首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Population and locus-specific reduction of variability of polymorphic loci could be an indication of positive selection at a linked site (selective sweep) and therefore point toward genes that have been involved in recent adaptations. Analysis of microsatellite variability offers a way to identify such regions and to ask whether they occur more often than expected by chance. We studied four populations of the house mouse (Mus musculus) to assess the frequency of such signatures of selective sweeps under natural conditions. Three samples represent the subspecies Mus m. dometicus [corrected] and came from Germany, France, and Cameroon. One sample came from Kazakhstan and constitutes a population of the subspecies Mus m. [corrected] musculus. Mitochondrial D-loop sequences from all animals confirm their respective assignments. Approximately 200 microsatellite loci were typed for up to 60 unrelated individuals from each population and evaluated for signs of selective sweeps on the basis of Schl?tterer's ln RV and ln RH statistics. Our data suggest that there are slightly more signs of selective sweeps than would have been expected by chance alone in each of the populations and also highlights some of the statistical challenges faced in genome scans for detecting selection. Single-nucleotide polymorphism typing of one sweep signature in the M. m. domesticus populations around the beta-defensin 6 locus confirms a lowered nucleotide diversity in this region and limits the potential sweep region to about 20 kb. However, no amino acid exchange has occurred in the coding region when compared to M. m. musculus. If this sweep signature is due to a recent adaptation, it is expected that a regulatory change would have caused it. Our data provide a framework for conducting a systematic whole genome scan for signatures of selective sweeps in the mouse genome.  相似文献   

2.
A. M. Valdes  M. Slatkin    N. B. Freimer 《Genetics》1993,133(3):737-749
We summarize available data on the frequencies of alleles at microsatellite loci in human populations and compare observed distributions of allele frequencies to those generated by a simulation of the stepwise mutation model. We show that observed frequency distributions at 108 loci are consistent with the results of the model under the assumption that mutations cause an increase or decrease in repeat number by one and under the condition that the product Nu, where N is the effective population size and u is the mutation rate, is larger than one. We show that the variance of the distribution of allele sizes is a useful estimator of Nu and performs much better than previously suggested estimators for the stepwise mutation model. In the data, there is no correlation between the mean and variance in allele size at a locus or between the number of alleles and mean allele size, which suggests that the mutation rate at these loci is independent of allele size.  相似文献   

3.
M. Kimmel  R. Chakraborty  D. N. Stivers    R. Deka 《Genetics》1996,143(1):549-555
Suggested molecular mechanisms for the generation of new tandem repeats of simple sequences indicate that the microsatellite loci evolve via some form of forward-backward mutation. We provide a mathematical basis for suggesting a measure of genetic distance between populations based on microsatellite variation. Our results indicate that such a genetic distance measure can remain proportional to the divergence time of populations even when the forward-backward mutations produce variable and/or directionally biased alleles size changes. If the population size and the rate of mutation remain constant, then the measure will be proportional to the time of divergence of populations. This genetic distance is expressed in terms of a ratio of components of variance of allele sizes, based on expressions developed for studying population dynamics of quantitative traits. Application of this measure to data on 18 microsatellite loci in nine human populations leads to evolutionary trees consistent with the known ethnohistory of the populations.  相似文献   

4.
The evolution of different populations within a species in response to selective pressures can potentially happen in three different ways. It can occur in parallel, where similar changes occur independently in each population in response to selection; in concert, where the spread of an adaptive mutation across a species' range results in a single allele fixing in each population; or populations can diverge in response to local selective pressures. We explored these possibilities in populations of the homoploid hybrid species Helianthus deserticola relative to its parental species Helianthus annuus and Helianthus petiolaris using an analysis of variation in 96 expressed sequence tag-based microsatellites. A total of nine loci showed evidence consistent with recent selection at either the species or population level, although two of these genes were discarded because the apparent sweep did not occur relative to the parent from which the locus was derived. Between one and five loci showed a putative sweep across the entire species range with the same microsatellite allele fixed in each population. This pattern is consistent with evolution in concert despite geographical isolation and potential independent origins of the populations. Only one population of H. deserticola showed candidate sweeps that were unique compared to the rest of the species, and this population has also potentially experienced recent admixture with the parental species.  相似文献   

