首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decorin is a member of the widely expressed family of small leucine-rich proteoglycans. In addition to a primary role as a modulator of extracellular matrix protein fibrillogenesis, decorin can inhibit the cellular response to growth factors. Decorin expression is induced in endothelial cells during angiogenesis, but not when migration and proliferation are stimulated. Thus, decorin may support the formation of the fibrillar pericellular matrix that stabilizes the differentiated endothelial phenotype during the later stages of angiogenesis. Therefore, we tested whether constitutive decorin expression alone could modify endothelial cell migration and proliferation or affect pericellular matrix formation. To this end, replication-defective retroviral vectors were used to stably express bovine decorin, which was detected by Northern and Western blotting. The migration of endothelial cells that express decorin is significantly inhibited in both monolayer outgrowth and microchemotaxis chamber assays. The inhibition of cell migration by decorin was not accompanied by decreased proliferation. In addition, endothelial cells that express decorin assemble an extensive fibrillar fibronectin matrix more rapidly than control cells as assessed by immunocytochemical and fibronectin fibrillogenesis assays. These observations suggest that cell migration may be modulated by the influence of decorin on the assembly of the cell-associated extracellular matrix.  相似文献   

2.
We studied the extracellular localization of factor VIII-related antigen (VIIIR: Ag) in cultures of human endothelial cells. The cells deposited both VIIIR: Ag and fibronectin already during their initial adhesion phase and in immunofluorescence microscopy of spread cells extracellular VIIIR: Ag was localized to fibrils coaligning with pericellular fibronectin. When human fibroblasts, which do not synthesize VIIIR: Ag, were cultured in endothelial cell post-culture medium, a fibrillar matrix localization of VIIIR: Ag was seen, comparable to that of endothelial cell cultures. A fibrillar VIIIR: Ag-specific staining was also seen in cell-free pericellular matrices of endothelial cells, produced by deoxycholate treatment. In immunoelectron microscopy, VIIIR: Ag was seen in fibrillar extracellular material between and underneath the cells and in cell-free matrices of endothelial cells as well.In immunofluorescence microscopy of cell-free matrices, VIIIR: Ag codistributed with both fibronectin and type III procollagen. Digestion of the matrices with purified bacterial collagenase abolished the type III procollagen-specific fluorescence, whereas the fibrillar VIIIR: Ag-specific staining, codistributing with fibronectin, remained unaffected. In electrophoresis of isolated, metabolically labelled endothelial cell matrices, major polypeptides with Mr 220–240; 180; 160; 80 and 45 kD and some minor polypeptides were resolved. In addition, immunoblotting revealed fibronectin, VIIIR: Ag and type III procollagen as components of cell-free matrices of endothelial cells. Direct overlay of iodinated cellular fibronectin on electrophoretically separated polypeptides of cultured endothelial cells, transferred to nitrocellulose, suggested that fibronectin binds directly to VIIIR: Ag. Our results indicate that VIIIR: Ag produced by human endothelial cells is a component of the pericellular matrix and is not bound to collagen but may directly associate with fibronectin.  相似文献   

3.
Yan M  Cheng C  Jiang J  Liu Y  Gao Y  Guo Z  Liu H  Shen A 《Neurochemical research》2009,34(5):1002-1010
Integrin-mediated substrate adhesion of endothelial cells leads to dynamic rearrangement of the actin cytoskeleton. Protein kinase C (PKC) stimulates reorganization of microfilaments and adhesion, while the responses of Schwann cells during adhesion and migration are unknown, so we examined the expression changes of SSeCKS and F-actin in Schwann cells after exposure to fibronectin. Src (sarcoma) suppressed C kinase substrate (SSeCKS) is a PKC substrate that may play an important role in regulating actin cytoskeleton. We found that SSeCKS was localized to focal adhesion sites soon after Schwann cells adhesion and that SSeCKS increased during the process of cell spreading. Using small interfering RNAs specific to SSeCKS, we showed that Schwann cells in which SSeCKS expression was inhibited reduced cellular adhesion, spreading and promoted cellular migration on fibronectin through reorganization of actin stress fibers and blocking formation of focal adhesions. These results demonstrated SSeCKS modulate Schwann cells adhesion, spreading and migration by reorganization of the actin cytoskeleton.  相似文献   

