首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The widespread Mediterranean Pinus pinea showed exceptionally low genetic diversity and low differentiation between traits in the adult phase. We explored the adaptation potential of seedlings from four main Iberian provenances during their regeneration phase. We assessed the variability of shoot growth, allometry, physiological traits, and phenotypic plasticity to the interactive effect of light and water environments during 8-month moderate water-stress cycle and after one-week heat wave. The effect of shade and drought was mainly orthogonal whatever the provenance. The inland La Mancha provenance showed higher shoot growth and biomass compared to the southern coastal Depresión-del-Guadalquivir provenance. Following the heat wave, La Mancha presented higher net photosynthetic rates, a lower decrease in maximal quantum efficiency of PSII, and a higher accumulated relative height growth, thus, showing an adaptive advantage. The observed differences corroborated the ecological grouping of the provenances along latitudinal and inland–coastal gradients. We confirmed the high adaptive plasticity of Pinus pinea to the unpredictable Mediterranean environment.  相似文献   

2.
We attempted to observe differences in vessel element anatomy, and physiological and morphological traits of leaves in Fagus crenata seedlings originated from seven different provenances grown under the uniform environmental conditions. We also investigated the relationships between the anatomical characteristics of the vessel elements and physiological plus morphological traits of leaves in Fagus crenata seedlings. To carry out the experiments, Fagus crenata samples were prepared from Chichibu Research Forest of Tokyo University. For anatomical studies of the vessel elements, vessel number per mm2, average vessel area, and the percentage of vessel area from the pith to the bark side were measured. We also measured transpiration rate, stomatal conductance, leaf area, leaf thickness, leaf dry mass per unit leaf area and leaf density for foliar studies. The anatomical characteristics of the vessel elements as well as the physiological and morphological traits of leaves were noticeably different among provenances. In addition, we found significant correlations between the foliar characteristics not only with vessel number per mm2, but also with vessel area percentage and sum of the (vessel area)2, theoretical hydraulic conductivity, from the pith to the bark side. Therefore, we concluded that variations in physiological and morphological traits of leaves in response to provenance variation were in correspondence with vessel number per mm2 as a parameter that determines the total vessel area and consequent water hydraulic conductance in Fagus crenata as a diffuse porous hardwood.  相似文献   

3.
Morphological, anatomical, biochemical and physiological traits of sun and shade leaves of adult Quercus ilex, Phillyrea latifolia and Pistacia lentiscus shrub species co-occurring in the Mediterranean maquis at Castelporziano (Latium) were studied. Fully expanded sun leaves had 47% (mean of the three species) greater leaf mass area (LMA) and 31% lower specific leaf area (SLA) than shade leaves. Palisade parenchyma thickness contributed on an average 42% to the total leaf thickness, spongy layer 43%, upper epidermal cells 5%, and upper cuticle thickness 3%. Stomatal size was greater in sun (25.5 μm) than in shade leaves (23.6 μm). Total chlorophyll content per fresh mass was 71% greater in shade than in sun leaves, and nitrogen content was the highest in sun (13.7 mg g−1) than in shade leaves (11.8 mg g−1). Difference of net photosynthetic rates (P N) between sun and shade leaves was 97% (mean of the three species). The plasticity index (sensu Valladares et al., New Phytol 148:79–91, 2000a) was the highest for physiological leaf traits (0.86) than for morphological, anatomical and biochemical ones. Q. ilex had the highest plasticity index of morphological, anatomical and physiological leaf traits (0.37, 0.28 and 0.71, respectively) that might explain its wider ecological distribution. The higher leaf plasticity of Q. ilex might be advantageous in response to varying environmental conditions, including global change.  相似文献   