5.
The last 50,000-150,000 years of human history have been characterized by rapid demographic expansions and the colonization of novel environments outside of sub-Saharan Africa. Mass migrations outside the ancestral species range likely entailed many new selection pressures, suggesting that genetic adaptation to local environmental conditions may have been more prevalent in colonizing populations outside of sub-Saharan Africa. Here we report a test of this hypothesis using genome-wide patterns of DNA polymorphism. We conducted a multilocus scan of microsatellite variability to identify regions of the human genome that may have been subject to continent-specific hitchhiking events. Using published polymorphism data for a total of 624 autosomal loci in multiple populations of humans, we used coalescent simulations to identify candidate loci for geographically restricted selective sweeps. We identified a total of 13 loci that appeared as outliers in replicated population comparisons involving different reference samples for Africa. A disproportionate number of these loci exhibited reduced levels of relative variability in non-African populations alone, suggesting that recent episodes of positive selection have been more prevalent outside of sub-Saharan Africa.  相似文献   

6.
Estimation of population parameters for the common ancestors of humans and the great apes is important in understanding our evolutionary history. In particular, inference of population size for the human-chimpanzee common ancestor may shed light on the process by which the 2 species separated and on whether the human population experienced a severe size reduction in its early evolutionary history. In this study, the Bayesian method of ancestral inference of Rannala and Yang (2003. Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics. 164:1645-1656) was extended to accommodate variable mutation rates among loci and random species-specific sequencing errors. The model was applied to analyze a genome-wide data set of approximately 15,000 neutral loci (7.4 Mb) aligned for human, chimpanzee, gorilla, orangutan, and macaque. We obtained robust and precise estimates for effective population sizes along the hominoid lineage extending back approximately 30 Myr to the cercopithecoid divergence. The results showed that ancestral populations were 5-10 times larger than modern humans along the entire hominoid lineage. The estimates were robust to the priors used and to model assumptions about recombination. The unusually low X chromosome divergence between human and chimpanzee could not be explained by variation in the male mutation bias or by current models of hybridization and introgression. Instead, our parameter estimates were consistent with a simple instantaneous process for human-chimpanzee speciation but showed a major reduction in X chromosome effective population size peculiar to the human-chimpanzee common ancestor, possibly due to selective sweeps on the X prior to separation of the 2 species.  相似文献   

7.
Coevolution between hosts and their parasites is expected to follow a range of possible dynamics, the two extreme cases being called trench warfare (or Red Queen) and arms races. Long‐term stable polymorphism at the host and parasite coevolving loci is characteristic of trench warfare, and is expected to promote molecular signatures of balancing selection, while the recurrent allele fixation in arms races should generate selective sweeps. We compare these two scenarios using a finite size haploid gene‐for‐gene model that includes both mutation and genetic drift. We first show that trench warfare do not necessarily display larger numbers of coevolutionary cycles per unit of time than arms races. We subsequently perform coalescent simulations under these dynamics to generate sequences at both host and parasite loci. Genomic footprints of recurrent selective sweeps are often found, whereas trench warfare yield signatures of balancing selection only in parasite sequences, and only in a limited parameter space. Our results suggest that deterministic models of coevolution with infinite population sizes do not predict reliably the observed genomic signatures, and it may be best to study parasite rather than host populations to find genomic signatures of coevolution, such as selective sweeps or balancing selection.  相似文献   

8.
Disentangling the effects of demography and selection in human history   总被引:18,自引:0,他引:18  
Demographic events affect all genes in a genome, whereas natural selection has only local effects. Using publicly available data from 151 loci sequenced in both European-American and African-American populations, we attempt to distinguish the effects of demography and selection. To analyze large sets of population genetic data such as this one, we introduce "Perlymorphism," a Unix-based suite of analysis tools. Our analyses show that the demographic histories of human populations can account for a large proportion of effects on the level and frequency of variation across the genome. The African-American population shows both a higher level of nucleotide diversity and more negative values of Tajima's D statistic than does a European-American population. Using coalescent simulations, we show that the significantly negative values of the D statistic in African-Americans and the positive values in European-Americans are well explained by relatively simple models of population admixture and bottleneck, respectively. Working within these nonequilibrium frameworks, we are still able to show deviations from neutral expectations at a number of loci, including ABO and TRPV6. In addition, we show that the frequency spectrum of mutations--corrected for levels of polymorphism--is correlated with recombination rate only in European-Americans. These results are consistent with repeated selective sweeps in non-African populations, in agreement with recent reports using microsatellite data.  相似文献   

