首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
WOKW rats develop a complete metabolic syndrome closely resembling human disease. Since genetic studies using male (WOKW x DA)F2 progeny showed that several independent genetic factors were involved, a polygenic basis for the syndrome in WOKW was assumed. However, because the metabolic syndrome in human clearly demonstrates sex differences, we have extended our study to include both male and female (WOKW x DA)F2 progeny in a genome-wide scan. Male- or female-specific quantitative trait loci (QTLs) were mapped for body weight, body mass index, adiposity index and serum insulin on chromosomes 1 and 5, serum triglycerides on chromosomes 4, 7, 11, and 16, serum total and high density lipoprotein cholesterol on chromosomes 3, 4, 5, 10, and 17, and serum leptin on chromosomes 8 and 16 as well as blood glucose and glucose tolerance (AUC) on chromosomes 3, 4 and 17. QTLs for both, males and females were only found for body weight on chromosome 1 and for serum total cholesterol on chromosome 3 and 10. These findings clearly demonstrate that there are sex-specific and sex-independent QTLs for facets of the metabolic syndrome in WOKW rats.  相似文献   

2.
To identify genetic determinants relevant to non-insulin-dependent diabetes mellitus (NIDDM), we performed a genome-wide analysis for quantitative trait loci (QTLs) using 359 backcross progeny of the Otsuka Long-Evans Tokushima Fatty (OLETF) rat. The OLETF strain is a well-studied animal model of obese NIDDM, with features of hyperinsulinemia, hyperglycemia, insulin resistance, and abundant abdominal fat. Our extensive genomic scanning with 218 markers revealed nine significant QTLs, including a strong determinant of obesity on chromosome 1 (Dmo1: LOD = 13.99, for body weight). Two highly significant QTLs for glucose homeostasis were found, one on chromosome 1 (Dmo4 LOD = 7.16, for postprandial glucose level) and the other on chromosome X (Dmo11/Odb1: LOD = 7.81, for postprandial glucose level). These data are comparable to results of our previous studies of the OLETF rat.  相似文献   

3.
To identify genetic determinants relevant to non-insulin-dependent diabetes mellitus (NIDDM), we performed a genome-wide analysis for quantitative trait loci (QTLs) using 359 backcross progeny of the Otsuka Long-Evans Tokushima Fatty (OLETF) rat. The OLETF strain is a well-studied animal model of obese NIDDM, with features of hyperinsulinemia, hyperglycemia, insulin resistance, and abundant abdominal fat. Our extensive genomic scanning with 218 markers revealed nine significant QTLs, including a strong determinant of obesity on chromosome 1 (Dmo1: LOD = 13.99, for body weight). Two highly significant QTLs for glucose homeostasis were found, one on chromosome 1 (Dmo4 LOD = 7.16, for postprandial glucose level) and the other on chromosome X (Dmo11/Odb1: LOD = 7.81, for postprandial glucose level). These data are comparable to results of our previous studies of the OLETF rat.  相似文献   

4.
Summary The frequency of chemical diabetes is increased in patients with aneuploid sex chromosome aberrations such as Klinefelter's syndrome and Turner's syndrome, and a high frequency of chemical diabetes has been found in parents of patients with Down's syndrome. Abnormal pattern in plasma insulin and growth hormone during a glucose load has been found in patients with Klinefelter's syndrome and Turner's syndrome.These findings might, if they are confirmed on large and well selected groups of patients with different chromosome abnormalities, shed some new light on the genetic background of diabetes mellitus, i.e. on the role of the sex chromosomes in the aetiology of diabetes mellitus or alternatively on the possibility that the frequency of non-disjunction in increased in patients with diabetes mellitus.  相似文献   

