首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
《TARGETS》2002,1(6):206-213
Despite current drug therapies, including those that target enzymes, channels and known G-protein-coupled receptors (GPCRs), cardiovascular disease remains the major cause of ill health, which suggests that other transmitter systems might be involved in this disease. In humans, ∼175 genes have been predicted to encode ‘orphan’ GPCRs, where the endogenous ligand is not yet known. As a result of intensive screening using ‘reverse pharmacology’, an increasing number of orphan receptors are being paired with their cognate ligands, many of which are peptides. The existence of some of these peptides such as urotensin-II and relaxin had been known for some time but others, including ghrelin and apelin, represent novel sequences. The pharmacological characterization of these emerging peptide–receptor systems is a tantalising area of cardiovascular research, with the prospect of identifying new therapeutic targets.  相似文献   

2.
The novel G protein-coupled receptor APJ, recently paired with the proposed cognate peptide ligand apelin, mediates potent vasodilator and positive inotropic actions in rats. Radioligand binding showed apelin receptors in rat and human heart and human large conduit vessels. The specific cell types expressing the receptor, however, have not been determined. Apelin, the cognate receptor ligand, is present in endothelial cells. However, the exact pathway of endothelial apelin synthesis and secretion is not known. We therefore investigated the cellular distribution of APJ receptor-like immunoreactivity (APJ-LI) in a range of human tissues using immunocytochemistry and fluorescent double staining confocal microscopy. The same techniques were applied to determine the intracellular localisation of apelin-like immunoreactivity (apelin-LI) in cultured human umbilical vein endothelial cells (HUVECs). APJ-LI is present in endothelial cells, vascular smooth muscle cells and cardiomyocytes. Apelin-LI localises to secretory vesicles and the Golgi complex/endoplasmic reticulum of HUVECs. Apelin-LI does not co-localise with von Willebrand factor in Weibel-Palade bodies, suggesting synthesis of apelin via the constitutive pathway. The proximity of receptor and ligand in the human vasculature, together with evidence for local vascular apelin synthesis, suggests an important role for APJ/apelin as a paracrine cardiovascular regulator system.  相似文献   

3.
Thanassoulis G  Huyhn T  Giaid A 《Peptides》2004,25(10):1789-1794
Urotensin II (UII) has been found to be a potent vasoactive peptide in humans and in a number of relevant animal models of cardiovascular disease such as the mouse, rat and other non-human primates. This peptide with structural homology to somatostatin was first isolated from the urophysis of fish and was recently found to bind to an orphan receptor in mouse and human. Initially found to have potent vasoconstrictive activities in a variety of vessels from diverse species, it has also been shown to exert vasodilatation in certain vessels in the rat and human by various endothelium-dependent mechanisms. The various vasoactive properties of UII suggest that the peptide may have a physiological role in maintaining vascular tone and therefore may have a role in the pathophysiology of a number of human diseases such as heart failure. Moreover, UII has also been implicated as a mitogen of vascular smooth muscle cells suggesting a deleterious role in atherosclerosis and coronary artery disease. In addition, there is evidence to demonstrate that UII has multiple metabolic effects on cholesterol metabolism, glycemic control and hypertension and therefore may be implicated in the development of insulin resistance and the metabolic syndrome.  相似文献   

4.
Sugo T  Mori M 《Peptides》2008,29(5):809-812
Urotensin II (UII), which was originally isolated from the teleost urophysis, was identified as an endogenous ligand for orphan G protein-coupled receptor 14 (GPR14). The structure of mammalian UII was confirmed by isolation from spinal cord in porcine, or was easily predicted from the sequence of prepro-UII in human. For rat and mouse, however, only the tentative sequences of UII peptides have been demonstrated because the typical processing sites are absent from the amino-terminal region of the mature peptides. Isolation of UII-like immunoreactivity in rat brain revealed the presence of a novel peptide, designated urotensin II-related peptide (URP). URP binds and activates the human and rat urotensin II receptors (GPR14) and has a hypotensive effect when administrated to anesthetized rats. Based on the DNA sequences of the cloned prepro-URP gene, the amino acid sequences of mature URP for mouse and human are identical to that for rat URP. These results suggest that URP is the endogenous and functional ligand for urotensin II receptor in the rat and mouse, and possibly in the human.  相似文献   

