首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
With the human and mouse genome projects now completed, the receptor repertoire of mammalian cells has finally been elucidated. The EGF-TM7 receptors are a family of class B seven-span transmembrane (TM7) receptors predominantly expressed by cells of the immune system. Within the large TM7 superfamily, the molecular structure and ligand-binding properties of EGF-TM7 receptors are unique. Derived from the processing of a single polypeptide, they are expressed at the cell surface as heterodimers consisting of a large extracellular region associated with a TM7 moiety. Through a variable number of N-terminal epidermal growth factor (EGF)-like domains, EGF-TM7 receptors interact with cellular ligands such as CD55 and chondroitin sulfate. Recent in vivo studies demonstrate a role of the EGF-TM7 receptor CD97 in leukocyte migration. The different number of EGF-TM7 genes in man compared with mice, the chimeric nature of EMR2 and the inactivation of human EMR4 point toward a still-evolving receptor family. Here we discuss the currently available information on this intriguing receptor family.  相似文献   

2.
The epidermal growth factor (EGF)-TM7 subgroup of G-protein-coupled receptors is composed predominantly of leukocyte-restricted glycoproteins defined by their unique hybrid structure, in which extracellular EGF-like domains are coupled to a seven-span transmembrane moiety via a mucin-like stalk. The EGF-TM7 group comprises mouse F4/80, human EGF module-containing mucin-like hormone receptor (EMR) 1, human EMR2, and human and mouse CD97, the genes for which map to human chromosome 19p13 and the syntenic regions of the mouse genome. In this study we describe the cloning and characterization of EMR3, a novel human EGF-TM7 molecule, and show the existence of its cellular ligand. The EMR3 gene maps closely to the existing members of the EGF-TM7 family on human chromosome 19p13.1 and, in common with other EGF-TM7 genes, is capable of generating different protein isoforms through alternative splicing. Two alternative splice forms have been isolated: one encoding a 652-amino acid cell surface protein consisting of two EGF-like domains, a mucin stalk, and a putative G-protein-coupled receptor domain and the other encoding a truncated soluble form containing only two EGF-like domains. As with other members of the EGF-TM7 family, EMR3 mRNA displays a predominantly leukocyte-restricted expression pattern, with highest levels in neutrophils, monocytes, and macrophages. Through the use of soluble EMR3 multivalent probes we have shown the presence of a ligand at the surface of monocyte-derived macrophages and activated human neutrophils. These interactions suggest a potential role for EMR3 in myeloid-myeloid interactions during immune and inflammatory responses.  相似文献   

3.
The epidermal growth factor-seven transmembrane (EGF-TM7) family is a group of seven-span transmembrane receptors predominantly expressed by cells of the immune system. Family members CD97, EGF module-containing mucin-like receptor (EMR) 1, EMR2, EMR3, EMR4, and EGF-TM7-latrophilin-related protein are characterized by an extended extracellular region with a variable number of N-terminal EGF-like domains. EGF-TM7 receptors bind cellular ligands as demonstrated by the interaction of CD97 with decay accelerating factor (CD55) and dermatan sulfate. Investigating the effect of newly generated mAb on the migration of neutrophilic granulocytes, we here report for the first time in vivo data on the function of CD97. In dextran sulfate sodium-induced experimental colitis, we show that homing of adoptively transferred neutrophils to the colon was significantly delayed when cells were preincubated with CD97 mAb. The consequences of this defect in neutrophil migration for host defense are demonstrated in a murine model of Streptococcus pneumoniae-induced pneumonia. Mice treated with CD97 mAb to EGF domain 1 (1B2) and EGF domain 3 (1C5) displayed a reduced granulocytic inflammatory infiltrate at 20 h after inoculation. This was associated with a significantly enhanced outgrowth of bacteria in the lungs at 44 h and a strongly diminished survival. Together, these findings indicate an essential role for CD97 in the migration of neutrophils.  相似文献   

4.
5.
The EGF-TM7 family of the rat   总被引:2,自引:0,他引:2  
Hamann J 《Immunogenetics》2004,56(9):679-681
EGF-TM7 receptors are adhesion class heptahelical molecules predominantly expressed by cells of the immune system. Based on an analysis of the recently unraveled genome, the EGF-TM7 family of the rat is described here. Like the mouse, the rat has three EGF-TM7 receptors—CD97, EMR1 and EMR4. The highest conservation between the orthologues lies within the membrane-spanning part and emphasizes the functional importance of this region.The nucleotide sequences reported here have been submitted to the GenBank database with the following accession numbers: AY686632 and AY686633.  相似文献   