4.
为辨别环境变化与遗传因素对植物叶片主要功能性状的影响,以同期生长在4种源地母树林下及异地同质园的1.5年生刨花楠苗木为研究对象,对其叶片表型及养分性状进行对比分析。结果显示:(1)刨花楠叶面积、叶厚、叶干物质含量等叶片表型性状受遗传与环境因素共同影响;叶片碳(C)含量受遗传因素调控,环境对其影响较小;叶片氮、磷(N、P)含量主要受环境因素影响;(2)不同种源刨花楠比叶面积、叶厚、叶干物质含量、叶形指数等性状变异系数较大(8.85%—37.03%),其中江西遂川种源变异系数相对较大,而湖南茶陵种源则相对较小,各种源都倾向于通过调节比叶面积、叶厚、叶片氮磷含量等性状以适应生境变化;(3)种源地与同质园刨花楠的比叶面积虽均与叶厚呈显著负相关,但同质园刨花楠比叶面积与叶形指数呈显著正相关,与叶片氮含量无明显相关,而种源地刨花楠比叶面积则与叶形指数无明显相关,与叶片氮含量则呈显著负相关;(4)不同种源苗木叶性状指标在种源地与同质园间存在不同的协调与权衡,体现了植物在不同生境下的适应策略。其中湖南茶陵种源在两种生境下都具有更保守的资源获取策略,而江西安福种源对环境变化则更为敏感,资源获取策略更为灵...  相似文献   

5.
不同种源鹅掌楸苗木叶解剖性状的遗传多样性   总被引:1,自引:0,他引:1  
以5个鹅掌楸种源的1年生苗木成熟叶片为材料,对叶表皮、叶片横切面及主脉横切面的16个解剖性状进行观察和变异性分析。结果表明:鹅掌楸叶解剖性状在种源间及种源内存在极丰富的变异,除下表皮密度在种源间差异不显著外,其余性状在种源间及种源内(包括下表皮密度)均存在极显著差异。种源间的平均表型分化系数为27.5%,说明鹅掌楸叶片结构的主要性状存在于种源内的变异(72.5%)远大于种源间的变异。鹅掌楸叶的解剖性状与地理生态因子的相关分析表明,其种源间的变异呈现梯度规律性,表皮各性状与经度、年均温呈负相关关系,叶片和主脉横切面各性状与经度、纬度大部分呈正相关关系,而与年降水量、年均温大都呈负相关关系。用种源间欧式距离进行UPGMA聚类,可将5个种源的鹅掌楸划分为3个类群。  相似文献   

6.
Responses of Quercus ilex L. seedlings from three different localities in Italy to experimentally imposed drought stress were analysed. Predawn (Ψpd) and midday (Ψm) leaf water potential of stressed seedlings decreased on an average until −4.0 and −4.2 MPa, respectively, in the severe water stress. At the end of the severe water stress the relative water content (RWC) was 72.5 – 83.6 % and the photosynthetic rates (PN) near zero. The critical threshold value of Ψpd for complete stomatal closure was from −4.0 to −4.5 MPa. The leaf damage after the severe water stress was significantly greater in seedlings originated from the acorns of climax area (45 % total leaf injured area and 40 % fallen leaves) than in the other seedlings (on an average 20.5 % total leaf injured area and 21 % fallen leaves). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
An increase in the frequency and intensity of extreme climatic conditions is expected for the Mediterranean area as a response to climate change. As a consequence, the ability of Mediterranean plant species to adapt to complex and stressful environmental conditions plays an important role in driving their future distribution. The adaption of plant species may be expressed by ecotypes already adapted to local climate. Our goal was to analyse the seasonal physiological behaviour of five Quercus ilex ecotypes coming from different Italian geographical areas (from the north to the south) in order to test if ecotypes maintained their physiological traits when grown in the same environmental conditions. Measurements of gas exchange, biochemistry and chlorophyll fluorescence carried out during winter, spring and summer underlined that the response of the considered ecotypes reflected the climate of the original provenances, particularly under suboptimal conditions. The ecotypes from the northernmost and the southernmost limits were the most sensitive to high and low temperatures, respectively. Our results can be used to advance hypotheses about the respone of Q. ilex to climate change.  相似文献   

