首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
热带山地雨林林冠对降雨的影响分析   总被引:20,自引:0,他引:20       下载免费PDF全文
 本文利用海南岛尖峰岭热带山地雨林天然更新林中降雨、穿透水及树干茎流的4年观测资料,分析了热带山地雨林林冠对降雨影响的三个主要方面:林冠对降雨的再分配、林冠对降雨的化学影响以及林冠对降雨势能的消弱效应。从而定量地阐述了热带山地雨林生态系统的某些生态功能和水文效益。  相似文献   

2.
海南岛尖峰岭热带山地雨林区26年的热量因子变化特征   总被引:3,自引:0,他引:3  
尖峰岭热带山地雨林作为中国典型的热带森林生态系统,其长期的气候动态状况对研究全球变化具有重要的意义。本文采用海南尖峰岭森林生态系统国家野外科学观测研究站天池气象站1980—2005年的地面常规气象观测资料,分析了尖峰岭热带山地雨林区热因子的变化趋势。结果表明:26年来,林区热因子(平均气温、平均地温、平均最高/最低气温、平均最高/最低地温、极端最高/最低气温、极端最高/最低地温、地气温差、年积温)均呈上升趋势,其中平均气温、平均地温、地气温差、平均最低气温和极端最高/最低地温升高趋势明显,每10年分别增加0.32 ℃、0.59 ℃、0.27 ℃、0.39 ℃、2.03 ℃、1.62 ℃,最低温度的升高趋势都大于最高温度的增长速率,说明尖峰岭热带山地雨林区气候变暖来自于最低温度升高的贡献。  相似文献   

3.
海南岛霸王岭林区低海拔热带林群落数量分类与排序   总被引:2,自引:0,他引:2  
植物群落分类是依据植物群落的特征或属性对植物群落进行划分,是植被生态学的最基本也是最复杂的研究内容。热带林由于其复杂的环境条件及丰富的物种数量导致了其分类更加困难。本文根据海南岛霸王岭林区低海拔热带林群落的野外调查数据,运用二元指示种分析(TWINSPAN)、主分量分析(PCA)及除趋势对应分析(DCA)对该地区低海拔热带林群落进行了数量分类与排序。结果表明:TWINSPAN将21个样地共分成3组:热带低地雨林(样地9—12)、转化型季雨林(样地1—8)和热带季雨林(样地13—21)。PCA和DCA排序结果也得到了相同的结论,同时也反映了植物群落与环境因子的关系,热带低地雨林与海拔和凋落物厚度呈正相关,而热带季雨林与坡度和岩石裸露度呈正相关,转化型季雨林与环境因子的关系在PCA和DCA中则有所不同。DCA排序结果同时也表明,转化型季雨林是介于热带低地雨林和热带季雨林中间的一种群落类型。  相似文献   

4.
 本文对海南岛尖峰岭热带山地雨林及其更新群落的凋落物产量动态、各组分的季节变化规律及凋落物贮量进行了研究,分析比较了这两个林分的凋落节律的异同,并对凋落枝的收集方法进行了对比。本文指出:“双凋落峰”和“由于台风影响而产生大量非正常凋落物”是尖峰岭热带森林的两个重要的凋落特征。本项研究对深入了解热带林生态系统的功能、对热带森林资源的保护和永续利用均有重要意义。  相似文献   

5.
位于海南岛西南部的尖峰岭是目前我国为数不多、保存得较为完好的具有热带雨林性质的森林类型。在较典型的山地雨林中,设置1hm^2的固定样地,记录到DBH≥5.0cm的乔木171种,隶属于52科93属,总株数1099株,其中乔木种株数为1024。样地的Shannon—Wiener指数(H')、均匀度指数(E)和Simpson指数(D)分别为4.11、0.80和0.97,但取样面积和测定个体的起始大小等取样技术对物种多样性指数有显著的影响。随着取样面积的增加,H’值逐渐增加;但超过了4000m^2以后,增加不明显。E和D值在取样面积达到2000m^2后,基本保持不变:随着测定个体起始直径的增加,物种数、科数、H'和D都呈现出明显的减少趋势,而E值增加。径级频度分布的分析表明,该山地雨林的垂直结构可以划分成4个层次,每个层次的个体大小在空间上呈均匀或随机分布。从气候学、科属组成以及与世界热带雨林物种多样性的比较等方面,讨论了尖峰岭山地雨林在世界雨林中的地位。气候学分析表明,尖峰岭山地雨林在温度带上属于亚热带/暖温带范围,但由于其丰沛的降水量,使物种多样性较为丰富,具备了雨林的特点。对科属组成的分析表明,亚热带/暖温带科属占优势,其中典型的亚热带/暖温带科——壳斗科和樟科占总重要值的34%以上,而热带科属成份较少。与世界其他地区的典型热带林相比较,尖峰岭山地雨林的物种丰富度显著偏低,但高于某些降水量少的地区的热带林。因此,我们认为尖峰岭山地雨林与典型热带雨林有较大差别,具有由热带雨林向亚热带/暖温带雨林过渡的性质。此外,文本提出了平均种群密度(MPD)和种数一个体数关系这两种反映物种多样性测度的指标和表达式,并利用样地资料进行了分析。  相似文献   