5.
Two newly established congenic diabetes-prone BB rat strains designated BB.Sa and BB.Xs carrying a region of chromosome 1 (Sa-Lsn-Secr-Igf2-Tnt, 16 cM) and a region of chromosome X (DXMgh3-Mycs/Pfkb1-Ar, 36 cM) of the SHR rats, respectively, were studied to determine whether the transferred chromosomal regions influence diabetes frequency, age at onset, and clinical picture. Therefore, 4 complete litters of BB/OK (n = 43), BB.Sa (n = 45), and BB.Xs (n = 41) were observed for diabetes occurrence up to the age of 30 weeks. From these litters 6 diabetic males of each strain manifesting in an interval of 1 week were chosen to study body weight, blood glucose, insulin requirement to survive, and several diabetes-related serum constituents at onset of diabetes and after a diabetes duration of 150 days. The diabetes frequency was significantly lower in BB.Xs than in rats of the parental strain BB/OK, whereas comparable frequencies were found between BB/OK and BB.Sa rats. Obvious differences were observed 150 days after diabetes onset between BB/OK and both BB.Sa and BB.Xs rats. BB/OK rats were significantly heavier and needed significantly more insulin/100 g body weight than BB.Sa and BB.Xs rats. Comparisons of the serum constituents as lipids, proteins, and minerals revealed significant differences between diabetic BB/OK rats and their diabetic congenic derivatives in several traits studied at onset and after 150 days of insulin treatment. These results not only show the power of congenic lines in diabetes research, but indicate for the first time that there are genetic factors on chromosomes 1 and X influencing frequency and severity of diabetes in the BB/OK rat.  相似文献   

6.
To study genetic loci influencing obesity in nuclear families with type 2 diabetes, we performed a genome‐wide screen with 325 microsatellite markers that had an average spacing of 11 cM and a mean heterozygosity of ~75% covering all 22 autosomes. Genotype data were obtained from 562 individuals from 178 families from the Breda Study Cohort. These families were determined to have at least two members with type 2 diabetes. As a measure of obesity, the BMI of each diabetes patient was determined. The genotypes were analyzed using variance components (VCs) analysis implemented in GENEHUNTER 2 to determine quantitative trait loci influencing BMI. The VC analysis revealed two genomic regions showing VC logarithm of odds (LOD) scores ≥1.0 on chromosome 1 and chromosome 11. The regions of interest on both chromosomes were further investigated by fine‐mapping with additional markers, resulting in a VC LOD score of 1.5 on chromosome 1q and a VC LOD of 2.4 on chromosome 11q. The locus on chromosome 1 has been implicated previously in diabetes. The locus on chromosome 11 has been implicated previously in diabetes and obesity. Our study to determine linkage for BMI confirms the presence of quantitative trait loci influencing obesity in subjects with type 2 diabetes on chromosomes 1q31‐q42 and 11q14‐q24.  相似文献   

7.
OBJECTIVES: Obesity, type II diabetes, hypertension, and dyslipidemia are major causes of morbidity and mortality throughout the world. Though these disorders often cluster in individuals and families and are collectively known as syndrome X, the basis for this aggregation is not well understood. To further understand the pathogenesis of syndrome X, a comprehensive epidemiological study was undertaken on the Pacific Island of Kosrae, Federated States of Micronesia (FSM). METHODS: The entire adult (>20 years of age) population of Kosrae underwent a clinical evaluation that included a questionnaire that noted the participants' sex, family data including listing of biological parents, siblings, and children, smoking status, village of residence, age and health status. The medical evaluation included: anthropometric measures (weight, height, waist, hip), serum chemistries (leptin, fasting blood sugar (FBS), insulin, total cholesterol (TC), triglycerides (TG), and apolipoproteins B and A-I (apo B and apo A-I) and blood pressure (BP) measurements. RESULTS: Obesity (BMI >/=35) was found in 24%, diabetes (FBS >/=126 or 2-hour oral glucose tolerance test >/=200) in 12%, hypertension (SBP >/=140 or DBP >/=90) in 17%, and dyslipidemia (TC >/=240 or TG >/=200 or apo B >/=120 or apo A-I 相似文献   