9.
We estimated the intensity of selection on preferred codons in Drosophila pseudoobscura and D. miranda at X-linked and autosomal loci, using a published data set on sequence variability at 67 loci, by means of an improved method that takes account of demographic effects. We found evidence for stronger selection at X-linked loci, consistent with their higher levels of codon usage bias. The estimates of the strength of selection and mutational bias in favor of unpreferred codons were similar to those found in other species, after taking into account the fact that D. pseudoobscura showed evidence for a recent expansion in population size. We examined correlates of synonymous and nonsynonymous diversity in these species and found no evidence for effects of recurrent selective sweeps on nonsynonymous mutations, which is probably because this set of genes have much higher than average levels of selective constraints. There was evidence for correlated effects of levels of selective constraints on protein sequences and on codon usage, as expected under models of selection for translational accuracy. Our analysis of a published data set on D. melanogaster provided evidence for the effects of selective sweeps of nonsynonymous mutations on linked synonymous diversity, but only in the subset of loci that experienced the highest rates of nonsynonymous substitutions (about one-quarter of the total) and not at more slowly evolving loci. Our correlational analysis of this data set suggested that both selective constraints on protein sequences and recurrent selective sweeps affect the overall level of codon usage.  相似文献   

10.
Adaptation from standing genetic variation or recurrent de novo mutation in large populations should commonly generate soft rather than hard selective sweeps. In contrast to a hard selective sweep, in which a single adaptive haplotype rises to high population frequency, in a soft selective sweep multiple adaptive haplotypes sweep through the population simultaneously, producing distinct patterns of genetic variation in the vicinity of the adaptive site. Current statistical methods were expressly designed to detect hard sweeps and most lack power to detect soft sweeps. This is particularly unfortunate for the study of adaptation in species such as Drosophila melanogaster, where all three confirmed cases of recent adaptation resulted in soft selective sweeps and where there is evidence that the effective population size relevant for recent and strong adaptation is large enough to generate soft sweeps even when adaptation requires mutation at a specific single site at a locus. Here, we develop a statistical test based on a measure of haplotype homozygosity (H12) that is capable of detecting both hard and soft sweeps with similar power. We use H12 to identify multiple genomic regions that have undergone recent and strong adaptation in a large population sample of fully sequenced Drosophila melanogaster strains from the Drosophila Genetic Reference Panel (DGRP). Visual inspection of the top 50 candidates reveals that in all cases multiple haplotypes are present at high frequencies, consistent with signatures of soft sweeps. We further develop a second haplotype homozygosity statistic (H2/H1) that, in combination with H12, is capable of differentiating hard from soft sweeps. Surprisingly, we find that the H12 and H2/H1 values for all top 50 peaks are much more easily generated by soft rather than hard sweeps. We discuss the implications of these results for the study of adaptation in Drosophila and in species with large census population sizes.  相似文献   

11.
Jeremy J. Berg  Graham Coop 《Genetics》2015,201(2):707-725
The use of genetic polymorphism data to understand the dynamics of adaptation and identify the loci that are involved has become a major pursuit of modern evolutionary genetics. In addition to the classical “hard sweep” hitchhiking model, recent research has drawn attention to the fact that the dynamics of adaptation can play out in a variety of different ways and that the specific signatures left behind in population genetic data may depend somewhat strongly on these dynamics. One particular model for which a large number of empirical examples are already known is that in which a single derived mutation arises and drifts to some low frequency before an environmental change causes the allele to become beneficial and sweeps to fixation. Here, we pursue an analytical investigation of this model, bolstered and extended via simulation study. We use coalescent theory to develop an analytical approximation for the effect of a sweep from standing variation on the genealogy at the locus of the selected allele and sites tightly linked to it. We show that the distribution of haplotypes that the selected allele is present on at the time of the environmental change can be approximated by considering recombinant haplotypes as alleles in the infinite-alleles model. We show that this approximation can be leveraged to make accurate predictions regarding patterns of genetic polymorphism following such a sweep. We then use simulations to highlight which sources of haplotypic information are likely to be most useful in distinguishing this model from neutrality, as well as from other sweep models, such as the classic hard sweep and multiple-mutation soft sweeps. We find that in general, adaptation from a unique standing variant will likely be difficult to detect on the basis of genetic polymorphism data from a single population time point alone, and when it can be detected, it will be difficult to distinguish from other varieties of selective sweeps. Samples from multiple populations and/or time points have the potential to ease this difficulty.  相似文献   