8.
梭梭种源间苗期性状的遗传变异及相关性分析   总被引:6,自引:2,他引:4  
利用田间种源实验,对分布在中国5个自然分布区的5个种源梭梭〔Haloxylon ammodenaron(C.A.Mey.)Bge.〕苗期的10个生长性状进行了观测分析。结果表明,不同种源梭梭的苗期生长性状差异显著,差异较大的性状有新生枝长度、生物量、主根数量和一级分枝数。5个种源中,内蒙古磴口种源梭梭幼苗的上述性状表现最好,其后依次为甘肃武威、内蒙古乌拉特后旗、内蒙古额济纳旗和青海德令哈。相关分析结果表明,苗期生物量与根部生长性状遗传力的相关程度高于苗期茎部生长性状,表型性状的相关程度高于遗传力。梭梭苗期种源选择的首选因子为苗高、地上部鲜质量和地径性状,辅助因子为一级分枝数、主根数量和同化枝粗度。  相似文献   

9.
Leaf tissue damaging to seedlings can limit their subsequent growth, and the effects may be more extensive. Compensatory photosynthesis responses of the remnant cotyledon and primary leaf of Pharbitis purpurea to clipping and the effect of clipping on seedling growth were evaluated in a pot-cultivated experiment. Three treatments were conducted in the experiment, which were clipped cotyledon (CC), clipped second leaf (CL), and control group (CG). The area, thickness, mass, and longevity of the remaining cotyledon of CC exhibited over-compensatory growth. In contrast, seedlings of CC had under-compensatory growth in seedling height, root length, seedling mass, and root to shoot ratio. However, the traits of remnant cotyledon and seedling in CL treatment exhibited equal-compensatory growth. Net photosynthetic rate of the cotyledon of CC was significantly higher than those of CL and CG treatments, and the diurnal changes in photosynthetic rates showed significantly different patterns which were unimodal curve (CC) and bimodal curve (CL and CG), respectively. There was no significant difference between CL and CG treatment. Net photosynthetic rate of the primary leaf of CL was significantly higher than that of CG treatment. However, the photosynthetic rates of primary leaves of CL and CG treatments showed similar photosynthetic patterns characterized by a bimodal curve. P. purpurea seedlings used a compensatory growth strategy in the remaining cotyledon or the primary leaf to resist leaf loss and minimize any adverse effects.  相似文献   

10.
Lindera melissifolia (Walt.) Blume seedlings were raised in a growth chamber to determine the effects of light availability on shoot growth pattern, and basic leaf and stem growth. Lindera melissifolia seedlings exhibited a sympodial shoot growth pattern for 3 months following emergence from the soil medium, but this pattern was characterized by a reduction in leaf blade area approximately 30 days after emergence, followed by increases in leaf blade area. Seedlings receiving low light were 76% taller than seedlings receiving high light. Seedlings receiving low light also had larger leaf blade dimensions, blade area, seedling leaf area, and greater mass. Seedlings raised in high light had a greater proportional distribution of biomass in the roots, suggesting possible water stress from greater vapor pressure deficits. Furthermore, these seedlings displayed sharp angles of blade inclination and blade folding – acclimation that reduces exposure to light and subsequent higher leaf temperatures in open environments. These differences in morphological response to light resulted in high phenotypic variability in L. melissifolia seedlings. Lindera melissifolia seedling development showed a brief period of phenotypic plasticity, followed by ontogenetic plasticity. The short period of phenotypic plasticity may, however, have profound ecological implications for the conservation and recovery of this federally endangered shrub. Further experimentation should take into account the development of ontogenetic standards for comparisons of plant traits in addition to temporal standards.  相似文献   