6.
本文采用集水区技术和定位研究方法,利用1989年5月至1993年4月4a的观测资料,对海南岛尖峰岭热带山地雨林天然更新林的水量平衡及主要养分的地球化学循环规律进行了分析。  相似文献   

7.
海南岛尖峰岭热带林自然保护区保存完好,森林植被类型齐全,生物资源极为丰富。蓟马(Thrips)在不同的植被类型中,有着不同的区系组成、生态分布和优势种群。热带半落叶季雨林中蓟马的特点是种类少,种群密度高,分布广;热带山地雨林中的蓟马则种类多,种群密度低并出现热带雨林的特有种,热带常绿季雨林中蓟马的特点介于上述的两者之间;山顶苔藓矮林中蓟马种类少,种群密度低。目前已鉴定的56种蓟马,具有东洋区昆虫的特点。  相似文献   

8.
报道海南岛尖峰岭的灵芝科真菌49种,分属于2个属,3个亚属,2个组。尖峰岭地区的灵芝在不同的热带植被类型中,其灵芝种类的组成不同。就种类和数量而言施雨林和热山地雨林多,热带半落叶季雨林次之,山顶苔藓矮林少。  相似文献   

9.
 海南岛西南部热带山地雨林采伐迹地上的更新群落大多数是以闽粤栲占优势的森林植被。本文以尖峰岭为例,对热带山地雨林不同采伐方式迹地上更新的群落进行了群落数量特征、种群年龄结构的分析。同时从林业生产的角度,评定了群落的更新质量,并提出了热带山地雨林适宜的采伐方式和群落更新的抚育管理方法。  相似文献   

10.
尖峰岭热带森林土壤C储量和CO2排放量的初步研究   总被引:82,自引:1,他引:81       下载免费PDF全文
 本文根据定位观测数据和有关历史资料,研究了海南岛尖峰岭林区主要森林土壤的有机C储量、热带山地雨林和半落叶季雨林凋落物的C储量和林地CO2的排放量、以及“刀耕火种”和砍伐森林等人类活动对土壤C的影响,对于进一步认识热带林的生态功能,弄清我国温室气体的排放量,正确评价中国森林在全球生物圈C平衡中的作用,具有一定的参考价值。  相似文献   

11.
亚热带常绿阔叶林的水文生态特征   总被引:4,自引:0,他引:4  
对日本冲绳岛亚热带天然次生常绿阔叶林的水文生态特性进行了为期3年的定位观测.结果表明,观测期间年平均降雨量高达3325mm,台风降雨(包括直接和间接影响)占年降雨量的42.3%;穿透雨量和树干流量分别为年降雨量的53.9%和30.9%,较高的树干流量可能与高风速、强度降雨以及优势树种的树冠构造紧密相关.林冠截留损失占年降雨量的15.2%,低于世界范围内其它多数常绿阔叶林(15%~30%).年平均地表径流和壤中流量分别是1092mm和613mm,分别占年降雨量的32.8%和18.4%;较高的径流量可能是由不良的土壤物理性质引起的.试验林土壤尤其是下层土壤非毛管孔隙度低(8%~12%)、粘粒含量极高(51.9%~60.5%),水分渗透缓慢(12ml·min-1).0~70 cm土层的有效蓄水量和最大蓄水量分别为85 mm和324mm,林地凋落物层的最大持水量为2.8 mm,接近或低于中国亚热带和热带山地雨林.  相似文献   