4.
陈祥  赵明  周华山  胡火珍 《四川动物》2012,31(3):464-467
对常用的阿糖胞苷处理及差速贴壁法进行大鼠雪旺细胞原代培养及纯化的方法进行改进。先用阿糖胞苷处理杀死大部分的成纤维细胞,再用抗-Thy-1.1抗体和兔补体处理去除残余成纤维细胞,获得纯化的雪旺细胞。此外,我们对抗-Thy-1.1抗体和兔补体的浓度、处理时间等都进行了改进,避免了由于雪旺细胞状态不好而引起的大量雪旺细胞死亡。此方法能够将雪旺细胞的纯度由90%提高到99%。  相似文献   

5.
The influence of the sub-endothelial basement membrane (BM) on the adhesion and migration of leukocytes is not well-defined. We therefore investigated the behaviour of human neutrophils on purified BM proteins and on BM deposited by short- or long-term cultures of endothelial cells (EC). The adhesion, but not migration velocities, of neutrophils activated with interleukin-8 was dependent on the coating concentrations of purified collagen, laminin or fibronectin. In contrast, adhesion was similar on matrices deposited by 3-day or 20-day cultures of EC, but neutrophils migrated more slowly on the distinct BM that formed over 20 days. In addition, while adhesion on all surfaces was greatly reduced when neutrophils were treated with antibody against β2-integrins, antibody against β1-integrins only inhibited adhesion to the 20-day BM. Thus, the native BM has distinct effects on integrin usage and migration by neutrophils, which are not reproduced by purified proteins or matrix deposited early during endothelial culture.  相似文献   

6.
Dissociated cells from different stage embryos of the sea urchin Lytechinus pictus were compared in their adhesion to various substrates. Micromeres from 16-cell stage embryos bind to tissue culture and Petri dishes but not to Petri dishes coated with human plasma fibronectin. Other cell types did not adhere to any of the substrates tested. By hatched blastula stage, about 28% of the cells adhered to fibronectin as well as to tissue culture dishes. By the mesenchyme blastula stage, there was a further increase in the proportion of cells adhering to these substrates. At no stage did cells adhere to native rat tail collagen. Primary mesenchymal cells were isolated by their selective adhesion to tissue culture dishes in the presence of horse serum. These cells were then examined for their migratory capacity. Cell spreading and migration followed adhesion and occurred on fibronectin but not on the other substrates tested. Based on analysis of video tapes, greater than 60% of these cells moved faster than 1 micron/min. On the other hand, cells from sulfate-deprived embryos, in which primary mesenchyme migration is blocked in situ, failed to spread and migrated little on the same substratum. This defect was reversed by a 6 h pretreatment of the cells in normal sea water. Thus, the in vitro migratory behavior parallels that observed in vivo. These results support the hypothesis that the primary mesenchymal cells produce a sulfate-dependent component that is required for cell spreading and migration.  相似文献   

7.
Normal rat kidney cells were cultured in medium supplemented with normal fetal bovine serum (FBS) or FBS depleted of fibronectin. The cell surface fibronectin of these cultures was visualized by indirect immunofluorescence using species-specific antisera for either rat fibronectin or bovine fibronectin. Anti-rat-fibronectin revealed fibrillar structures on the cells grown in either normal medium or fibronectin-depleted medium. Anti-bovine fibronectin revealed similar fibrillar networks, but only on the cells grown in medium containing bovine fibronectin. Staining in each case was abolished by absorption with the homologous antigen. It appears that exogenous fibronectin was incorporated into the same structures as endogenous fibronectin. This finding suggests that circulating fibronectin may serve as a building block for the assembly of extracellular matrix, possibly by cells which are incapable of synthesizing it.  相似文献   

8.
Substrate-attached material (SAM) prepared from murine BALB/c 3T3 cells and various derivatives contains adhesion sites which pinch off from the cell surface during EGTA-mediated detachment but which remain bound to the serum-coated tissue culture substratum. SAM contains the related adhesive glycoproteins cold-insoluble globulin (CIG) (from serum in the medium) and fibronectin (synthesized by the cells) as detected by immune staining of electrophoretically separated proteins, using antibodies of defined specificity. Serum and SAM contain cross-linked multimers of serum-derived CIG (not disulfide-mediated) but not of cell-derived fibronectin; therefore, thiol-resistant cross-linking between CIG and fibronectin is not involved in adhesion of these cells. Immunofluorescence microscopy of SAM from sparse cultures reveals fibrillar pools containing cellular fibronectin, although most retraction fibers seen on EGTA-treated cells do not stain, even after treatment with non-ionic detergent. Very little specific staining can be detected in SAM prepared from dense cultures, although gel electrophoretic analysis reveals proportionately as much murine fibronectin as is found in SAM from sparse cultures. Hyaluronidase digestion of SAM has no effect on the immunofluorescent staining, while gentle trypsin digestion completely abolishes staining without removing all biochemically detectable fibronectin. We conclude that some of the fibronectin and CIG in adhesion sites is masked and unavailable for antibody binding and that multiple pools of fibronectin exist in this adhesive material.  相似文献   