11.
In the last decades, several studies have reported the increase of land degradation and desertification in the Mediterranean Basin. Depending on degradation severity, ecological restoration might be needed in order to promote ecosystem recovery. The ecology of the selected species and intra specific variability should be considered in order to improve restoration options, especially facing climate change.The present study tested the hypothesis that seedlings from drier provenances would be better adapted to low water content conditions. Seeds were germinated under controlled temperature after which seedlings were grown in a phytotron under two contrasting watering regimes. Seedling performance was analysed using morphological and physiological parameters.Low water content had a clear negative effect on the seedlings’ aboveground biomass (total dry weight, root collar diameter, leaf dry weight and leaf weight ratio) and a positive effect on belowground biomass (root weight and root:shoot ratio). This response was not unequivocal, since provenances differed in morphological adaptations to low water content. Seedlings from the wettest provenance revealed a higher relative growth rate under high water content but a poor adaptation to limited water availability when compared to the other two provenances. This was observed by the absence of a significant belowground investment in this provenance. Seedlings from the wettest provenance also presented a significant reduction of total leaf area that was not observed in the other two provenances. This can however be hardly considered as a successful adaptation to cope with drought since this provenance produced less sclerophyllous leaves, less belowground biomass and also lower sapwood to leaf area ratio independently from the water content conditions. By contrast, seedlings from the dry provenance with the hottest summer had similar root collar diameter, leaf dry weight and physiological performance under both watering regimes.The observed adaptations to water regimes seem to be related with the climate of the seed source and highlighted the importance of seed provenance in ecological restoration actions using Mediterranean species. This knowledge could improve early establishment success predictions for different plant populations, allowing more reliable and cost-effective management decisions under climate change scenarios.  相似文献   

12.
为了探究不同木荷种源混交林和纯林生产力差异原因,采用盆栽试验,模拟异质和同质性森林土壤环境,并设计木荷单植、双株纯植和与杉木混植3种栽植模式,重点研究了异质养分环境下邻株竞争对3个木荷种源(福建建瓯、江西信丰和浙江龙泉种源)干物质积累及氮磷效率的影响。结果表明:与同质养分环境相比,木荷种源在异质养分环境中具有干物质量大,氮、磷吸收效率高的特点,尤以福建建瓯种源优势最大。邻株竞争对木荷种源的干物质量和氮、磷吸收效率影响显著。在异质养分环境中,与杉木邻株竞争时,木荷福建建瓯种源干物质积累量优于单植和双株纯植模式。这与其根冠比和生理可塑性较强有关,混植时,其根冠比明显降低,将更多的干物质分配至叶片,增强了光合能力;同时氮、磷吸收效率也显著提高,进而积累了较高的干物质量,提高了竞争力。相反,混植时江西信丰和浙江龙泉种源氮和磷吸收效率却不同程度地低于其单植或与之相近,根冠比较高,结果影响了干物质积累。同种邻株竞争虽促进了浙江龙泉和江西信丰种源的氮、磷吸收,但抑制了两元素的利用效率,而福建建瓯种源氮、磷效率受影响较小,且明显高于其他种源,从而形成较高的干物质量。以上研究结果表明,福建建瓯种源较高的生物量分配和生理可塑性是其生产力高和生长竞争优势明显主要原因。  相似文献   

13.
To assess the potential of short-term screenings for drought resistance at the seedling stage to detect ecotypic variation and predict field performance, we studied the responses to water deficit of seedlings of Pinus canariensis from five geographic origins under controlled conditions and compared these responses with the performance of provenances in a multi-site field trial. Leaf water potential, the osmotic component, leaf chlorophyll fluorescence and growth and biomass partitioning were measured as seedlings were subjected for 11 days to two levels of osmotic potential generated by polyethylene glycol (PEG 6000), −1 MPa (slowly imposed water deficit; S) and −1.5 MPa (fast imposed water deficit; F), and a control treatment (no PEG added to the nutrient solution; C). Leaf water potential declined to final mean values of −1.2, −2.7 and −4.7 MPa in the C, S and F treatments, respectively. The ratio of variable to maximum chlorophyll fluorescence declined to final mean values of 0.77, 0.66 and 0.40 in the C, S and F treatments, respectively, with no differences amongst provenances. All provenances showed an active osmotic adjustment (OA) in response to water deficit which varied depending on the drying rate. A slow imposition of water deficit favoured solute accumulation. Pooling all treatments, the index of OA ranged from 0.28 to 0.40, but rose considerably when only C and S treatments were considered (0.56 to 0.70). There was a positive and significant correlation between the overall index of OA (all treatments pooled) and the drought period in the site of origin, suggesting ecotypic variation in OA as a result of drought duration. Seedlings allocated more dry matter to roots than shoots when subjected to moderate and slowly imposed water deficit; only one provenance showed no increase in the root to shoot ratio at the end of the treatment period compared with control seedlings. Responses to controlled water deficits were only qualitatively related to performance (survival and growth) of provenances in several field sites, indicating the involvement of complex mechanisms to cope with drought under natural conditions. However, the provenance with the highest overall index of OA outgrew and outsurvived the other provenances in the most arid site, and the only provenance not modifying the root to shoot ratio in response to water deficit survived the least in all field sites. Acclimation of root to shoot ratio and net solute accumulation to water deficit could hence favour drought-tolerance beyond the seedling stage and be used as preliminary predictors of field performance.  相似文献   