6.
Lin HH  Stacey M  Hamann J  Gordon S  McKnight AJ 《Genomics》2000,67(2):188-200
The epidermal growth factor (EGF)-TM7 proteins [EMR1, (EGF-like molecule containing mucin-like hormone receptor 1) F4/80, and CD97] constitute a recently defined class B GPCR subfamily and are predominantly expressed on leukocytes. These molecules possess N-terminal EGF-like domains coupled to a seven-span transmembrane (7TM) moiety via a mucin-like spacer domain. Genomic mapping analysis has suggested a possible EGF-TM7 gene family on the human chromosome 19p13 region. In this study, a new member of the EGF-TM7 family, EMR2, which shares strikingly similar molecular characteristics with CD97, is described. In addition to mapping closely to CD97 on human chromosome 19p13.1, EMR2 contains a total of five tandem EGF-like domains and expresses similar protein isoforms consisting of various numbers of EGF-like domains as a result of alternative RNA splicing. Furthermore, EMR2 and CD97 exhibit highly homologous EGF-like domains and share identical gene organization, indicating that both genes are the products of a recent gene duplication event. The homologous EGF-like domains enable the identification of both EMR2 and CD97 by monoclonal antibodies (mAbs) raised against the first EGF-like domain of CD97, whereas mAbs directed against the extracellular spacer domain of CD97 are able to differentiate these two proteins. Both EMR2 and CD97 are highly expressed in immune tissues; however, unlike CD97, which is ubiquitously expressed in most cell types, EMR2 expression is restricted to monocytes/Mφ and granulocytes. EMR2 fails to interact with CD55, the cellular ligand for CD97, suggesting the possibility of a different cellular ligand(s). EMR2 may therefore have a unique function in cells of monocyte/Mφ and granulocyte lineages.  相似文献   

7.
A novel member of the EGF-TM7 family, mEMR4, was identified and characterized. The full-length mouse EMR4 cDNA encodes a predicted 689-amino acid protein containing two epidermal growth factor (EGF)-like modules, a mucin-like spacer domain, and a seven-transmembrane domain with a cytoplasmic tail. Genetic mapping established that mEMR4 is localized in the distal region of mouse chromosome 17 in close proximity to another EGF-TM7 gene, F4/80 (Emr1). Similar to F4/80, mEMR4 is predominantly expressed on resident macrophages. However, a much lower expression level was also detected in thioglycollate-elicited peritoneal neutrophils and bone marrow-derived dendritic cells. The expression of mEMR4 is up-regulated following macrophage activation in Biogel and thioglycollate-elicited peritoneal macrophages. Similarly, mEMR4 is over-expressed in TNF-alpha-treated resident peritoneal macrophages, whereas interleukin-4 and -10 dramatically reduce the expression. mEMR4 was found to undergo proteolytic processing within the extracellular stalk region resulting in two protein subunits associated noncovalently as a heterodimer. The proteolytic cleavage site was identified by N-terminal amino acid sequencing and located at the conserved GPCR (G protein-coupled receptor) proteolytic site in the extracellular region. Using multivalent biotinylated mEMR4-mFc fusion proteins as a probe, a putative cell surface ligand was identified on a B lymphoma cell line, A20, in a cell-binding assay. The mEMR4-ligand interaction is Ca2+-independent and is mediated predominantly by the second EGF-like module. mEMR4 is the first EGF-TM7 receptor known to mediate the cellular interaction between myeloid cells and B cells.  相似文献   

8.
Quantitative bioluminescence resonance energy transfer (BRET) analysis was applied to the study of beta(1)- and beta(2)-adrenergic receptor homo- and heterodimerization. To assess the relative affinity between each of the protomers, BRET saturation experiments were carried out in HEK-293T cells. beta(1)- and beta(2)-adrenergic receptors were found to have similar propensity to engage in homo- and heterotropic interactions suggesting that, at equivalent expression levels of the two receptor subtypes, an equal proportion of homo- and heterodimers would form. Analysis of the data also revealed that, at equimolar expression levels of energy donor and acceptor, more than 80% of the receptor molecules exist as dimers and that this high incidence of receptor dimerization is insensitive to receptor density for expression levels varying between 1.4 and 26.9 pmol of receptor/mg of membrane protein. Taken together, these results indicate that most of the receptors expressed in cells exist as constitutive dimers and that, at least in undifferentiated fibroblasts, the proportion of homo- and heterodimers between the closely related beta(1)- and beta(2)-adrenergic receptors is determined by their relative levels of expression.  相似文献   