5.
The orphan receptor APJ and its recently identified endogenous ligand, apelin, are expressed in the heart. However, their importance in the human cardiovascular system is not known. This study shows that apelin-like immunoreactivity is abundantly present in healthy human heart and plasma. Gel filtration HPLC analysis revealed that atrial and plasma levels of high molecular weight apelin, possibly proapelin, were markedly higher than those of mature apelin-36 itself. As assessed by quantitative RT-PCR analysis, left ventricular apelin mRNA levels were increased 4.7-fold in chronic heart failure (CHF) due to coronary heart disease (p<0.01) and 3.3-fold due to idiopathic dilated cardiomyopathy (p<0.05), whereas atrial apelin mRNA levels were unchanged. Atrial and plasma apelin-like immunoreactivity as well as atrial and ventricular APJ receptor mRNA levels were significantly decreased in CHF. Our results suggest that a new cardiac regulatory peptide, apelin, and APJ receptor may contribute to the pathophysiology of human CHF.  相似文献   

6.
Apelin, the proposed endogenous peptide ligand of the novel G-protein-coupled receptor APJ, has been shown to possess potent vasodilator and positive inotropic effects in rats and humans in vivo. However, in humans, no endogenous source of apelin has been reported. Therefore, based on the presence of APJ and mRNA encoding apelin in human tissues, we investigated the expression of apelin in fresh-frozen human tissue from right atrium, left ventricle, lung, kidney, adrenal and large conduit vessels using immunocytochemistry. Apelin-like immunoreactivity (apelin-LI) was detected in vascular endothelial cells lining blood vessels in the human heart, kidney, adrenal gland and lung and in endothelial cells of large conduit vessels. Apelin-LI was also present in endocardial endothelial cells lining recesses of the right atrium. Apelin-LI was not present or below the level of detection in cardiomyocytes, Purkinje's cells, pulmonary or renal epithelial cells, secretory cells of the adrenal gland, vascular smooth muscle cells, adipocytes, nerves and connective tissue. The restricted presence of apelin-LI in endothelial cells suggests that endothelial apelin may play a role as a locally secreted cardiovascular mediator acting on APJ receptors present on the vascular smooth muscle and on cardiac myocytes to regulate vascular tone and cardiac contractility.  相似文献   

7.
Coy DH  Rossowski WJ  Cheng BL  Taylor JE 《Peptides》2002,23(12):2259-2264
Urotensin II is the latest of a growing list of peptides exhibiting potent cardiovascular effects. It is an extremely potent vasoconstrictor in primates; its excretion is elevated in hypertensive patients thus suggesting therapeutic potential for urotensin II analogues, particularly receptor antagonists. In the present study, a number of interesting structural features pertaining to the N-terminus of urotensin II have been evaluated for binding to cloned human and rat urotensin II receptors and functional effects on rat upper thoracic aorta smooth muscle preparations. Shortened octapeptides retained full binding affinities and functional activities, did not require a free N-terminal amino group, and could tolerate an amidated C-terminus. The N-terminal Asp residue present in the octapeptides did not require a negatively charged side chain, merely one which contained a hydrogen bond acceptor CO group which could be present at a variety of positions on the side chain. The side chain could be constrained into a trans-olefinic configuration with full retention of potency, but potency was lost in the cis configuration. N-terminal aromatic amino substituted with polar groups such as OH and NO2 also resulted in high affinity analogues. Overall, the correlation between binding affinities for the human and rat receptors was quite good. These findings could be of value in the development of more potent urotensin II receptor antagonists based on the previously identified somatostatin antagonist octapeptides which we have recently found, function as relatively weak urotensin II antagonists.  相似文献   