12.
油蒿灌丛群落浅层土壤水分对不同降雨格局的响应   总被引:2,自引:0,他引:2  
以库布齐沙漠东缘典型分布的油蒿灌丛为对象,使用微气象观测系统连续监测2016—2018年生长季降雨及多层次土壤含水量(0~10、10~30、30~50 cm),研究不同降雨格局下荒漠土壤水分的时空动态变化,分析降雨事件对土壤水分的补给作用和水分入渗特征。结果表明: 油蒿灌丛浅层土壤含水量在降雨脉动下产生明显的季节和垂直变化,雨量和雨前土壤含水量是影响土壤水分补给和入渗的主控因素。0~10 cm土层土壤对降雨反馈迅速,>3.8 mm降雨对该层产生补给作用;10~30 cm土层土壤对降雨反馈稍显迟滞,需8.6 mm以上降雨才能产生有效补给;30~50 cm土层土壤对降雨反馈更加滞后,降雨量超过11.8 mm后才能达到该补给深度。水分入渗速率随雨量增大而升高,随土层加深而减弱,入渗深度与雨量和雨前土壤含水量均呈显著正相关。研究期间,降雨事件以<10 mm降雨为主,占总降雨次数的78.4%,降雨对土壤的补给主要作用于30 cm以内土层,对深层土壤的补给十分有限,不利于深根性植物生长,降雨格局直接影响和改变了研究区植物群落的构成、分布和演替。  相似文献   

13.
毛乌素沙地流动沙丘不同深度土壤渗漏特征   总被引:2,自引:0,他引:2  
吴丽丽  程一本  杨文斌  朱斌  党宏忠  李卫  冯伟 《生态学报》2018,38(22):7960-7967
沙地的土壤深漏是沙地水分循环及水量平衡中的重要环节,对这一分量的准确测算,能够增进对沙地降雨的分配、转移及运输过程规律的认识。利用土壤深层水量渗漏测试记录仪(YWB-01),对毛乌素沙地典型的流动沙丘50、100 cm和200 cm的3个层次的土壤渗漏水量进行定点实时监测,定量分析降雨条件下沙地土壤渗漏特征,得出以下结论:(1)在降雨条件下,2016年4—6月3个沙层的渗漏过程都不明显,从7月开始,渗漏过程与降雨过程的一致性随沙层的增加而逐渐减弱;(2)随沙层深度的增加,累计渗漏天数以及连续渗漏天数在增加,累计渗漏水量、最大日渗漏水量逐渐减小,渗漏水量的波动也逐渐减小;渗漏水量10 mm的天数和渗漏水量所占的比例明显减少;(3)对降雨量和各沙层渗漏水量日、周、半月、月累积量之间进行相关分析和线性拟合后发现,越往深处渗漏水量对降雨的响应越弱,月渗漏水量与月降雨量的关系更密切。  相似文献   

14.
泾河流域上游是黄土高原的重要水源地和退耕还林工程区,在较大空间尺度上定量评价区内森林覆盖增加的水文影响对科学指导林业生态环境建设、保障区域水安全和可持续发展均有重要意义。为了在尽量排除地形、土壤、气候等作用的基础上定量评价森林的影响,将泾河上游划分为土石山区和黄土区,分别制定了多种森林恢复情景,利用分布式流域生态水文模型(SWIM)模拟评价了森林覆盖率及其空间分布变化对流域年蒸散量、年产流量、年地下水补给量、年土壤深层渗漏量及日径流洪峰的影响。土石山区模拟结果表明,增加森林覆盖将增加流域蒸散和减少流域产流,如现有森林覆盖(占全流域面积比例为13.8%)情景与现有森林变为草地(占全流域面积比例为0)情景相比时,流域年蒸散量从445.4 mm变为427.7 mm(减少了17.4 mm和4%);年产流量从42.4 mm变为53.5 mm(增加了11.1 mm和26.3%),年地下水补给量从61.6 mm变为76.9 mm(增加了15.3 mm和24.8%),年深层渗漏量从72.9 mm变为88.3 mm(增加了17.7 mm和24.3%);平均森林覆盖率每增加10%,导致流域年蒸散量增加12.8 mm,年产流量减少8.0 mm,年地下水补给量减少11.1 mm。在比较干旱和土层深厚的黄土区,增加森林覆盖将同样增大流域蒸散和减少流域产流,但变化幅度明显小于降水相对丰富和土层浅薄的土石山区,平均森林面积增加10%导致流域年蒸散量增加9.0 mm,年产流量减少4.5 mm,年地下水补给量减少8.8 mm;此外,在较缓坡面造林的水文影响大于较陡坡面造林。从森林水文影响的年内变化来看时,森林覆盖率升高的水文影响在土石山区和黄土区也有差别,如土石山区5—7月份的蒸散显著增加,5—10月份的深层渗漏均有减少;而黄土区是蒸散量在5—10月均有增加,深层渗漏在7—10月份显著减少。另外,土石山区森林覆盖率增加对日径流峰值的影响不显著,而黄土区则能明显削弱,这可能主要是因土石山区的高石砾含量土壤的渗透性能明显高于黄土区的黄土,而黄土区的森林能够明显改善土壤入渗性能和减少地面径流形成。  相似文献   