8.
Metabolic abnormalities of the insulin resistance syndrome (IRS) have been shown to aggregate in families and to exhibit trait-pair correlations, suggesting a common genetic component. A broad region on chromosome 7q has been implicated in several studies to contain loci that cosegregate with IRS-related traits. However, it is not clear whether such loci have any common genetic (pleiotropic) influences on the correlated traits. Also, it is not clear whether the chromosomal regions contain more than one locus influencing the IRS-related phenotypes. In this study we present evidence for linkage of five IRS-related traits [body mass index (BMI), waist circumference (WC), In split proinsulin (LSPI), In triglycerides (LTG), and high-density lipoprotein cholesterol (HDLC)] to a region at 7q11.23. Subsequently, to gain further insight into the genetic component(s) mapping to this region, we explored whether linkage of these traits is due to pleiotropic effects using a bivariate linkage analytical technique, which has been shown to localize susceptibility regions with precision. Four hundred forty individuals from 27 Mexican American families living in Texas were genotyped for 19 highly polymorphic markers on chromosome 7. Multipoint variance component linkage analysis was used to identify genetic location(s) influencing IRS-related traits of obesity (BMI and WC), dyslipidemia (LTG and HDLC), and insulin levels (LSPI); the analysis identified a broad chromosomal region spanning approximately 24 cM. To gain more precision in localization, we used a bivariate linkage approach for each trait pair. These analyses suggest localization of most of these bivariate traits to an approximately 6-cM region near marker D7S653 [7q11.23, 103-109 cM; a maximum bivariate LOD of 4.51 was found for the trait pair HDLC and LSPI (the LODeq score is 3.94)]. We observed evidence of pleiotropic effects in this region on obesity and insulin-related trait pairs.  相似文献   

9.

Introduction

Several anthropometric measurements have been associated with cardiovascular disease, type-2 diabetes mellitus and other cardiovascular risk conditions, such as hypertension or metabolic syndrome. Waist-to-height-ratio has been proposed as a useful tool for assessing abdominal obesity, correcting other measurements for the height of the individual. We compared the ability of several anthropometric measurements to predict the presence of type-2 diabetes, hyperglycemia, hypertension, atherogenic dyslipidemia or metabolic syndrome.

Materials and Methods

In our cross-sectional analyses we included 7447 Spanish individuals at high cardiovascular risk, men aged 55–80 years and women aged 60–80 years, from the PREDIMED study. Logistic regression models were fitted to evaluate the odds ratio of presenting each cardiovascular risk factor according to various anthropometric measures. The areas under the receiver-operating characteristic curve (AUC) were used to compare the predictive ability of these measurements.

Results

In this relatively homogeneous cohort with 48.6% of type-2 diabetic individuals, the great majority of the studied anthropometric parameters were significantly and positively associated with the cardiovascular risk factors. No association was found between BMI and body weight and diabetes mellitus. The AUCs for the waist-to-height ratio and waist circumference were significantly higher than the AUCs for BMI or weight for type-2 diabetes, hyperglycemia, atherogenic dyslipidemia and metabolic syndrome. Conversely, BMI was the strongest predictor of hypertension.

Conclusions

We concluded that measures of abdominal obesity showed higher discriminative ability for diabetes mellitus, high fasting plasma glucose, atherogenic dyslipidemia and metabolic syndrome than BMI or weight in a large cohort of elderly Mediterranean individuals at high cardiovascular risk. No significant differences were found between the predictive abilities of waist-to-height ratio and waist circumference on the metabolic disease.  相似文献   

10.
C D Berdanier 《FASEB journal》1991,5(8):2139-2144
Most rodents that spontaneously develop non-insulin-dependent diabetes mellitus are obese. The exception is the BHE rat. This rat develops abnormal glucose tolerance by 300 days of age, is lipemic, has a fatty liver, and yet is not obese. The strain has existed for at least 40 years and almost 100 research papers have been published describing its metabolic characteristics and responses to diet manipulation. A subline that has a higher percentage of diabetic animals has been produced. These animals may be useful in the study of mild diabetes that exists in the absence of obesity. Berdanier, C.D. The BHE rat: an animal model for the study of non-insulin-dependent diabetes mellitus.  相似文献   

