiler's murine encephalomyelitis virus-induced immunologically mediated demyelinating disease (TMEV-IDD) in susceptible mice provides a relevant infectious model for multiple sclerosis. Previously, we have identified six major linear antibody epitopes on the viral capsid proteins. In this study, we utilized fusion proteins containing individual capsid proteins and synthetic peptides containing the linear antibody epitopes to determine the potential role of antibody response in the course of virus-induced demyelination. Preimmunization of susceptible mice with VPI and VP2 fusion proteins, but not VP3, resulted in the protection from subsequent development of TMEV-IDD. Mice free of clinical symptoms following preimmunizations with fusion proteins displayed high levels of antibodies to the capsid proteins corresponding to the immunogens. In contrast, the level of antibodies to a particular linear epitope, A1C (VP1(262-276)), capable of efficiently neutralizing virus in vitro increased with the progression of disease. Further immunization with synthetic peptides containing individual antibody epitopes indicated that antibodies to the epitopes are differentially effective in protecting from virus-induced demyelination. Taken together, these results suggest that antibodies to only certain linear epitopes are protective and such protection may be restricted during the early stages of viral infection.  相似文献   

19.
Human influenza A viruses (IAVs) cause global pandemics and epidemics, which remains a nonignorable serious concern for public health worldwide. To combat the surge of viral outbreaks, new treatments are urgently needed. Here, we design a new vaccine based on virus-like particles (VLPs) and show how intranasal administration of this vaccine triggers protective immunity, which can be exploited for the development of new therapies. H1N1 VLPs were produced in baculovirus vectors and were injected into BALB/c mice by the intramuscular (IM) or intranasal (IN) route. We found that there were significantly higher inflammatory cell and lymphocyte concentrations in bronchoalveolar lavage samples and the lungs of IN immunized mice; however, the IM group had little signs of inflammatory responses. On the basis of our results, immunization with H1N1 influenza VLP elicited a strong T cell immunity in BALB/c mice. Despite T cell immunity amplification after both IN and IM vaccination methods in mice, IN-induced T cell responses were significantly more intense than IM-induced responses, and this was likely related to an increased number of both CD11bhigh and CD103+ dendritic cells in mice lungs after IN administration of VLP. Furthermore, evaluation of interleukin-4 and interferon gamma cytokines along with several chemokine receptors showed that VLP vaccination via IN and IM routes leads to a greater CD4+ Th1 and Th2 response, respectively. Our findings indicated that VLPs represent a potential strategy for the development of an effective influenza vaccine; however, employing relevant routes for vaccination can be another important part of the universal influenza vaccine puzzle.  相似文献   

20.
Rotavirus, a double-shelled nonenveloped member of the REoviridae family, becomes transiently membrane enveloped during its maturation process, as single-shelled particles bud from cytoplasmic viroplasm structures into the adjacent endoplasmic reticulum. The present study describes the isolation of these membrane-enveloped viral intermediates from rotavirus SA11-infected Ma104 cells. The enveloped intermediates comprised the proteins VP1, VP2, VP4, VP6, VP7, and NS28 and small amounts of NS35 and NS34. VP7 in the intermediate particles was recognized by either a polyclonal antibody to VP7, which previous studies had shown recognizes the membrane-associated form of VP7, or a monoclonal antibody which recognizes VP7 on mature virus. NS28, VP7, and VP4 could be complexed to a higher-molecular-weight form when the membrane-permeable cross-linker dithiobis(succinimidylproprionate) was used. However, when an impermeable cross-linker was used, the structural proteins, including VP7, were not accessible to cross-linking. Velocity sedimentation of cross-linked immunoisolated enveloped virus particles showed that VP7 and VP4 were located in the same fractions only when the membrane-permeable cross-linker was used, implying their heterooligomeric association during outer capsid formation. When intermediate enveloped virus particles were treated with protease, VP6 and VP7 were protected, but not in the presence of detergent. Taken together, these results support the idea that in the membrane-enveloped intermediate, VP7 is repositioned from its location in the endoplasmic reticulum lumen back across the viral membrane envelope to the inferior of the virus particle during the maturation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号