9.
G protein coupled receptors (GPCRs) form homo- and hetero-dimers or -oligomers, which are functionally important. Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are bioactive lysophopholipids involved in diverse biological processes. We have examined homo- and hetero-dimerization among three major LPA receptors (LPA(1-3)), three major S1P receptors (S1P(1-3)), as well as OGR1 and GPR4. Using LacZ complementation assays, we have shown that LPA receptors form homo- and hetero-dimers within the LPA receptor subgroup and hetero-dimers with other receptors (S1P(1-3) and GPR4). In addition, we have found that although GPR4 and OGR1 share more than 50% homology, GPR4 forms strong homo- and hetero-dimers with LPA and S1P receptors, but OGR1 forms very weak homo-dimer and relatively weak hetero-dimers with other receptors. Using chimeric receptors between GPR4 and OGR1, we have shown that different domains of GPR4 receptor are involved in its dimerization with different GPCRs and more than one domain may be involved in some of the complex formation. Our results suggest that when studying a signal transduction induced by a stimulus, not only is the expression and activation of its own receptor(s), but also the status of the interacting receptors should be taken into consideration.  相似文献   

10.
A significant number of G protein-coupled receptors are shown to form homo- or heterodimers/oligomers, and oligomerization of GPCRs may be a quite general phenomenon. We have here explored the possibility that the two closely related human melanocortin receptor 1 (MC(1)R) and melanocortin receptor 3 (MC(3)R) form dimers. Using bioluminescence resonance energy transfer (BRET(2)) we demonstrate that MC(1) and MC(3)Rs form homo- and heterodimers, when expressed in Cos-7 cells. Treatment with agonist, partial agonist or antagonists did not modify the BRET(2) signal for any of the receptor pairs studied, suggesting that the dimerization is not regulated by ligand binding. Rather our results indicate that melanocortin receptors exist as constitutively pre-formed dimers.  相似文献   

11.
G protein-coupled receptor (GPCR) oligomerization is a growing concept that has emerged from several studies suggesting that GPCRs can form both homo- and heterodimers. Using both coimmunoprecipitation and bioluminescence resonance energy transfer (BRET) approaches, we established that the vasopressin V1a, V2, and the oxytocin receptors exist as homo- and hetero-dimers in transfected human embryonic kidney 293T cells. Each receptor protomer had a similar propensity to form homo- and heterodimers, indicating that their relative expression levels may determine the homo-/heterodimer ratio. The finding that immature forms of the receptor can be immunoprecipitated as homo- and heterodimers and the detection by BRET of such oligomer in endoplasmic reticulum-enriched fractions suggest that the oligomerization processes take place early during biosynthesis. Treatment with agonists or antagonists did not modify the BRET among any of the vasopressin and oxytocin receptor pairs studied, indicating that the dimerization state of the receptors is not regulated by ligand binding once they have reached the cell surface. Taken together, these results strongly support the notion that GPCR dimerization is a constitutive process.  相似文献   

12.
The heptahelical receptor CD97 is a defining member of the EGF-TM7 family of adhesion class receptors. In both humans and mice, CD97 isoforms are expressed with variable numbers of tandemly arranged N-terminal epidermal growth factor-like domains that facilitate interactions with distinct cellular ligands. Results from treatment of mice with mAbs in various disease models have suggested a role for CD97 in leukocyte trafficking. Here, we aimed to thoroughly characterize the expression profile of CD97, and delineate its biological function. To this end, we applied a novel polyclonal Ab, which is the first antiserum suitable for immunohistochemistry, and combined this analysis with the study of Cd97-lacZ knock-in mice. We show that similar to the situation in humans, hematopoietic, epithelial, endothelial, muscle, and fat cells expressed CD97. Despite this broad expression pattern, the Cd97(-/-) mouse that we created had no overt phenotype, except for a mild granulocytosis. Furthermore, granulocyte accumulation at sites of inflammation was normal in the absence of CD97. Interestingly, application of CD97 mAbs blocked granulocyte trafficking after thioglycollate-induced peritonitis in wild-type but not in knock-out mice. Hence, we conclude that CD97 mAbs actively induce an inhibitory effect that disturbs normal granulocyte trafficking, which is not perturbed by the absence of the molecule.  相似文献   