11.
R. Roehe  G.S. Plastow  P.W. Knap 《HOMO》2003,54(2):119-131
After 30 years of selection, breeding of the pig breed sus scrofa Piétrain has resulted in reduced backfat thickness (from 3.2 to 1.9 mm) and increased loin muscle area (40 to 60 cm2) which indicates high genetic determination of these body composition traits. The use of sophisticated quantitative genetic methods that include all genetic relationships of large populations has led to a high response to selection of these traits. Selection on feed intake, lean and fat tissue growth using nonlinear functions to optimise these traits during the entire growth period in a biological model offers the opportunity to further improve total genetic potential. Protein and lipid deposition rates during the entire growth period have to be known for this biological model to be applied; thus knowledge of the genetic background of these traits is of high economic value. With the use of molecular genetic methods, such as candidate gene and genome scan approaches, the identification of genes for obesity and growth can be obtained. In sus scrofa, candidate genes associated with obesity and growth include Leptin Receptor, Melanocortin-4 Receptor, Agouti related protein, Heart fatty acid binding protein 3, and Insulin-like growth factor 2. Some of these candidate genes also explain variation in obesity levels in humans. Initial genome-wide scans have identified quantitative trait loci (QTL) on chromosomes 1, 4, 5, 7 and X for obesity and on chromosomes 1, 4, 7, 8, 13 and 18 for growth. Physiological candidate genes and predispositional QTL for obesity are not always located on the same chromosome; this is known the "polygenic paradox". Use of a nonlinear growth function is recommended in order to give more insight into the physiological regulation of obesity traits. Sus scrofa is an excellent model organism to examine the genetic regulation of obesity. The conservation of DNA sequence and chromosomal segments between sus scrofa and homo sapiens will permit easy transfer of results to human studies.  相似文献   

12.
Despite recent advances in the molecular genetics of type 2 diabetes, the majority of susceptibility genes in humans remain to be identified. We therefore conducted a 10-cM genomewide search (401 microsatellite markers) for type 2 diabetes-related traits in 637 members of 143 French pedigrees ascertained through multiple diabetic siblings, to map such genes in the white population. Nonparametric two-point and multipoint linkage analyzes-using the MAPMAKER-SIBS (MLS) and MAXIMUM-BINOMIAL-LIKELIHOOD (MLB) programs for autosomal markers and the ASPEX program for chromosome X markers-were performed with six diabetic phenotypes: diabetes and diabetes or glucose intolerance (GI), as well as with each of the two phenotypes associated with normal body weight (body-mass index<27 kg/m(2)) or early age at diagnosis (<45 years). In a second step, high-resolution genetic mapping ( approximately 2 cM) was performed in regions on chromosomes 1 and 3 loci showing the strongest linkage to diabetic traits. We found evidence for linkage with diabetes or GI diagnosed at age <45 years in 92 affected sib pairs from 55 families at the D3S1580 locus on chromosome 3q27-qter using MAPMAKER-SIBS (MLS = 4.67, P=.000004), supported by the MLB statistic (MLB-LOD=3.43, P=.00003). We also found suggestive linkage between the lean diabetic status and markers APOA2-D1S484 (MLS = 3. 04, P=.00018; MLB-LOD=2.99, P=.00010) on chromosome 1q21-q24. Several other chromosomal regions showed indication of linkage with diabetic traits, including markers on chromosome 2p21-p16, 10q26, 20p, and 20q. These results (a) showed evidence for a novel susceptibility locus for type 2 diabetes in French whites on chromosome 3q27-qter and (b) confirmed the previously reported diabetes-susceptibility locus on chromosome 1q21-q24. Saturation on both chromosomes narrowed the regions of interest down to an interval of <7 cM.  相似文献   

13.
The spontaneously diabetic BB rat is a well-established animal model in diabetes research developing an insulin-dependent type-1 diabetes mellitus closely resembling human diabetes. By several crossing studies using BB/OK rats it has been demonstrated that beside the MHC class-II genes of the RT1u haplotype, Iddm1, and the lymphopenia, Iddm2, at least two additional non-MHC genes located on chromosomes 6 (Iddm4) and 18 (Iddm3) are involved in diabetes development. In addition, there are at least three genes located on chromosomes 6 (Dm1), 8 (Dm2) and 10 (Dm3) influencing the age at onset of diabetes. Comparing the homologous regions between rat and human, it is shown that most diabetogenic genes lie on human chromosomes near genes involved in immune processes providing human geneticist with new candidate regions for the analysis of diabetogenic non-MHC genes in human type-1 diabetes.  相似文献   