9.
The reported expression of the cell surface-associated, mainly mesenchymal glycoprotein fibronectin by cultured glial cells is in discrepancy with recent work on brain tissue failing to demonstrate any glial or neuronal fibronectin. We have investigated the expression of fibronectin in relation to glial fibrillary acidic protein in cultured human glial and glioma cell lines as well as in cultures derived from newborn rat brain. Using double immunofluorescence technique we found that cells containing glial fibrillary acidic protein do not express fibronectin, and vice versa. The only exception to this rule was the occasional finding of fibronectin at points of cell-to-cell adhesion also in relation to cells containing glial fibrillary acidic protein. The results were also tested by polyacrylamide gel electrophoresis of the culture media of the human cell lines, and by subcultures from the brain of newborn rat, cultures stimulated with dibutyryl cyclic AMP (db-cAMP), and by vinblastine treatment of the cells. The lack of expression of fibronectin in cells containing glial fibrillary acidic protein, a gliospecific cytoskeletal protein, is discussed with reference to glio-mesenchymal interactions and glial markers in vitro.  相似文献   

10.
Different biochemical and cytochemical techniques were applied to characterize the sites of localization of thrombospondin in cultured endothelial cells. The results obtained by [35S]methionine labeling, immunoblotting, immunoprecipitation, fluorescence microscopy, ultracytochemistry, immunogold labeling, and silver enhancement experiments revealed that thrombospondin secreted by endothelial cells is structurally organized together with proteoheparan sulfate in spherical granules at the cell surface. These granules are about 100 to 300 nm in size. Heparin or enzymatic degradation with heparitinase, but not with ABC lyase, release thrombospondin from the cell surface. Fibronectin is expressed in the extracellular matrix of endothelial cells in a fibrillar organization, clearly distinct from the punctate pattern of thrombospondin on the cell surface. Furthermore, secreted thrombospondin is highly enriched together with fibronectin and proteoheparan sulfate in cell attachment sites and in cell migration tracks. In cell migration tracks proteoheparan sulfate more clearly resembles the fibrillar distribution pattern of fibronectin, whereas thrombospondin reveals a rather monodisperse pattern. The obtained data suggest preferential sites of interaction between thrombospondin and heparan sulfate proteoglycans on the cell surface and a participation of thrombospondin in cell adhesion and cell migration.  相似文献   

11.
RhoB affects macrophage adhesion, integrin expression and migration   总被引:1,自引:0,他引:1  
Rho GTPases regulate multiple cellular responses, including cell motility and cell cycle progression. The Rho isoform RhoB represses transformation and affects endosomal trafficking, but its effects on cell adhesion and migration have not been investigated in detail. Here we show that RhoB-null macrophages are more rounded than wild-type macrophages on fibronectin and uncoated glass, and have reduced adhesion to ICAM-1 and glass but not fibronectin. This correlated with lower cell surface expression of beta2 and beta3 integrins but not beta1 integrin. RhoB-null cells migrated faster than Wt cells on fibronectin, consistent with their smaller spread area, but slower than Wt cells on glass, reflecting their reduced adhesion. C3 transferase, which inhibits RhoA, RhoB and RhoC, induced cell spreading but this effect was reduced in RhoB-null cells. However, RhoB is not required for assembly of podosomes, which are integrin-based adhesion sites, whereas C3 transferase induced a decrease in podosomes and defects in tail retraction. Since macrophages do not express RhoC, these effects of C3 transferase are due to inhibition of RhoA rather than RhoB. Our results suggest that RhoB affects cell shape and migration by regulating surface integrin levels.  相似文献   