13.
14.
Using differential display of rat fetal and postnatal cardiomyocytes, we have identified a novel seven-transmembrane receptor, ETL. The cDNA-predicted amino acid sequence of ETL indicated that it encodes a 738-aa protein composed of a large extracellular domain with epidermal growth factor (EGF)-like repeats, a seven-transmembrane domain, and a short cytoplasmic tail. ETL belongs to the secretin family of G-protein-coupled peptide hormone receptors and the EGF-TM7 subfamily of receptors. The latter are characterized by a variable number of extracellular EGF and cell surface domains and conserved seven transmembrane-spanning regions. ETL mRNA expression is up-regulated in the adult rat and human heart. In situ hybridization analyses revealed expression in rat cardiomyocytes and abundant expression in vascular and bronchiolar smooth muscle cells. In COS-7 cells transfected with Myc-tagged rat ETL, rat ETL exists as a stable dimer and undergoes endoproteolytic cleavage of the extracellular domain. The proteolytic activity can be abolished by a specific mutation, T455A, in this domain. In transfected mammalian cells, ETL is associated with cell membranes and is also observed in cytoplasmic vesicles. ETL is the first seven-transmembrane receptor containing EGF-like repeats that is developmentally regulated in the heart.  相似文献   

15.
EMR2/CD312 is a member of the adhesion-GPCR family that contains extracellular EGF-like domains. Previously it has been shown to interact with chondroitin sulphate glycosaminoglycans in an isoform-specific manner. Although EMR2 expression has been found to be restricted to human myeloid cells, its expression profile has not yet been systemically characterized. In this report, we show that EMR2 receptor expression is up-regulated during differentiation and maturation of macrophages, and is conversely down-regulated during dendritic cell maturation. We also demonstrate that EMR2 receptor alternative splicing and glycosylation is regulated during myeloid differentiation. In monocytes and macrophages, EMR2 can be specifically up-regulated by LPS and IL-10 via an IL-10-mediated pathway. In inflamed tissues, EMR2 is detected in subpopulations of myeloid cells including macrophages and neutrophils. The results presented here further support the idea that EMR2 plays a role in the migration and adhesion of myeloid cells during cell differentiation, maturation, and activation.  相似文献   

16.
The recently deorphanized niacin receptor subtypes NIACR1 (GPR109A) and NIACR2 (GPR109B) play an essential role in the regulation of metabolic processes and immune reactions. Both receptors belong to the G-protein-coupled receptor (GPCR) family, whose members have traditionally been treated as monomeric entities, but now appear to exist and function as both homodimers and heterodimers. In this study, a close physical interaction is shown between the highly homologous niacin receptor subtypes, NIACR1 and NIACR2, using bioluminescence resonance energy transfer (BRET2) in living cells. The extent of homo- and hetero-dimerization of the niacin receptors did not vary after activation of the receptors with selective agonists, indicating that the dimerization state of NIACR1 and NIACR2 is not regulated by ligand binding. Moreover, detection of niacin receptor dimers in both plasma membrane- and endoplasmic reticulum-enriched fractions suggests that they are formed early in the biosynthetic pathway. Taken together, these results demonstrate that niacin receptor dimerization is a constitutive process occurring early during biosynthesis.  相似文献   

17.
Lee SP  O'Dowd BF  George SR 《Life sciences》2003,74(2-3):173-180
G protein-coupled receptors (GPCRs) form homo-oligomeric and hetero-oligomeric complexes. This understanding has prompted a re-evaluation of many aspects of GPCR biology, however the concept of receptor complexes has not been fully integrated into the current thinking about GPCR structure and function. Nevertheless, receptor oligomerization is a pivotal aspect of the structure and function of GPCRs that has been shown to have implications for receptor trafficking, signaling, and pharmacology and more intricate models for understanding the physiological roles of these receptors are emerging. Here, we summarize some of the advances made in understanding the structural basis and the functional roles of homo- and hetero- oligomerization in this important group of receptors. Although this discussion focuses primarily on the dopamine receptors, particularly the D2 dopamine receptor, and the opioid and serotonin receptors, we discuss the principles governing the oligomerization of all rhodopsin-like GPCRs and potentially of the entire superfamily of these receptors.  相似文献   