14.
金念情  杨彬  韦小丽  肖龙海  段如雁 《广西植物》2021,41(12):2051-2060
为了解不同种源花榈木在贵阳的生长特性和差异,该文通过对10个种源地花榈木进行育苗试验,测定其两年生实生苗的苗高、地径、生物量、叶片光合参数、光合色素、硝酸还原酶活性、硝态氮含量和根系活力,并进行差异性分析。结果表明:(1)10个种源花榈木净光合速率、气孔导度、胞间CO2浓度、蒸腾速率和水分利用效率差异显著(P<0.05),表明不同种源花榈木光合特性及光能利用效率具有较大差异,浙江杭州和浙江永康花榈木是具有较高光合生长潜力的种源。(2)种源间的叶绿素含量、硝酸还原酶、硝态氮、根系活力存在显著差异,福建建瓯种源的叶绿素a、叶绿素b含量和叶绿素总量最高,能够将光合原初反应过程中积蓄的光能进行高效地传递,促进碳的同化; 贵州花溪种源硝酸还原酶活性最大,硝态氮含量最高,对氮元素的利用能力较强,能够促进植物蛋白质、氨基酸和叶绿素等的合成; 贵州望谟种源根系活力最大,吸收养分的能力强。(3)各种源间苗高、地径和生物量的分配存在显著差异,浙江杭州种源的植株枝叶繁茂、根系发达,生长表现好,安徽黄山种源的植株矮小,生长表现较差; 浙江杭州种源将生物量更多分配在根和叶,提高其根系吸收养分和叶片获取光能的能力,安徽黄山种源总体生物量积累最少,长势最差。(4)通过主成分分析法对各种源的花榈木适应性进行综合评价,结果显示浙江杭州种源>贵州黎平种源>浙江永康种源>贵州望谟种源>福建建瓯种源>贵州凯里种源>贵州石阡种源>贵州花溪种源>贵州平塘种源>安徽黄山种源。综上结果表明,浙江杭州、贵州黎平和浙江永康种源花榈木对贵阳地区立地环境具有较强的适应能力和生长潜力。  相似文献   

15.
不同地理种源紫茎泽兰的生态适应性比较   总被引:2,自引:0,他引:2  
采用交互移植法,对移栽在6种不同生境中的5个不同种源紫茎泽兰幼苗的存活率、株高、分枝数、生物量、单株花序数、产种量和种子萌发率进行了为期1年的对比研究.结果表明:各种源紫茎泽兰的幼苗生长和繁殖特性对样地环境条件变化均表现出很强的可塑性.试验样地因素对幼苗株高、分枝数、生物量、单株花序数和产种量的影响均达到极显著水平(P<0.001).随着样地纬度和海拔的升高,各种源的幼苗株高、分枝数量、单株生物量、每株花序数量和单株产种量均呈下降趋势,且各样地间的差异均达到显著水平(P<0.05).但种源因素对幼苗株高、分枝数、生物量、单株花序数和产种量的影响均不显著(P>0.05).除单株产种量外,种源与试验样地的交互作用对上述各指标的影响均不显著.在各样地内,当地种源幼苗的存活率、生长能力和繁殖能力均未表现出显著的优势.说明紫茎泽兰在我国西南地区入侵成功主要依靠其较高的表型可塑性,而局域适应的作用相对较小.  相似文献   