8.
Apelin is a peptide that was recently isolated as the endogenous ligand for the human orphan APJ receptor, a G protein-coupled receptor which shares 31 % amino-acid sequence identity with the angiotensin type 1 receptor. Apelin naturally occurs in the brain and plasma as 13 (pE13F) and 17 amino-acid (K17F) fragments of a single pro-peptide precursor. In transfected CHO cells, K17F and pE13F bind with high affinity to the rat APJ receptor, promote receptor internalization, and inhibit forskolin-induced cAMP formation. In the same cells, pE13F activates MAP kinase and PI3 kinase pathways. Apelin and APJ receptors are both widely distributed in the brain but are particularly highly expressed in the supraoptic (SON) and paraventricular (PVN) hypothalamic nuclei. Dual labeling studies demonstrate that within these two nuclei, apelin and its receptor are colocalized with vasopressin (AVP) in a subset of magnocellular neurons. In lactating rats, characterized by increases in both synthesis and release of AVP, central injection of apelin inhibits the phasic electrical activity of AVP neurons, reduces plasma AVP levels, and increases aqueous diuresis. Moreover, water deprivation, while increasing the activity of AVP neurons, reduces plasma apelin concentrations and induces an intra-neuronal pile up of the peptide, thereby decreasing the inhibitory effect of apelin on AVP release and preventing additional water loss at the kidney level. Taken together, these data demonstrate that apelin counteracts the effects of AVP in the maintenance of body fluid homeostasis. In addition, apelin and its receptor are present in the cardiovascular system, i.e. heart, kidney and vessels. Systemically administered apelin reduces arterial blood pressure, increases cardiac contractility and reduces cardiac loading. The development of non peptidic analogs of apelin may therefore offer new therapeutic avenues for the treatment of cardiovascular disorders.  相似文献   

9.
10.
G-protein-coupled receptors (GPCRs) are recognized as the largest protein receptor superfamily, which are widely distributed in various tissues and organs. In addition, GPCRs are involved in many physiological and pathological longitudinal responses. Studies have indicated that putative receptor protein related to AT1 (APJ receptor) is an orphan GPCRs until its endogenous ligand apelin is found. Recently, Elabela, a new APJ receptor endogenous ligand was also found. Some evidence showed that the APJ receptor is distributed in the central nervous and cardiovascular systems. Moreover, the APJ receptor and its ligand are involved in many physiological functions and pathophysiological effects, making it a promising drug target for future treatment of diseases such as ischemic heart disease, hypertension, heart failure, and others. Although APJ is closely associated with many diseases, there are no drugs that can activate or inhibit APJ directly. In the current review, we try our best to summarize all agonists and antagonists targeting APJ, including peptides and small molecules. Given the role of apelin/APJ and Elabela/APJ in cardiovascular and other diseases, we believe that the combination of these agonists and antagonists with apelin and Elabela will play a corresponding role in various pathophysiological effects with further development of research.  相似文献   

11.
Dimerization of G protein‐coupled receptors (GPCRs) is crucial for receptor function including agonist affinity, efficacy, trafficking and specificity of signal transduction, including G protein coupling. Emerging data suggest that the cardiovascular system is the main target of apelin, which exerts an overall neuroprotective role, and is a positive regulator of angiotensin‐converting enzyme 2 (ACE2) in heart failure. Moreover, ACE2 cleaves off C‐terminal residues of vasoactive peptides including apelin‐13, and neurotensin that activate the apelin receptor (APJ) and neurotensin receptor 1 (NTSR1) respectively, that belong to the A class of GPCRs. Therefore, based on the similar mode of modification by ACE2 at peptide level, the homology at amino acid level and the capability of forming dimers with other GPCRs, we have been suggested that APJ and NTSR1 can form a functional heterodimer. Using co‐immunoprecipitation, BRET and FRET, we provided conclusive evidence of heterodimerization between APJ and NTSR1 in a constitutive and induced form. Upon agonist stimulation, hetrodimerization enhanced ERK1/2 activation and increased proliferation via activation of Gq α‐subunits. These novel data provide evidence for a physiological role of APJ/NTSR1 heterodimers in terms of ERK1/2 activation and increased intracellular calcium and induced cell proliferation and provide potential new pharmaceutical targets for cardiovascular disease.  相似文献   