15.
探讨我国干旱半干旱地区大气降水在土壤剖面中的时空分布特征将为西鄂尔多斯荒漠退化生态系统恢复和维持提供科学依据.本研究利用氘同位素技术研究了内蒙古西鄂尔多斯荒漠的大气降水、土壤水、地下水中的氘同位素值(δD),运用二元线性混合模型计算降水对各层土壤水的贡献率,并结合土壤含水量分析了不同降水条件下土壤剖面各层土壤水δD的时空分布特征.结果表明: 雨后9 d内,小雨(0~10 mm)影响0~10 cm土壤含水量和土壤水δD值,对表层土壤(0~10 cm)的贡献率在30.3%~87.9%;中雨(10~20 mm)影响0~40 cm土壤含水量和土壤水δD值,对0~40 cm土壤水的贡献率为28.2%~80.8%;大雨(20~30 mm)和特大暴雨(>30 mm)影响0~100 cm土壤含水量和土壤水δD值.降水对100~150 cm深层土壤水δD值影响不显著.西鄂尔多斯荒漠土壤水δD介于大气降水δD与地下水δD之间,表明西鄂尔多斯荒漠土壤水主要来源于大气降水与地下水.在同一降水强度下,表层土壤水(0~10 cm)受降水的直接影响显著,随着土壤深度的增加,土壤水δD变化幅度降低,100~150 cm深层土壤水δD基本趋于稳定.降水强度越大,对土壤水δD影响的时间越长,影响的土壤深度也越深.  相似文献   

16.
以位于黄土高原半干旱丘陵沟壑区的陕西省安塞县和半湿润残塬沟壑区的甘肃省泾川县为代表,研究了不同水分生态区刺槐林地土壤水分垂直分布特征;并在原有林地土壤水分入渗平衡模型的基础上,建立了林地土壤水分随时间、土壤深度变化的动态模型。结果表明:(1)不同水分生态区林地土壤水分垂直变化规律具有明显区别,泾川的土壤含水量峰值出现在20~40cm土层深处,后随着土层深度的增加逐渐降低,在200cm土层深度土壤含水量趋于稳定(11%左右);安塞的土壤含水量峰值出现在约60cm左右的土层,并在220cm深度土壤含水量趋于稳定(5.5%左右);说明泾川的土壤含水量高于安塞,安塞的降雨和林木根系耗水对土壤水分的影响程度和深度均大于泾川,且两地深层土壤水分含量不受降水和林木根系耗水等的影响。(2)利用降水在土壤中的入渗平衡模型能够很好地拟合黄土高原两地(泾川、安塞)刺槐林地的土壤水分垂直分布;并通过引入参数t(月份)建立了林地土壤水分随时间和土壤深度变化的动态模型,经验证该模型能够准确地刻画黄土高原不同水分生态区刺槐林地土壤水分的动态变化。  相似文献   

17.
中国东部森林样带典型森林水源涵养功能   总被引:24,自引:6,他引:18  
贺淑霞  李叙勇  莫菲  周彬  高广磊 《生态学报》2011,31(12):3285-3295
通过对我国东部森林样带四个森林生态系统定位研究站(长白山站、北京站、会同站和鼎湖山站)的九种森林类型水源涵养监测数据的分析,研究了水热梯度下不同森林生态系统水源涵养功能。结果表明:在生长季的5-10月份,各森林类型的水源涵养特性表现出较大差异。林冠截留率的大小依次为:阔叶红松林>杉木林>常绿阔叶林>针阔混交林>季风常绿阔叶林>落叶阔叶混交林>马尾松林>落叶松林>油松林,最高的长白山站阔叶红松林的截留率是最低的北京站油松林的2.2倍。森林降雨截留量与林外降雨量呈显著的正相关,林冠截留率与降雨量呈显著负相关。枯落物最大持水深(5-10月份)以北京站落叶阔叶林最大,为6.0mm;鼎湖山站的季风常绿阔叶林最小,为1.0mm。0-60cm土层蓄水量最大的是会同站的人工杉木林,为247mm;最小的是北京站的落叶松林,仅为45.5mm;林分总持水量依次为:杉木林>阔叶红松林>常绿阔叶林>针阔混交林>季风常绿阔叶林>落叶阔叶混交林>马尾松林>落叶松林>油松林。各林分总持水量主要集中在土壤层,占总比例的90%以上。  相似文献   