16.
刘舒  马正兵  于晓丽  何易 《广西植物》2023,43(10):1932-1940
为解析桃金娘表型性状多样性及其种源间关系,该文以20个不同来源的桃金娘为研究对象,在同质园栽培条件下,对其营养器官和花器官表型性状进行观测,采用方差分析、变异分析、Shannon-Wiener多样性指数分析和聚类分析等方法,探讨不同种源桃金娘表型性状多样性。结果表明:(1)不同种源桃金娘表型性状存在显著差异(P<0.05),Shannon-Wiener多样性指数均值在1.35以上,表型性状多样性丰富。(2)种源内表型性状变异系数均值在10.81%~63.75%之间,种源间的变异系数均值在13.08%~74.04%之间,种源间变异(23.33%)高于种源内变异(19.79%),营养器官变异(29.52%)高于花器官变异(14.06%)。(3)部分性状存在极显著或显著相关性,株高与分枝数呈极显著负相关,而与叶长、叶宽和叶面积等却呈显著正相关。(4)在欧式距离10处,20个种源桃金娘可分为A、B、C三类,A类包含8个种源,该类种源表现为植株高大、分枝少、叶大和花大等特征;B类包含11个种源,该类种源表现为株高中等、叶较大和花中等等特征;C类仅包含1个种源,表现为植株低矮、分枝多、叶小和...  相似文献   

17.
以越南收集的12个灰木莲(Manglietia conifera Dandy)种源为材料,对叶片形态性状(叶长、叶宽、叶面积、叶周长、长宽比、叶柄)以及微形态特征(气孔器密度、气孔器长、气孔器宽、气孔器面积、长宽比)进行测定,采用方差分析、变异系数、相关分析和主成分分析等方法进行分析。结果表明:灰木莲不同种源间的叶表型性状存在显著差异;种源中,LC2的叶形态性状的平均变异系数最大(22.09%),TQ2的变异系数最小(12.76%);叶表型性状中,叶面积的变异系数最大(28.60%),气孔器宽的变异系数最小(5.19%);相关性分析结果表明叶表型性状间存在显著或极显著的相关关系,而地理因素中经度与叶周长显著相关,经纬度与叶长宽比呈显著相关,海拔与叶表型性状间的相关性不显著(P<0.05);主成分分析表明前3个主成分的累计贡献率达到了89.29%,基本代表原始性状的全部信息。灰木莲12个种源经聚类分析在欧式距离5阈值处可分为4类。灰木莲种源间的叶表型性状存在着丰富的变异,纬度对灰木莲叶形态特征有明显影响,灰木莲种源间和性状间的变异程度存在着差异,本研究为灰木莲遗传改良提供理论依据。  相似文献   

18.
This study examined the photosynthetic and growth performances of potted plants of Cistus albidus L. and Quercus ilex L. submitted either to natural Mediterranean winter conditions or to mild greenhouse conditions. Plants grown outdoors exhibited lower light and CO2-saturated CO2 assimilation rates (Asat) and apparent quantum yield (i) than those indoors. Until mid-winter, C. albidus had higher Asat than Q. ilex, but differences disappeared after a period of severe cold. Maximal photochemical efficiency of PSII (Fv/Fm) measured predawn was higher in C. albidus than in Q. ilex, and decreased throughout the season in outdoor plants. Fv/Fm also decreased at light saturation (Asat) in both species. Fv/Fm was correlated with photosynthetic capacity and efficiency (quantum yield), but the resulting regression slopes were different between the two species. At the physiological level, C. albidus seemed to cope better with cold stress than Q. ilex. However, winter stress induced reduction of leaf absorptance, increased leaf mass per area, extensive leaf damage and high plant mortality in C. albidus. This suggests that the high performance of C. albidus leaves is not likely to be maintained for long periods of cold stress, and may therefore depend on continuous leaf replacement. Quercus ilex showed a conservative behaviour, with low net assimilation rates but greater leaf and plant survival than C. albidus.  相似文献   