12.
We tested signals of historical reductions in effective population size within populations of sockeye salmon Oncorhynchus nerka returning to Bristol Bay, Alaska, to examine the roles that ecotype, migration obstacles, and drainage might play in the highly variable production of the Kvichak River drainage. We collected data for eight microsatellite loci from ~100 fish at each of 16 locations within the Kvichak River drainage and five locations within the more productively stable Naknek River drainage. Pair-wise exact tests were used to group similar collections within ecotype, within drainage, and above and below migration obstacles. After grouping, collections represented independent populations for further analyses. We examined the number of alleles per locus, mean ratio of the number of alleles to the range in allele size, heterozygosity excess, and gametic disequilibrium as measures of reduction-in-population-size events. Number of alleles per locus revealed the largest number of significant differences. Tributary populations showed a stronger signal consistent with reduced effective population size than did beach populations within the Kvichak River drainage. Kvichak River drainage populations showed a stronger signal consistent with reduced effective population size than did the Naknek River drainage populations. Populations above migration obstacles showed signals consistent with reduction in historical population sizes in multiple measures indicating some of these reductions may be severe enough to qualify as demographic bottlenecks.  相似文献   

13.
Phenotypic divergences between modern human populations have developed as a result of genetic adaptation to local environments over the past 100,000 years. To identify genes involved in population-specific phenotypes, it is necessary to detect signatures of recent positive selection in the human genome. Although detection of elongated linkage disequilibrium (LD) has been a powerful tool in the field of evolutionary genetics, current LD-based approaches are not applicable to already fixed loci. Here, we report a method of scanning for population-specific strong selective sweeps that have reached fixation. In this method, genome-wide SNP data is used to analyze differences in the haplotype frequency, nucleotide diversity, and LD between populations, using the ratio of haplotype homozygosity between populations. To estimate the detection power of the statistics used in this study, we performed computer simulations and found that these tests are relatively robust against the density of typed SNPs and demographic parameters if the advantageous allele has reached fixation. Therefore, we could determine the threshold for maintaining high detection power, regardless of SNP density and demographic history. When this method was applied to the HapMap data, it was able to identify the candidates of population-specific strong selective sweeps more efficiently than the outlier approach that depends on the empirical distribution. This study, confirming strong positive selection on genes previously reported to be associated with specific phenotypes, also identifies other candidates that are likely to contribute to phenotypic differences between human populations.  相似文献   

14.
We have characterized eight dinucleotide (dC-dA)n.(dG-dT)n repeat loci located on human chromosome 13q in eight human populations and in a sample of chimpanzees. Even though there is substantial variation in allele frequencies at each locus, at a given locus the most frequent alleles are shared by all human populations. The level of heterozygosity is reduced in isolated or small populations, such as the Pehuenche Indians of Chile, the Dogrib of Canada, and the New Guinea highlanders. On the other hand, larger average heterozygosities are observed in large and cosmopolitan populations, such as the Sokoto population from Nigeria and German Caucasians. Conformity with Hardy-Weinberg equilibrium is generally observed at these loci, unless (a) a population is isolated or small or (b) the repeat motif of the locus is not perfect (e.g., D13S197). Multilocus genotype probabilities at these microsatellite loci do not show departure from the independence rule, unless the loci are closely linked. The allele size distributions at these (CA)n loci do not follow a strict single-step stepwise-mutation model. However, this features does not compromise the ability to detect population affinities, when these loci are used simultaneously. The microsatellite loci examined here are present and, with the exception of the locus D13S197, are polymorphic in the chimpanzees, showing an overlapping distribution of allele sizes with those observed in human populations.  相似文献   