18.
川西亚高山典型森林生态系统截留水文效应   总被引:10,自引:2,他引:8  
截留是水文循环的一个重要过程,水文功能是森林生态系统功能的重要方面,林冠和枯落物截留实现对大气降水的二次分配过程.为深入认识生态系统截留的水文效应,采用野外观测和人工降雨模拟试验相结合的方法,研究了2008年和2009年5-10月贡嘎山亚高山峨眉冷杉中龄林、峨眉冷杉成熟林和针阔混交林的冠层枯落物截留能力.结果表明,峨眉冷杉中龄林2008年林冠截留率为20.9%,针阔混交林2008年和2009年林冠截留率分别为23.0%和23.6%,林冠截留率的年际间变化不大,林冠截留主要受到降雨特征影响.3种林型枯落物饱和持水能力分别为5.1、5.1和5.7 mm,显著高于林冠的饱和持水能力,但由于冠层的截留蒸发速率较高,林冠截留蒸发仍是生态系统截留蒸发的主要组成部分.  相似文献   

19.
研究高寒地区不同土地利用方式下土壤持水能力变化特征及其影响因素可为评估高寒生态系统水源涵养能力分异特征及其调控机制提供依据。本研究选取西藏高寒区3种土地利用方式(农、林、草地)下不同深度(0~10、10~20、20~30 cm)土壤为对象,测定土壤最大持水量、毛管持水量、田间持水量及土壤基本理化性质,并提取环境因子(年均降雨量、植被归一化指数、海拔、坡度和地表粗糙度),分析不同土地利用方式下土壤持水能力的变化特征及其影响因素。结果表明: 农、林、草地土壤持水能力(最大持水量、毛管持水量、田间持水量)均随土层深度增加而逐渐降低。草地0~30 cm土壤最大持水量、毛管持水量和田间持水量均值分别为379.79、329.57和194.39 g·kg-1,显著高于农地(301.15、259.67和154.91 g·kg-1)和林地(293.09、251.49和117.01 g·kg-1)。冗余分析结果表明,不同土壤理化性质对土壤持水能力变异的解释量由大到小依次为总孔隙度(44.6%)、土壤有机质(42.7%)、毛管孔隙度(37.6%)和土壤容重(35.8%)。主成分分析结果显示,年均降雨量、植被归一化指数和地形因子(海拔、坡度和地表粗糙度)是影响土壤持水能力空间变异的主要环境因子,累积贡献率高达72.4%。西藏高寒区草地土壤具有更强的持水能力,能够有效防止水土流失。因此,在高寒地区实施退耕还草措施、对退化草地进行封育管理,有助于改善高寒地区土壤水源涵养能力。  相似文献   

20.
黄土高原水土保持林对土壤水分的影响   总被引:8,自引:0,他引:8  
张建军  李慧敏  徐佳佳 《生态学报》2011,31(23):7056-7066
黄土高原植被恢复的限制因素主要是土壤水分,植被与土壤水分关系的研究对黄土高原植被恢复具有重要意义.2008年7月1日至2009年10月31日间采用EnviroSMART土壤水分定位监测系统以每30min监测1次的频度,对晋西黄土区刺槐人工林地、油松人工林地、次生林地的土壤水分变化进行了研究.研究得出:次生林地0-150 cm土层中平均蓄水量为331.95mm,刺槐人工林地为233.85 mm,有整地措施的油松人工林地为314.85mm,刺槐人工林比次生林多消耗的98.10mm土壤水分主要来源于80 cm以下土层.次生林主要消耗0-80 cm土层的水分,而人工林不但对0-80 cm土层水分的消耗量大于次生林,对深层土壤的消耗也较次生林大,这将有可能导致人工林地深层土壤的“干化”.在土壤水分减少期(11-1月)刺槐人工林土壤水分的日均损耗量为0.86mm、油松人工林为0.82 mm、次生林为0.84 mm.土壤水分缓慢恢复期(2-5月)刺槐人工林地土壤水分的恢复速度0.90mm/d,油松人工林地为0.53 mm/d、次生林地为0.79 mm/d.土壤水分剧烈变化期(5-10月)刺槐人工林地土壤水分含量的极差为95.71mm,油松人工林地为179.1mm,次生林地为72.03mm.在干旱少雨的黄土高原进行植被恢复时,应多采取封山育林等方式,依靠自然力量形成能够与当地土壤水资源相协调的次生林,是防止人工植被过度耗水形成“干化层”、保障水土保持植被持续发挥生态服务功能的关键.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号