12.
Wei L  Hou X  Tatemoto K 《Regulatory peptides》2005,132(1-3):27-32
The novel 36-amino acid peptide, apelin, is the endogenous ligand for the orphan receptor APJ. Apelin may play important roles in the regulation of the cardiovascular system and the hypothalamic-pituitary axis. It is a potent hypotensive agent and one of the most potent stimulators of cardiac contractility. In this study, we investigated the roles of apelin derived from adipocytes in the regulation of cardiovascular homeostasis. We found that both apelin and APJ mRNAs were expressed in isolated mouse adipocytes and that apelin mRNA levels increased during the differentiation of 3T3-L1 cells to adipocytes. We also found that the administration of insulin (1 nM-100 nM) increased, while that of dexamethasone (0.1 nM-100 nM) decreased the apelin mRNA levels in 3T3-L1 adipocytes in a dose-dependent manner, suggesting that insulin and glucocorticoids regulate apelin gene expression in adipocytes. We speculate that high glucocorticoid levels suppress apelin production and stimulate angiotensin II production in adipocyte, decreasing the counter-regulatory activity of apelin against the pressor action of angiotensin II, which might partly be involved in the mechanism underlying the development of obesity-related hypertension.  相似文献   

13.
It is well known that the steroid hormone glucocorticoid and its nuclear receptor regulate the inflammatory process, a crucial component in the pathophysiological process related to human diseases that include atherosclerosis, obesity and type II diabetes, inflammatory bowel disease, Alzheimer's disease, multiple sclerosis, and liver tumors. Growing evidence demonstrates that orphan and adopted orphan nuclear receptors, such as peroxisome proliferator-activated receptors, liver x receptors, the farnesoid x receptor, NR4As, retinoid x receptors, and the pregnane x receptor, regulate the inflammatory and metabolic profiles in a ligand-dependent or -independent manner in human and animal models. This review summarizes the regulatory roles of these nuclear receptors in the inflammatory process and the underlying mechanisms.  相似文献   

14.
Apelin, a peptide recently isolated from bovine stomach tissue extracts, has been identified as the endogenous ligand of the human orphan APJ receptor. We established a stable Chinese hamster ovary (CHO) cell line expressing a gene encoding the rat apelin receptor fused to the enhanced green fluorescent protein, to investigate internalization and the pharmacological profile of the apelin receptor. Stimulation of this receptor by the apelin fragments K17F (Lys1-Phe-Arg-Arg-Gln-Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Met-Pro-Phe17) and pE13F (pGlu5-Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Met-Pro-Phe17) resulted in a dose-dependent inhibition of forskolin-induced cAMP production and promoted its internalization. In contrast, the apelin fragments R10F (Arg8-Leu-Ser-His-Lys-Gly-Pro-Met-Pro-Phe17) and G5F (Gly13-Pro-Met-Pro-Phe17) were inactive. The physiological role of apelin and its receptor was then investigated by showing for the first time in rodent brain: (i) detection of apelin neurons in the supraoptic and paraventricular nuclei by immunohistochemistry with a specific polyclonal anti-apelin K17F antibody; (ii) detection of apelin receptor mRNA in supraoptic vasopressinergic neurons by in situ hybridization and immunohistochemistry; and (iii) a decrease in vasopressin release following intracerebroventricular injection of K17F, or pE13F, but not R10F. Thus, apelin locally synthesized in the supraoptic nucleus could exert a direct inhibitory action on vasopressinergic neuron activity via the apelin receptors synthesized in these cells. Furthermore, central injection of pE13F significantly decreased water intake in dehydrated normotensive rats but did not affect blood pressure. Together, these results suggest that neuronal apelin plays an important role in the central control of body fluid homeostasis.  相似文献   