19.
Global warming will likely exacerbate the negative effects of limited water availability in the Mediterranean area. The Italian Aleppo pine (Pinus halepensis Mill.) provenances are distributed along the coasts except Otricoli provenance growing in an unusual location between 300 and 1,000 m a. s. l., in Umbria (central Italy). The aim of the present study was to investigate the photosynthetic response to a 28-day-long drought and to a subsequent reestablishment of water availability in Otricoli and North Euboea (Greece) provenances, representing different locations along a rainfall gradient in the natural range of this species. Six-month-old seedlings were used in this experiment since at this age Aleppo pine plants in Mediterranean climate face their first water stress potentially affecting plant survival. Water potential (ψw), net photosynthesis and stomatal conductance decreased during drought in both provenances and showed minimal values 28 days after beginning the treatment (DAT). Otricoli seedlings adjusted ψw gradually as the stress level increased and 21 DAT showed a lower ψw than North Euboea. In contrast, in North Euboea seedlings ψw that was not affected until 21 DAT rapidly dropped to a minimum of −3.81 MPa 28 DAT. At the onset of the stress the intercellular CO2 concentration (C i) was reduced, and the “instrinsic” water-use efficiency (WUEi) was enhanced in both provenances, as stomatal conductance decreased more rapidly than photosynthesis. However, 28 DAT, C i increased and WUEi decreased as stomatal conductance and photosynthesis declined to minimum levels, revealing nonstomatal limitations of photosynthesis. A rapid decrease in PSII maximal photochemical efficiency estimated by chlorophyll (Chl) fluorescence (Fv/Fm) was also observed when the stress became severe. At the final stage of water stress, North Euboea seedlings maintained significantly higher values of Fv/Fm than Otricoli seedlings. Upon rewatering, photosynthesis did not fully recover in Otricoli seedlings (41 DAT), while all other parameters recovered to control levels in both provenances. No drought-induced physiological differences were consistent with the regional climatic features of these two provenances. Our results suggest that phenotypic plasticity in drought response may help Otricoli provenance cope with global warming, but that recurrent drought episode may slow down the primary productivity of this provenance.  相似文献   

20.
Leaf morphology, longevity, and demography were examined in Quercus ilex and Phillyrea latifolia growing in a holm oak forest in Prades mountains (northeast Spain). Four plots (10 × 15 m) of this forest were submitted to an experimental drought during three years (soil moisture was reduced about 15 %). Leaf area, thickness and leaf mass per area ratio (LMA) were measured in sun and shade leaves of both species. Leaf longevity, the mean number of current-year shoots produced per previous-year shoot (Sn/Sn-1), the mean number of current-year leaves per previous-year shoot (Ln/Sn-1), and the percentage of previous-year shoots that developed new ones were measured once a year, just after leaf flushing. LMA and leaf thickness increased since leaf unfolding except in summer periods, when stomatal closure imposed low photosynthetic rates and leaves consumed their reserves. LMA, leaf area, and leaf thickness were higher in Q. ilex than in P. latifolia, but leaf density was higher in the latter species. Drought reduced the leaf thickness and the LMA of both species ca. 2.5 %. Drought also increased leaf shedding up to ca. 20 % in Phillyrea latifolia and decreased it up to ca. 20 % in Q. ilex. In the later species, Sn/Sn-1 decreased by 32 %, Ln/Sn-1 by 41 %, percentage of shoots developed new ones by 26 %, and leaf area by 17 %. Thus the decrease of leaf number and area was stronger in the less drought-resistant Q. ilex, which, under increasingly drier conditions, might lose its current competitive advantage in these Mediterranean holm oak forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号