14.
In recent years, the prevalence of obesity, metabolic syndrome and type 2 diabetes is increasing dramatically. They share pathophysiological mechanisms and often lead to cardiovascular diseases. The ZDSD rat was suggested as a new animal model to study diabetes and the metabolic syndrome. In the current study, we have further characterized metabolic and hepatic gene expression changes in ZDSD rats. Immuno-histochemical staining of insulin and glucagon on pancreas sections of ZDSD and control SD rats revealed that ZDSD rats have severe damage to their islet structures as early as 15 weeks of age. Animals were followed till they were 26 weeks old, where they exhibited obesity, hypertension, hyperglycemia, dyslipidemia, insulin resistance and diabetes. We found that gene expressions involved in glucose metabolism, lipid metabolism and amino acid metabolism were changed significantly in ZDSD rats. Elevated levels of ER stress markers correlated with the dysregulation of hepatic lipid metabolism in ZDSD rats. Key proteins participating in unfolded protein response pathways were also upregulated and likely contribute to the pathogenesis of dyslipidemia and insulin resistance. Based on its intact leptin system, its insulin deficiency, as well as its timeline of disease development without diet manipulation, this insulin resistant, dyslipidemic, hypertensive, and diabetic rat represents an additional, unique polygenic animal model that could be very useful to study human diabetes.  相似文献   

15.
The Spontaneously Diabetic Torii (SDT) rat has recently been established as a new rat model of nonobese type 2 diabetes. In this study, we characterized diabetic features in SDT rats, and performed quantitative trait locus (QTL) analysis for glucose intolerance using 319 male (BNxSDT)xSDT backcrosses. Male SDT rats exhibited glucose intolerance at 20 weeks, and spontaneously developed diabetes with the incidence of 100% at 38 weeks, and glucose intolerance is well associated with the development of diabetes. The QTL analysis identified three highly significant QTLs (Gisdt1, Gisdt2, and Gisdt3) for glucose intolerance on rat chromosomes 1, 2, and X, respectively. The SDT allele for these QTLs significantly exacerbated glucose intolerance. Furthermore, synergistic interactions among these QTLs were detected. These findings indicate that diabetic features in SDT rats are inherited as polygenic traits and that SDT rats would provide insights into genetics of human type 2 diabetes.  相似文献   

16.
Altered lipid metabolism is closely associated with diabetes in humans, although predisposing genetic factors that affect hyperlipidemia have not yet been clarified. Our previously established OLETF strain is an obese rat model of type II diabetes, exhibiting hypertriglycemia as well as hyperinsulinemia, hyperglycemia, insulin resistance, and abundant abdominal fat. To identify genetic factors responsible for dyslipidemic phenotypes in OLETF rats, we performed a whole-genome scan using 293 male (OLETF x BN) x OLETF backcross rats. Our analysis identified two significant quantitative trait loci (QTLs), on rat chromosomes 1 and 8, that are related to fasting triglyceride levels. The chromosome 1 QTL colocalized with Dmo1 (diabetes mellitus, OLETF type 1), a locus previously shown to associate strongly with both fat levels and body weight. The other significant QTL localizes to the chromosome 8 marker D8Mit2, in a region where several apo-lipoprotein genes are clustered.  相似文献   

17.
Diabetes mellitus is a serious health problem in both dogs and humans. Certain dog breeds show high prevalence of the disease, whereas other breeds are at low risk. Fructosamine and glycated haemoglobin (HbA1c) are two major biomarkers of glycaemia, where serum concentrations reflect glucose turnover over the past few weeks to months. In this study, we searched for genetic factors influencing variation in serum fructosamine concentration in healthy dogs using data from nine dog breeds. Considering all breeds together, we did not find any genome-wide significant associations to fructosamine serum concentration. However, by performing breed-specific analyses we revealed an association on chromosome 3 (pcorrected ≈ 1:68 × 10-6) in Belgian shepherd dogs of the Malinois subtype. The associated region and its close neighbourhood harbours interesting candidate genes such as LETM1 and GAPDH that are important in glucose metabolism and have previously been implicated in the aetiology of diabetes mellitus. To further explore the genetics of this breed specificity, we screened the genome for reduced heterozygosity stretches private to the Belgian shepherd breed. This revealed a region with reduced heterozygosity that shows a statistically significant interaction (p = 0.025) with the association region on chromosome 3. This region also harbours some interesting candidate genes and regulatory regions but the exact mechanisms underlying the interaction are still unknown. Nevertheless, this finding provides a plausible explanation for breed-specific genetic effects for complex traits in dogs. Shepherd breeds are at low risk of developing diabetes mellitus. The findings in Belgian shepherds could be connected to a protective mechanism against the disease. Further insight into the regulation of glucose metabolism could improve diagnostic and therapeutic methods for diabetes mellitus.  相似文献   