15.
Mori M  Fujino M 《Peptides》2004,25(10):1815-1818
Urotensin II (UII) is a piscine neuropeptide originally isolated from the teleost urophysis. The existence of UII in mammals has been demonstrated by cloning of the mammalian orthologs of UII precursor protein genes. While rat and mouse orthologs have been reported, only the tentative structures of UII peptides of these animals have been demonstrated, since prepro-UII proteins lack the typical processing sites in the amino-terminal region of the mature peptides. A novel peptide, UII-related peptide (URP), was discovered by monitoring UII-immunoreactivity in the rat brain, and its amino acid sequence was determined to be ACFWKYCV. cDNAs encoding rat, mouse, and human precursor proteins for URP were cloned and showed that the sequences of mouse and human URP peptides are identical to that for rat URP. URP was found to bind and activate the human or rat urotensin II receptors [GPR14, UT receptor (UTR)] and showed a hypotensive effect when administrated to anesthetized rats. The prepro-URP gene is expressed in several rat tissues, although with lower levels than the prepro-UII gene and, in the human, is expressed comparably to prepro-UII in several tissues except the spinal cord. These results suggest that URP is the endogenous and functional ligand for urotensin II receptor in the rat and mouse, and possibly in the human.  相似文献   

16.
Apelin is a recently described endogenous peptide and its receptor APJ, is a member of the G protein-coupled receptors family. Apelin and APJ are widely distributed in central and peripheral tissues exert important biological effects on cardiovascular system. Recent studies have suggested that apelin/APJ system involves in decreasing the blood pressure and have a close relationship with hypertension, presumably, pathophysiology of hypertension as well. Such as, apelin/APJ system may be concerned in hyperfunction of the sympathetic nervous system, renin–angiotensin–aldosterone system, endothelial injury, excessive endothelin, sodium retention, vascular remodeling, insulin resistance elicit hypertension, as well as in hypertension-induced organ damaged. Meanwhile, on the ground of the variation of apelin level in hypertension therapeutic process and combining with the recently researches on APJ agonist and antagonist, we could infer that apelin/APJ system would be a promising therapeutic target for hypertension and other cardiovascular disease in the future. However, the role of apelin on these pathogenic conditions was not consistent, consequently, the contradictory role of apelin on these pathogenesis of hypertension would be discussed in this article.  相似文献   

17.
The functional activity of G protein-coupled receptors can be modified by their ability to form oligomeric complexes with G protein-coupled receptors from other receptor families. Emerging evidence suggests that the appetite-regulating hormone ghrelin is a directly acting vasodilator peptide with anti-inflammatory activity, therefore, we have examined the ability of ghrelin receptors to oligomerize with members of the prostanoid receptor family which are also involved in modulating vascular activity and inflammatory responses. Using the techniques of bioluminescence resonance energy transfer and co-immunoprecipitation, we detected the ability of ghrelin receptors to hetero-oligomerize with prostaglandin E(2) receptor subtype EP(3-I,) prostacyclin receptors, and thromboxane A(2) (TPalpha) receptors, when transiently over-expressed in human embryonic kidney 293 cells. These results suggest that hetero-oligomeric interactions between ghrelin receptors and prostanoid receptors are likely to be of biological relevance. Co-transfection of cells with ghrelin receptor and prostanoid receptors significantly decreased ghrelin receptor expression and attenuated its constitutive activation of phospholipase C without changing its affinity for ghrelin. We also observed an increase in the proportion of ghrelin receptors localized intracellularly in the presence of prostanoid receptors. Taken together, these results suggest that the increased expression of prostanoid receptors in conditions of vascular inflammation, such as in atherosclerotic plaques, could influence those cellular responses dependent on the constitutive activation of ghrelin receptors.  相似文献   