15.
Private microsatellite alleles tend to be found in the tails rather than in the interior of the allele size distribution. To explain this phenomenon, we have investigated the size distribution of private alleles in a coalescent model of two populations, assuming the symmetric stepwise mutation model as the mode of microsatellite mutation. For the case in which four alleles are sampled, two from each population, we condition on the configuration in which three distinct allele sizes are present, one of which is common to both populations, one of which is private to one population, and the third of which is private to the other population. Conditional on this configuration, we calculate the probability that the two private alleles occupy the two tails of the size distribution. This probability, which increases as a function of mutation rate and divergence time between the two populations, is seen to be greater than the value that would be predicted if there was no relationship between privacy and location in the allele size distribution. In accordance with the prediction of the model, we find that in pairs of human populations, the frequency with which private microsatellite alleles occur in the tails of the allele size distribution increases as a function of genetic differentiation between populations.  相似文献   

16.
Landry PA  Koskinen MT  Primmer CR 《Genetics》2002,161(3):1339-1347
Numerous studies have relied on microsatellite DNA data to assess the relationships among populations in a phylogenetic framework, converting microsatellite allelic composition of populations into evolutionary distances. Among other coefficients, (deltamu)(2) and R(st) are often employed because they make use of the differences in allele sizes on the basis of the stepwise mutation model. While it has been recognized that some microsatellites can yield disproportionate interpopulation distance estimates, no formal investigation has been conducted to evaluate to what extent such loci could affect the topology of the corresponding dendrograms. Here we show that single loci, displaying extremely large among-population variance, can greatly bias the topology of the phylogenetic tree, using data from European grayling (Thymallus thymallus, Salmonidae) populations. Importantly, we also demonstrate that the inclusion of a single disproportionate locus will lead to an overestimation of the stability of trees assessed using bootstrapping. To avoid this bias, we introduce a simple statistical test for detecting loci with significantly disproportionate variance prior to phylogenetic analyses and further show that exclusion of offending loci eliminates the false increase in phylogram stability.  相似文献   

17.
The mummichog, Fundulus heteroclitus, exhibits extensive latitudinal clinal variation in a number of physiological and biochemical traits, coupled with phylogeographical patterns at mitochondrial and nuclear DNA loci that suggest a complicated history of spatially variable selection and secondary intergradation. This species continues to serve as a model for understanding local and regional adaptation to variable environments. Resolving the influences of historical processes on the distribution of genetic variation within and among extant populations of F. heteroclitus is crucial to a better understanding of how populations evolve in the context of contemporary environments. In this study, we analysed geographical patterns of genetic variation at eight microsatellite loci among 15 populations of F. heteroclitus distributed throughout the North American range of the species from Nova Scotia to Georgia. Genetic variation in Northern populations was lower than in Southern populations and was strongly correlated with latitude throughout the species range. The most common Northern alleles at all eight loci exhibited concordant latitudinal clinal patterns, and the existence of an abrupt transition zone in allele frequencies between Northern and Southern populations was similar to that observed for mitochondrial DNA and allozyme loci. A significant pattern of isolation by distance was observed both within and between northern and southern regions. This pattern was unexpected, particularly for northern populations, given the recent colonization history of post-Pleistocene habitats, and was inconsistent with either a recent northward population expansion or a geographically restricted northern Pleistocene refugium. The data provided no evidence for recent population bottlenecks, and estimates of historical effective population sizes suggest that post-Pleistocene populations have been large throughout the species distribution. These results suggest that F. heteroclitus was broadly distributed throughout most of its current range during the last glacial event and that the abrupt transition in allele frequencies that separate Northern and Southern populations may reflect regional disequilibrium conditions associated with the post-Pleistocene colonization history of habitats in that region.  相似文献   