12.
We have used a rat neural cell line, B65, to investigate the relative contributions of gangliosides and glycoprotein receptors in adhesion to fibronectin. Monoclonal antibodies against two neuroectoderm-associated gangliosides, D1.1 and GD3, inhibit the rate of B65 attachment to fibronectin, suggesting that these gangliosides are involved in the adhesion process. Adhesion to fibronectin is not affected by a third monoclonal antibody against a separate, unidentified cell-surface component of B65 cells. Furthermore, B65 cells lacking D1.1 adhere to fibronectin at a slower rate than B65 cells that express D1.1. The involvement of glycoprotein receptors in adhesion is demonstrated by the ability of antibodies against human fibronectin receptor to inhibit B65 attachment to fibronectin. In addition, adhesion is blocked by a hexapeptide containing the Arg-Gly-Asp fibronectin sequence which is necessary for binding to the receptor. Trypsin treatment of B65 cells in the absence of divalent cations results in proteolysis of the fibronectin receptor with an accompanying loss of ability of the cells to attach to fibronectin. D1.1 and GD3 expression is not affected by this trypsinization, indicating that the gangliosides alone are incapable of mediating attachment. The glycoprotein receptors must be primarily responsible for adhesion to fibronectin with the gangliosides playing a secondary role as enhancers or modulators.  相似文献   

13.
The trabecular meshwork (TM), a specialized eye tissue, is a major site for regulation of the aqueous humor outflow. Malfunctioning of this tissue is believed to be responsible for development of glaucoma, a blinding disease. Myocilin is a gene linked to the most common form of glaucoma. The protein product has been localized to both intra and extracellular sites, but its function still remains unclear. This study was to determine whether extracellular myocilin presented in the matrix affects adhesion, morphology, and migratory and phagocytic activities of human TM cells in culture. Cell adhesion assays indicated that TM cells, while adhering readily on fibronectin, failed to attach on recombinant myocilin purified from bacterial cultures. Adhesion on fibronectin was also compromised by myocilin in a dose dependent manner. Myocilin in addition triggered TM cells to assume a stellate appearance with broad cell bodies and microspikes. Loss of actin stress fibers and focal adhesions was observed. TM cell migration on fibronectin/myocilin to scratched wounds was reduced compared to fibronectin controls. Myocilin, however, had little impact on phagocytic activities of TM cells. Cell attachment on fibronectin and migration of corneal fibroblasts, a control cell type, were not altered by myocilin. These results demonstrate that extracellular myocilin elicits anti-adhesive and counter-migratory effects on TM cells. Myocilin in the matrix of tissues could be exerting a similar influence on TM cells in vivo, impacting the flexibility and resilience required for maintenance of the normal aqueous outflow.  相似文献   

14.
BACKGROUND: Cranial neural-crest (CNC) cells originate from the lateral edge of the anterior neuroepithelium and migrate to form parts of the peripheral nervous system, muscles, cartilage, and bones of the face. Neural crest-cell migration involves the loss of adhesion from the surrounding neuroepithelium and a corresponding increase in cell adhesion to the extracellular matrix (ECM) present in migratory pathways. While proteolytic activity is likely to contribute to the regulation of neural crest-cell adhesion and migration, the role of a neural crest-specific protease in these processes has yet to be demonstrated. We previously showed that CNC cells express ADAM 13, a cell surface metalloprotease/disintegrin. Proteins of this family are known to act in cell-cell adhesion and as sheddases. ADAMs have also been proposed to degrade the ECM, but this has not yet been shown in a physiological context. RESULTS: Using a tissue transplantation technique, we show that Xenopus CNC cells overexpressing wild-type ADAM 13 migrate along the same hyoid, branchial, and mandibular pathways used by normal CNC cells. In contrast, CNC cell grafts that express protease-defective ADAM 13 fail to migrate along the hyoid and branchial pathways. In addition, ectopic expression of wild-type ADAM 13 results in a gain-of-function phenotype in embryos, namely the abnormal positioning of trunk neural-crest cells. We further show that explanted embryonic tissues expressing wild-type, but not protease-defective, ADAM 13 display decreased cell-matrix adhesion. Purified ADAM 13 can cleave fibronectin, and tissue culture cells that express wild-type, but not protease-defective, ADAM 13 can remodel a fibronectin substrate. CONCLUSIONS: Our findings support the hypothesis that the protease activity of ADAM 13 plays a critical role in neural crest-cell migration along defined pathways. We propose that the ADAM 13-dependent modification of ECM and/or other guidance molecules is a key step in the directed migration of the CNC.  相似文献   