18.
By using a strategy that we have developed to search for the ligands of orphan seven-transmembrane-domain receptors [S. Hinuma et al., Nature 393 (1998) 272-276], we have recently identified a natural ligand, apelin, for the orphan 7TMR, APJ [K. Tatemoto et al., Biochem. Biophys. Res. Commun. 251 (1998) 471-476]. In this paper, we isolated rat and mouse apelin cDNAs, and analyzed the tissue distribution of apelin mRNA in rats. Although apelin mRNA was widely detected in a variety of tissues, the highest expression of apelin mRNA was detected in the mammary gland of pregnant rats. In the mammary gland, biologically active apelin and its mRNA considerably increased during pregnancy and lactation, and reached a maximal level around parturition. Moreover, a large amount of apelin (14-93 pmol/ml) was found to be secreted in the bovine colostrum, and it was still detectable even in commercial bovine milk. Since apelin partially suppressed cytokine production by mouse spleen cells in response to T cell receptor/CD3 cross-linking, the oral intake of apelin in the colostrum and milk might modulate immune responses in neonates.  相似文献   

19.
Signaling of the apelin, angiotensin, and bradykinin peptides is mediated by G protein-coupled receptors related through structure and similarities of physiological function. We report nuclear expression as a characteristic of these receptors, including a nuclear localization for the apelin receptor in brain and cerebellum-derived D283 Med cells and the AT(1) and bradykinin B(2) receptors in HEK-293T cells. Immunocytochemical analyses revealed the apelin receptor with localization in neuronal nuclei in cerebellum and hypothalamus, exhibiting expression in neuronal cytoplasm or in both nuclei and cytoplasm. Confocal microscopy of HEK-293T cells revealed the majority of transfected cells displayed constitutive nuclear localization of AT(1) and B(2) receptors, whereas apelin receptors did not show nuclear localization in these cells. The majority of apelin receptor-transfected cerebellum D283 Med cells showed receptor nuclear expression. Immunoblot analyses of subcellular-fractionated D283 Med cells demonstrated endogenous apelin receptor species in nuclear fractions. In addition, an identified nuclear localization signal motif in the third intracellular loop of the apelin receptor was disrupted by a substituted glutamine in place of lysine. This apelin receptor (K242Q) did not exhibit nuclear localization in D283 Med cells. These results demonstrate the following: (i) the apelin receptor exhibits nuclear localization in human brain; (ii) distinct cell-dependent mechanisms for the nuclear transport of apelin, AT(1), and B(2) receptors; and (iii) the disruption of a nuclear localization signal sequence disrupts the nuclear translocation of the apelin receptor. This discovery of apelin, AT(1), and B(2) receptors with agonist-independent nuclear translocation suggests major unanticipated roles for these receptors in cell signaling and function.  相似文献   

20.
Several G protein-coupled receptors (GPCRs) mediate neuronal cell migration and survival upon activation by their native peptide ligands but activate death-signaling pathways when activated by certain non-native ligands. In cultured neurons, we recently described expression of the unique seven-transmembrane (7TM) -G protein-coupled receptor, APJ, which is also strongly expressed in neurons in the brain and various cell types in other tissues. We now demonstrate that the endogenous APJ peptide ligand apelin activates signaling pathways in rat hippocampal neurons and modulates neuronal survival. We found that (i) both APJ and apelin are expressed in hippocampal neurons; (ii) apelin peptides induce phosphorylation of the cell survival kinases AKT and Raf/ERK-1/2 in hippocampal neurons; and (iii) apelin peptides protect hippocampal neurons against NMDA receptor-mediated excitotoxicity, including that induced by human immunodeficiency virus type 1. Thus, apelin/APJ signaling likely represents an endogenous hippocampal neuronal survival response, and therefore apelin should be further investigated as a potential neuroprotectant against hippocampal injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号