18.
Turner's syndrome is defined as a congenital disease determining by quantitative and/or structural aberrations of one from two X chromosomes with frequent presence of mosaicism. Clinically it is characterized by growth and body proportion abnormalities, gonadal dysgenesis resulting in sexual infantilism, primary amenorrhoea, infertility, characteristic stigmata, anomalies of heart, renal and bones and the presence of some diseases like Hashimoto thyroiditis with hypothyroidism, diabetes mellitus type 2, osteoporosis, hypertension. Turner's syndrome occurs in 1:2000 to 1:2500 female livebirth. The most frequent X chromosome aberrations in patients with phenotype of Turner syndrome are as follows: X monosomy - 45,X; mosaicism (50-75%), including 45,X/46,XX (10-15%), 45,X/46,XY (2-6%), 45,X/46,X,i(Xq), 45,X/46,X,del(Xp), 45,X/46,XX/47,XXX; aberration of X structure: total or partial deletion of short arm of X chromosome (46,X,del(Xp)) isochromosom of long arm of X chromosome (46,X,(i(Xq)), ring chromosome (46, X,r(X)), marker chromosome (46,X+m). Searching of X chromosome and mapping and sequencing of genes located at this chromosome (such as SHOX, ODG2, VSPA, SOX 3) have made possible to look for linkage between phenotypes and adequate genes or regions of X chromosome. In this paper current data concerning correlation between phenotype and karyotype in patients with TS have been presented.  相似文献   

19.
WOKW (Wistar Ottawa Karlsburg W) rats develop metabolic syndrome closely resembling human disorder. In crossing studies between disease‐prone WOKW and disease‐resistant DA (Dark Agouti) rats, several quantitative trait loci (QTLs) were mapped. To prove the in vivo relevance of QTLs, congenic DA.WOKW rats, briefly termed DA.3aW, DA.3bW, DA.5W, DA.10W, and DA.16W, were generated by transferring chromosomal regions of WOKW chromosomes 3, 5, 10, and 16 onto DA genetic background. Male (n = 12) and female (n = 12) rats of each congenic strain and their parental strain DA were characterized for adiposity index (AI), serum leptin, and serum insulin as well as serum cholesterol and serum triglycerides as single facets of metabolic syndrome at the age of 30 weeks. The data showed a significant higher AI for male and female DA.3aW and female DA.16W compared with DA. Serum leptin was significantly elevated in male and female DA.3aW, DA.10W, and DA.16W rats in comparison with DA. Rats of both sexes of DA.10W and female DA.16W showed significantly elevated serum insulin in comparison to DA. Female rats of all congenics had significantly higher serum cholesterol compared with DA, while males did not differ. Finally, triglycerides were only elevated in male DA.16W. The results demonstrate an involvement of WOKW chromosomes 3, 5, 10, and 16 in developing facets of the metabolic syndrome.  相似文献   

20.
In an attempt to identify the genetic basis for susceptibility to non-insulin-dependent diabetes mellitus within the context of obesity, we generated 401 genetically obeseLeprfa/LeprfaF2 WKY13M intercross rats that demonstrated wide variation in multiple phenotypic measures related to diabetes, including plasma glucose concentration, percentage of glycosylated hemoglobin, plasma insulin concentration, and pancreatic islet morphology. Using selective genotyping genome scanning approaches, we have identified three quantitative trait loci (QTLs) on Chr. 1 (LOD 7.1 for pancreatic morpholology), Chr. 12 (LOD 5.1 for body mass index and LOD 3.4 for plasma glucose concentration), and Chr. 16 (P< 0.001 for genotype effect on plasma glucose concentration). The obese F2 progeny demonstrated sexual dimorphism for these traits, with increased diabetes susceptibility in the males appearing at approximately 6 weeks of age, as sexual maturation occurred. For each of the QTLs, the linked phenotypes demonstrated sexual dimorphism (more severe affection in males). The QTL on Chr. 1 maps to a region vicinal to that previously linked to adiposity in studies of diabetes susceptibility in the nonobese Goto–Kakizaki rat, which is genetically closely related to the Wistar counterstrain we employed. Several candidate genes, including tubby (tub), multigenic obesity 1 (Mob1), adult obesity and diabetes (Ad), and insulin-like growth factor-2 (Igf2), map to murine regions homologous to the QTL region identified on rat Chr. 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号