18.
CD97, the archetypal member of the EGF-TM7 protein family, is constitutively expressed on granulocytes and monocytes and rapidly up-regulated on T and B cells following activation. The key isoform of CD97 expressed on leukocytes binds the complement regulatory protein CD55 (also termed decay-accelerating factor). CD97 has been shown recently to mediate co-stimulation of T cells via CD55. Here, we demonstrate that blocking the interaction between CD55 on monocytes and CD97 on T cells leads to inhibition of proliferation and interferon-gamma secretion. This implies that bidirectional interactions between CD97 and CD55 are involved in T cell regulation. Structural studies presented here reveal the molecular basis for this activity. We have solved the structure of EMR2, a very close homolog of CD97, using x-ray crystallography. NMR-based chemical shift mapping of the EMR2-CD55 interaction has allowed us to generate a model for the CD97-CD55 complex. The structure of the complex reveals that the T cell and complement regulatory activities of CD55 occur on opposite faces of the molecule. This suggests that CD55 might simultaneously regulate both the innate and adaptive immune responses, and we have shown that CD55 can still regulate complement when bound to CD97.  相似文献   

19.
Epidermal growth factor-like (EGF) and short consensus repeat (SCR) domains are commonly found in cell surface and soluble proteins that mediate specific protein-protein recognition events. Unlike the immunoglobulin (Ig) superfamily, very little is known about the general properties of intermolecular interactions encoded by these common modules, and in particular, how specificity of binding is achieved. We have dissected the binding of CD97 (a member of the EGF-TM7 family) to the complement regulator CD55, two cell surface modular proteins that contain EGF and SCR domains, respectively. We demonstrate that the interaction is mediated solely by these domains and is characterized by a low affinity (86 microm) and rapid off-rate (at least 0.6 s(-1)). The interaction is Ca(2+) -dependent but is unaffected by glycosylation of the EGF domains. Using biotinylated multimerized peptides in cell binding assays and surface plasmon resonance, we show that a CD97-related EGF-TM7 molecule (termed EMR2), differing by only three amino acids within the EGF domains, binds CD55 with a K(D) at least an order of magnitude weaker than that of CD97. These results suggest that low affinity cell-cell interactions may be a general feature of highly expressed cell surface proteins and that specificity of SCR-EGF binding can be finely tuned by a small number of amino acid changes on the EGF module surface.  相似文献   

20.
1. Increasing evidence indicates that guanyl protein coupled receptors (GPCRs), including members of the vasopressin (VP) receptor family can act as homo- and heterodimers. Regulated expression and interaction of pituitary VP V1b receptor (V1bR) and corticotropin releasing hormone receptor type 1 (CRHR1) are critical for hypothalamic pituitary adrenal (HPA) axis adaptation, but it is unknown whether this involves physical interaction between these receptors. 2. Bioluminescence resonance energy transfer (BRET) experiments using V1bR and CRHR1 fused to either Renilla luciferase (Rluc) or yellow fluorescent protein (YFP) at the N-terminus, but not the carboxyl-terminus, revealed specific interaction (BRET50 = 0.39 ± 0.08, V1bR) that was inhibited by untagged V1b or CRHR1 receptors, suggesting homo- and heterodimerization. The BRET data were confirmed by coimmunoprecipitation experiments using fully bioactive receptors tagged at the aminoterminus with c-myc and Flag epitopes, demonstrating specific homodimerization of the V1b receptor and heterodimerization of the V1b receptor with CRHR1 receptors. 3. Heterodimerization between V1bR and CRHR1 is not ligand dependent since stimulation with CRH and AVP had no effect on coimmunoprecipitation. In membranes obtained from cells cotransfected with CRHR1 and V1bR, incubation with the heterologous nonpeptide antagonist did not alter the binding affinity or capacity of the receptor. 4. The data demonstrate that V1bR and CRHR1 can form constitutive homo- and heterodimers and suggests that the heterodimerization does not influence the binding properties of these receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号