18.
Uncovering the correct phylogeny of closely related species requires analysis of multiple gene genealogies or, alternatively, genealogies inferred from the multiple alleles found at highly polymorphic loci, such as microsatellites. However, a concern in using microsatellites is that constraints on allele sizes may occur, resulting in homoplasious distributions of alleles, leading to incorrect phylogenies. Seven microsatellites from the pathogenic fungus Coccidioides immitis were sequenced for 20 clinical isolates chosen to represent the known genetic diversity of the pathogen. An organismal phylogeny for C. immitis was inferred from microsatellite-flanking sequence polymorphisms and other restriction fragment length polymorphism-containing loci. Two microsatellite genetic distances were then used to determine phylogenies for C. immitis, and the trees found by these three methods were compared. Congruence between the organismal and microsatellite phylogenies occurred when microsatellite distances were based on simple allele frequency data. However, complex mutation events at some loci made distances based on stepwise mutation models unreliable. Estimates of times of divergence for the two species of C. immitis based on microsatellites were significantly lower than those calculated from flanking sequence, most likely due to constraints on microsatellite allele sizes. Flanking-sequence insertions/deletions significantly decreased the accuracy of genealogical information inferred from microsatellite loci and caused interspecific length homoplasies at one of the seven loci. Our analysis shows that microsatellites are useful phylogenetic markers, although care should be taken to choose loci with appropriate flanking sequences when they are intended for use in evolutionary studies.  相似文献   

19.
Teschke M  Mukabayire O  Wiehe T  Tautz D 《Genetics》2008,180(3):1537-1545
Genome scans of polymorphisms promise to provide insights into the patterns and frequencies of positive selection under natural conditions. The use of microsatellites as markers has the potential to focus on very recent events, since in contrast to SNPs, their high mutation rates should remove signatures of older events. We assess this concept here in a large-scale study. We have analyzed two population pairs of the house mouse, one pair of the subspecies Mus musculus domesticus and the other of M. m. musculus. A total of 915 microsatellite loci chosen to cover the whole genome were assessed in a prescreening procedure, followed by individual typing of candidate loci. Schlötterer's ratio statistics (lnRH) were applied to detect loci with significant deviations from patterns of neutral expectation. For eight loci from each population pair we have determined the size of the potential sweep window and applied a second statistical procedure (linked locus statistics). For the two population pairs, we find five and four significant sweep loci, respectively, with an average estimated window size of 120 kb. On the basis of the analysis of individual allele frequencies, it is possible to identify the most recent sweep, for which we estimate an onset of 400–600 years ago. Given the known population history for the French–German population pair, we infer that the average frequency of selective sweeps in these populations is higher than 1 in 100 generations across the whole genome. We discuss the implications for adaptation processes in natural populations.  相似文献   

20.
Hardy OJ  Charbonnel N  Fréville H  Heuertz M 《Genetics》2003,163(4):1467-1482
The mutation process at microsatellite loci typically occurs at high rates and with stepwise changes in allele sizes, features that may introduce bias when using classical measures of population differentiation based on allele identity (e.g., F(ST), Nei's Ds genetic distance). Allele size-based measures of differentiation, assuming a stepwise mutation process [e.g., Slatkin's R(ST), Goldstein et al.'s (deltamu)(2)], may better reflect differentiation at microsatellite loci, but they suffer high sampling variance. The relative efficiency of allele size- vs. allele identity-based statistics depends on the relative contributions of mutations vs. drift to population differentiation. We present a simple test based on a randomization procedure of allele sizes to determine whether stepwise-like mutations contributed to genetic differentiation. This test can be applied to any microsatellite data set designed to assess population differentiation and can be interpreted as testing whether F(ST) = R(ST). Computer simulations show that the test efficiently identifies which of F(ST) or R(ST) estimates has the lowest mean square error. A significant test, implying that R(ST) performs better than F(ST), is obtained when the mutation rate, mu, for a stepwise mutation process is (a) >/= m in an island model (m being the migration rate among populations) or (b) >/= 1/t in the case of isolated populations (t being the number of generations since population divergence). The test also informs on the efficiency of other statistics used in phylogenetical reconstruction [e.g., Ds and (deltamu)(2)], a nonsignificant test meaning that allele identity-based statistics perform better than allele size-based ones. This test can also provide insights into the evolutionary history of populations, revealing, for example, phylogeographic patterns, as illustrated by applying it on three published data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号