15.
Myocilin, a secreted glycoprotein of the olfactomedin family, is constitutively expressed in podocytes of the rat kidney and induced in mesangial cells during mesangioproliferative glomerulonephritis. As myocilin has been found to be associated with fibrillar components of the extracellular matrix, and adhesive properties have been shown for other members of the olfactomedin family, we hypothesized that myocilin might play a role in cell-matrix interactions in the glomerulus. To elucidate functional properties of myocilin, recombinant myocilin was expressed in 293 EBNA cells and purified by Ni-chelate and heparin chromatography. Culture plates were coated with myocilin, and primary rat mesangial cells and cells from an immortal murine podocyte cell line were seeded onto the plates in serum free conditions. Both cell types showed concentration-dependant attachment to myocilin, an effect that was statistically significant and could be blocked with specific antibodies. When compared to equal amounts of fibronectin or collagen 1, myocilin was less effective in promoting substrate adhesion. Synergistic effects in substrate adhesion were observed when myocilin was added to low concentrations of fibronectin. Twenty-five percent of cells that had attached to myocilin substrates showed spreading and expressed focal contacts which were labeled by vinculin/phalloidin staining. Comparable findings were observed when human or murine trabecular meshwork cells were seeded on myocilin substrates. Adhesive properties of myocilin required multimer formation, and were not observed when culture plates were coated with a C-terminal fragment of myocilin, containing the olfactomedin domain. We conclude that myocilin promotes substrate adhesion of podocytes and mesangial cells, and might contribute to cell-matrix adhesion of both cell types in vivo.  相似文献   

16.
Adult rat hepatocytes cultured on type IV collagen, fibronectin, or laminin and maintained in serum-free medium were examined by indirect immunofluorescence using polyclonal antibodies against extracellular matrix proteins. An extensive fibrillar matrix containing fibronectin and fibrin was detected in all hepatocyte cultures irrespective of the exogenous matrix substratum used to support cell adhesion. Fibrils radiated from the cell periphery and covered the entire culture substratum. In addition, thicker fibers or bundles of fibers were localized on top of hepatocytes. This matrix did not contain laminin or the major types of collagen found in the liver biomatrix (types I, III, and IV). Isolation of the fibrillar matrix and analysis on polyacrylamide gels under reducing conditions demonstrated a major 58-kD polypeptide, derived from beta-fibrinogen as indicated by immunoblotting and two-dimensional peptide mapping. Plasmin rapidly dissolved the matrix. Deposition of the fibrin matrix in hepatocyte cultures was arrested by hirudin, by specific heparin oligosaccharides that potentiate thrombin inhibition by antithrombin III, and by dermatan sulfate, an activator of heparin cofactor II-mediated inhibition of thrombin. The results indicate that hepatocytes in culture synthesize and activate coagulation zymogens. In the absence of inhibitory and fibrinolytic mechanisms, a fibrin clot is formed by the action of thrombin on fibrinogen. Fibronectin attaches to this fibrin clot but fails to elaborate a fibrillar matrix on its own in the presence of coagulation inhibitors.  相似文献   

17.
We used antibodies raised against both a heparan sulfate proteoglycan purified from a mouse sarcoma and a chondroitin sulfate proteoglycan purified from a rat yolk sac carcinoma to study the appearance and distribution of proteoglycans in cultured cells. Normal rat kidney cells displayed a fibrillar network of immunoreactive material at the cell surface when stained with antibodies to heparan sulfate proteoglycan, while virally transformed rat kidney cells lacked such a surface network. Antibodies to chondroitin sulfate proteoglycan revealed a punctate pattern on the surface of both cell types. The distribution of these two proteoglycans was compared to that of fibronectin by double-labeling immunofluorescent staining. The heparan sulfate proteoglycan was found to codistribute with fibronectin, and fibronectin and laminin gave coincidental stainings. The distribution of chondroitin sulfate proteoglycan was not coincidental with that of fibronectin. Distinct fibers containing fibronectin but lacking chondroitin sulfate proteoglycan were observed. When the transformed cells were cultured in the presence of sodium butyrate, their morphology changed, and fibronectin, laminin, and heparan sulfate proteoglycan appeared at the cell surface in a pattern resembling that of normal cells. These results suggest that fibronectin, laminin, and heparan sulfate proteoglycan may be complexed at the cell surface. The proteoglycan may play a central role in assembly of such complexes since heparan sulfate has been shown to interact with both fibronectin and laminin.  相似文献   

18.
The mechanisms underlying cessation of glial proliferation in the developing peripheral nervous system are obscure. One possibility, as yet little explored, is that mitotic inhibitory signals play a part in regulating glial cell numbers. In this study we demonstrate that type I collagen preparations from several different sources can inhibit the rate of DNA synthesis in purified populations of enteric glia and both short-term and long-term secondary Schwann cells in dissociated cell cultures. When these cells are grown on gelled or dried type I collagen substrata, they proliferate at substantially lower rates than on polylysine substrata. In contrast, type III or V collagen preparations do not inhibit glial DNA synthesis and laminin, fibronectin, type IV collagen, and secreted matrix from bovine corneal endothelial cells all stimulate thymidine incorporation. The inhibitory effect is not observed with heat denatured type I collagen preparations, but is seen equally in serum-containing medium, in medium containing fibronectin-free serum, or in serum-free medium, suggesting that the interaction of collagen with the cells requires structurally intact collagen molecules and does not occur via intermediary linkage to fibronectin. The inhibition on collagen is accompanied by a shape change from a more flattened morphology to a narrow spindle form. The labeling index of a rat Schwannoma cell line, 33B, is not inhibited on type I collagen substrata. These results demonstrate that type I collagen preparations inhibit the DNA synthesis levels of early postnatal peripheral glial cells in vitro. It remains to be determined whether this effect occurs via direct collagen-cell membrane interactions or whether it depends on accessory molecules, perhaps present in the collagen preparations themselves, since these are not purified to absolute homogeneity.  相似文献   

19.
We have developed two rat mAbs that recognize different subunits of the human fibroblast fibronectin receptor complex and have used them to probe the function of this cell surface heterodimer. mAb 13 recognizes the integrin class 1 beta polypeptide and mAb 16 recognizes the fibronectin receptor alpha polypeptide. We tested these mAbs for their inhibitory activities in cell adhesion, spreading, migration, and matrix assembly assays using WI38 human lung fibroblasts. mAb 13 inhibited the initial attachment as well as the spreading of WI38 cells on fibronectin and laminin substrates but not on vitronectin. Laminin-mediated adhesion was particularly sensitive to mAb 13. In contrast, mAb 16 inhibited initial cell attachment to fibronectin substrates but had no effect on attachment to either laminin or vitronectin substrates. When coated on plastic, both mAbs promoted WI38 cell spreading. However, mAb 13 (but not mAb 16) inhibited the radial outgrowth of cells from an explant on fibronectin substrates. mAb 16 also did not inhibit the motility of individual fibroblasts on fibronectin in low density culture and, in fact, substantially accelerated migration rates. In assays of the assembly of an extracellular fibronectin matrix by WI38 fibroblasts, both mAbs produced substantial inhibition in a concentration-dependent manner. The inhibition of matrix assembly resulted from impaired retention of fibronectin on the cell surface. Treatment of cells with mAb 16 also resulted in a striking redistribution of cell surface fibronectin receptors from a streak-like pattern to a relatively diffuse distribution. Concomitant morphological changes included decreases in thick microfilament bundle formation and reduced adhesive contacts of the streak-like and focal contact type. Our results indicate that the fibroblast fibronectin receptor (a) functions in initial fibroblast attachment and in certain types of adhesive contact, but not in the later steps of cell spreading; (b) is not required for fibroblast motility but instead retards migration; and (c) is critically involved in fibronectin retention and matrix assembly. These findings suggest a central role for the fibronectin receptor in regulating cell adhesion and migration.  相似文献   

20.
During embryonic development and in response to injury, the growing axons of peripheral neurons may influence the migration and proliferation of Schwann cells which, in return, may present neurons with a critical supply of factors required for neuronal survival, growth and differentiation. The identification and characterization of agents influencing the proliferation of Schwann cells as well as Schwann cell production of factors affecting neurons is greatly facilitated by the use of in vitro techniques. We describe here a simplified method of obtaining large numbers of purified neonatal rat sciatic nerve Schwann cells for use in generating large numbers of replicate microcultures. We then illustrate the use of these microcultures to examine Schwann cell: i) morphology and survival; ii) proliferation; and iii) production of neuronotrophic and neurite-promoting activities. We report that rat Schwann cells in microculture proliferate in response to serum, laminin and fibronectin, cholera toxin, and chick embryo parasympathetic ciliary neurons. Also, extracts of Schwann cell microcultures contain independently regulated activities which support the survival and neurite outgrowth of peripheral ganglionic neurons.Special issue dedicated to Dr. Paola S. Timiras  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号